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Transformations of the Plane

1.1 Introduction

The two main areas of application which are considered in this textbook are
computer graphics and computer-aided design (CAD). In computer graphics
applications, geometric objects are defined in terms of a number of basic build-
ing blocks called graphical primitives. There are primitives which correspond
to points, lines, curves, and surfaces. For example, a rectangle can be defined
by its four sides. Each side is constructed from a line segment primitive by
applying a number of geometric operations, called transformations, which po-
sition, orientate or scale the line primitive. Five types of transformation are
particularly relevant in applications, namely, translations, scalings, reflections,
rotations, and shears. These are introduced in Sections 1.2-1.6. Applications
of transformations are considered in Section 1.8. In particular, Section 1.8.1
exemplifies, in more detail, how objects can be defined by applying transfor-
mations to graphical primitives by a process called instancing. Each primitive
has a mathematical representation which can be expressed as a data or type
structure for storage and manipulation by a computer. The mathematical rep-
resentation of primitives is discussed in Chapters 5-9.

Given a fixed unit of length, and two perpendicular lines of reference called
the z-axis and the y-axis, each point P of the plane is represented by an ordered
pair of real numbers (z,y) such that the perpendicular distance of P from the
y-axis is x units and the distance of P from the z-axis is y units. The ordered
pair (z,y) is called the Cartesian or affine coordinates of P, and the set of all
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ordered pairs of real numbers (z,y) is called the Cartesian or affine plane and
denoted R2. The axes intersect in a point O, with coordinates (0, 0), called the
origin. The point P with coordinates (z,y) will be denoted P(z,y). For the
purposes of computation the point may also be represented by the row vector
(z,y) or the row matrix ( z y ).

For constants A, B,C (A and B not both zero) the set of points (z,y)
satisfying the equation

Az +By+C=0

is a line which is said to be defined in implicit form. The line through a point
(p1,p2) in the direction of the vector (v;,v2) can be defined parametrically by

(.’L‘(t),y(t)) = (p1 + vit,po + ’Uzt) .

Each value of the parameter ¢ corresponds to a point on the line. For instance,
evaluating z(t) and y(t) at t = 0 yields the point (p;,ps), and evaluating at
t =1 yields the point (p; +v1,ps +v2). Any parametrically defined line can be
expressed in implicit form by eliminating ¢ from = = p; +v;t and y = py + vat,
to give

v2Z — 11y + (p2v1 — p1v2) =0.

It also follows that the line with equation Az + By + C = 0 has the direction
of the vector +(—B, A) and normal direction (the direction perpendicular to
the line) +(A, B).

The line through the two points P and Q is denoted PQ. The line segment
PQ (with endpoints P and Q) is the portion of the line PQ between the points
P and Q.

Example 1.1

Consider the line passing through the point (a,b), and making an angle «
with the z-axis. By elementary trigonometry, a point (z,y) on the line satisfies
tan(c) = (y — b)/ (z — a). Hence the line is given in-implicit form by tan(a)z —
y+b—tan(a)a =0.

Example 1.2

Consider two lines A;z+ Byy+C; = 0 and Az + Bay + C, = 0 with directions
v =(—By, A1) and w =(—Ba, A2) respectively. Suppose 6 is the angle between
the lines. Then the vector identity v - w = |v||w|cos6 and the trigonometric
identity cos? + sin? 9 = 1 give

— __AA4BB o AB_BA
cosf = (Ai+B1)(a3+57) S0 = (A42+B2)(42+B7)
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Hence AyBy — AsB,

A1As+ BBy

Tt follows that the two lines are parallel if and only if 8 = 0, that is, if and only
if AyBy = A2B;.

tanf =

Exercises

1.1 Show that the angle o that the line Az + By + C = 0 makes with
the z-axis is given by tan(a) = —A/B.

1.2 Determine an implicit equation for the line (2+3t, 5—4t). Determine
the angle that the line makes with the x-axis.

1.3 Show that, for points P(a1,a2) and Q(b1,b2), the line PQ can be
expressed in the parametric form (1 — t)(p1,p2) + t(q1, g2), that is,
(z(t),y(t)) = (p1 —tp1 +tq1, p2 —tpa +tge) for t € R. Show also that
the segment PQ is given by the same equation and t € [0, 1].

1.4 Show that Az + By + C1; = 0 and Az + Boy + C2 = 0 are per-
pendicular if and only if A; A3 + B1Bs =0.

Definition 1.1

A (linear) transformation of the plane is a mapping L : R? — R? of the plane
to itself of the form

L(z,y) = (ax + by +c,dz +ey + f), (1.1)
for some constant real numbers a, b, ¢, d, e, f. The point P’ = L(P) is called

the image of P. If S is a subset of R?, then L(S) = {L(=z,y): (z,y) € S} is
called the image of S.

Example 1.3

Let L(z,y) = (2 + 3y + 4,5z + 6y + 7). The images of the points (4,2), (2,1),
and (0,0) are L(4,2) = (18,39), L(2,1) = (11,23), and L(0,0) = (4,7).
Lemma 1.1

If aB — bA and dB — eA are not both zero, then the transformation L given by
(1.1) maps the line Az + By + C =0 (A and B not both zero) to the line

(eA—dB)z+ (aB—bA)y+ ((bf —ce) A— (af —cd) B+ (ae—bd)C) =0.
(1.2)
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If aB—bA=0and eA—dB =0, then ae — bd = 0 and L maps every point on
the line to the point ((¢cB — bC) /B, (fB — eC) / B).

Proof

Let L be the transformation given by (1.1). Consider the line Az + By+C = 0,
and suppose B # 0. (The case B = 0 is left as an exercise to the reader.) Then
each point on the line has the form (t,—4t— $). So L (t, -4t — ) = (z,y)
where
mz(aB-—bA)t—bC-i—cB andyz(dB—eA)t——eC—i-fB. (13)
B B
If aB—bA # 0 or dB —eA # 0, then ¢ can be eliminated from equations (1.3)
to give (1.2) and the first part of the lemma is proved.
Suppose aB — bA = 0 and eA — dB = 0. Since A and B are not both
zero, it follows that ae — bd = 0. Every point on the line maps to the point

(X,Y) = ((cB—¥C) /B, (fB — eC) / B). u
Definition 1.2
A transformation L given by (1.1) is said to be singular whenever

Y l=ae—tbi=o, (1.4)

and non-singular otherwise.

Exercises

1.5 The proof of Lemma 1.1 shows that whenever a linear transformation
L given by (1.1) maps a line to a point, then aB—bA = dB—eA = 0.
Hence ae — bd = 0, and L is singular. Show the converse, that if L
is singular (ae — bd = 0), then there exists a line Az + By +C =0
which is mapped by L to a point.

1.6 Suppose L is a non-singular transformation. Show that the line seg-
ment with endpoints P(p;,p2) and Q(q1,g2) maps to the line seg-
ment with endpoints L(P) and L(Q).

Remark 1.1

Throughout the book the term object is used rather vaguely. A planar object
is a subset of R?, and a spatial object is a subset of R3. In most applications
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an object has a geometrical structure such as that of being a ‘point’, a ‘line’, a
‘curve’, a ‘collection of curves’, or a ‘region of points’.

1.2 Translations

A translation is a transformation which maps a point P(z,y) to a point
P/(z',y') by adding a constant amount to each coordinate so that
o =z+h, y=y+k,

for some constants h and k. The translation has the effect of moving P in the
direction of the z-axis by h units, and in the direction of the y-axis by k units.
If P and P’ are written as row vectors, then

(2, y') = (z,9) + (h,k) .
To translate an object it is necessary to add the vector (h, k) to every point of

that object. The translation is denoted T (h, k). A translation can also be exe-
cuted using matrix addition if (z, ) is represented as the row matrix ( z y ).

Example 1.4
Consider a quadrilateral with vertices A(1,1), B(3,1), C(2,2), and D(1.5,3).
Applying the translation T (2,1), the images of the vertices are
A = L,D)+(2,1)=(3,2),
B = (3,1)+(2,1)=(,2),
cC = (2,2)+(,1)=(4,3) , and
D' = (15,3)+(2,1)=(3.5,4) .
Fig. 1.1 shows (a) the original, and (b) the translated quadrilateral.

I f s}

5 5

4] 4] 4

3 3. 3

21 21 Iy e 21

11 17 11 '
% 12 345 ° — % 113 48 8

0 12 3 4 5
(a) Original quadrilateral (b) Effect of a translation  (c) Effect of a scaling
Fig. 1.1.
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Definition 1.3

The transformation which leaves all points of the plane unchanged is called
the identity transformation and denoted I. The inverse transformation of L,
denoted L™, is the transformation such that (i) L~ maps every image point
L(P) back to its original position P, and (ii) L maps every image point L~1(P)
to P. Inverse transformations will be discussed further in Section 2.5.1.

Example 1.5

Consider the translation T (k, k) which maps a point P(z,y) to P’(z+h, y+k).
The transformation T~ required to map P’ back to P is the inverse translation
T (—h, —k). For instance, applying T (—2,—1) to the point A’ of Example 1.4
gives (3,2) + (—2,—1) = (1,1), and hence maps A’ back to A. The reader
can check that the same translation returns the other images to their original
locations.

Exercise 1.7

(a) Apply the translation T (3, —2) to the quadrilateral of Example 1.4,
and make a sketch of the transformed quadrilateral.

(b) Determine the inverse transformation of T (3,—2). Apply the inverse
to the transformed quadrilateral to verify that the inverse returns
the quadrilateral to its original position.

1.3 Scaling about the Origin

A scaling about the origin is a transformation which maps a point P(z,y) to
a point P’(z’,3’) by multiplying the z and y coordinates by non-zero constant
scaling factors s, and s,;, respectively, to give

' =s;zand y =s,y.

A scaling factor s is said to be an enlargement if |s| > 1, and a contraction if
|s| < 1. A scaling transformation is said to be uniform whenever s, = s,. By

representing a point (z, y) as arow matrix (  y ), the scaling transformation
can be performed by a matrix multiplication

P=(z0)(§ o) = o).
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T 0
S(828y) = ( 80 8y ) .

is called the scaling transformation matriz.

The matrix

Example 1.6

To apply the scaling transformation S(2,0.5) to the quadrilateral of Exam-
ple 1.4, the coordinates of the four vertices of the quadrilateral are represented
by the rows of the 4 x 2 matrix

A 1 1

B |3 1

cCl|l |12 2 ’

D 1.5 3

and multiplied by the scaling transformation matrix

A’ 1 1 2 0.5
B | _ |3 1 2 0 _ |6 0.5
c |12 2 0 05/ | 4 1
D’ 1.5 3 3.0 1.5

The rows of the resulting matrix are the coordinates of the images of the
vertices. The original quadrilateral and its scaled image are shown in Fig. 1. 1(a)
and (c). The quadrilateral is scaled by a factor 2 in the z-direction and by a
factor 0.5 in the y-direction.

Remark 1.2

The quadrilateral of Example 1.6 has experienced a translation due to the
fact that scaling transformations are performed ‘about the origin O’. (Scalings
about an arbitrary point are considered in Section 2.4. ZL)The true effect of a
scaling about the origin is to scale the position vectors OP of each pomt Pin
the plane. For instance, in Example 1.6 vectors OA 6T3’ 0OC, and- OD have
been scaled by the factors 2 and 0.5 in the z- and y-directions as shown in
Fig. 1.2. Since the positions of all four points A, B, C, and D have changed,
there is a combined effect of scaling and translating of the object. The origin
is the only point unaffected by a scaling about the origin.
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4l 4}
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21 2
11 11
0 —t—> g

Fig. 1.2. Effect of scaling on position vectors
Exercises

1.8 Apply the scaling transformation S(—1,1) to the quadrilateral of
Example 1.4. Describe the effect of the transformation.

1.9 Show that the inverse transformation S(s, s,)~* of a scaling S(s, s,)
(with sz # 0 and s, # 0) is the scaling S(1/s5,1/s,).

1.4 Reflections

Two effects which are commonly used in CAD or computer drawing packages
are the horizontal and vertical ‘flip’ or ‘mirror’ effects. Pictures which have
undergone a horizontal or vertical flip are shown in Fig. 1.3(a). A flip of an
object is obtained by applying a transformation known as a reflection. Consider
a fixed line £ in the plane. The reflected image of a point P, a distance d from
¢, is determined as follows. If d = 0 then P is a point on £ and the image is P.
Otherwise, take the unique line ¢; through P and perpendicular to ¢. Then, as
showed in Fig. 1.3, there are two distinct points on ¢;, P and P’, which are a
distance d away from £. The point P’ is the required image of P.

It is easily verified that the reflection R, in the z-axis is the transformation
L(z,y) = (z,~y), and the reflection Ry in the y-axis is L(z,y) = (~z,y). The
reflection R; can be computed by the matrix multiplication

Re(= v)=(= 9) (5 §)=(= =),
and R, by
R(= v)=(= 0)( g §)=(-= v).

The reflection Ry was encountered in Exercise 1.7. Reflections in arbitrary lines
are discussed in Section 2.5.3.
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(a) Horizontal and vertical flips (b) Reflection in the line £
Fig. 1.3.

Exercises

1.10 Apply the reflection R, to the quadrilateral of Example 1.4.
1.11 Verify that R, = S(1,-1) and Ry = S(—1,1).

1.12 Show that the inverse of R, is R, that is, R;! = R,. Similarly, show
that R>1 =R,

1.5 Rotation about the Origin

A rotation about the origin through an angle 6 has the effect that a point
P(z,y) is mapped to a point P'(z’,y’) so that the initial point P and its image
point P’ are the same distance from the origin, and the angle between lines
OP and OP’ is 6. There are two possible image points which satisfy these
properties depending on whether the rotation is carried out in a clockwise or
anticlockwise direction. It is the convention that a positive angle 6 represents
an anticlockwise direction so that a /2 rotation about the origin maps points
on the z-axis to points on the y-axis.

Referring to Fig. 1.4, let P’(z’,3’) denote the image of a point P(z,y)
following a rotation about the origin through an angle 6 (in an anticlockwise
direction). Suppose the line OP makes an angle ¢ with the z-axis, and that
P is a distance r from the origin. Then (z,y) = (r cos ¢, sin ¢). P’ makes an
angle 0 + ¢ with the z-axis, and therefore (z',y’) = (r cos(6 + @), sin(6 + ¢)).
The addition formulae for trigonometric functions yields

2 = rcos(d+¢)=rcosfcos¢—rsinfsing =zcosf —ysinb , and

! = rsin(@+ ¢) =rsinfcosd +rcosfsing = xsind +ycosh .
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Fig. 1.4. Rotation of a point P about the origin
The coordinates (z’,3’) can be obtained from (z,y) by the matrix multiplication

P=(z y) ( —Z?Zz 3::3 ) =( xcosf—ysind zsinf+ycosh ) .

The matrix

cosf sinf
Rot (6) = ( —sinf cos@ )

is called the rotation matriz.

Example 1.7

The rotation matrices of rotations about the origin through /2, 7, and 3r/2
radians are

0

Rot(7r/2)=(_1 ),Rot(r):(—(l) _(1)),Rot(37r/2)=<(1) ‘(1)).

O =

Example 1.8

Applying the rotation Rot (7/2) to the quadrilateral of Example 1.4, gives the
points

A 11 -1 1
B | |3 1 01\ -1 3
c |72 2 (—1 0)” -2 2
D/ 15 3 -3 1.5

The image of the quadrilateral is shown in Fig. 1.5.
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Fig. 1.5. Rotation of the quadrilateral about the origin through 7/2

Exercises

1.13 Apply rotations about the origin through the angles 7/3, 27/3, and
7 /4 to the triangle with vertices P(1,1), Q(3,1), and R(2, 2). Sketch
the resulting triangles.

1.14 Show that Rot ()~! = Rot(—6).

1.15 Do the transformations Rot (w/2) and R, have the same effect?

1.6 Shears

Given a fixed direction in the plane specified by a unit vector v = (vy,v2),
consider the lines ¢4 with direction v and a distance d from the origin as shown
in Fig. 1.6. A shear about the origin of factor r in the direction v is defined to
be the transformation which maps a point P on £4 to the point P/ =P + rdv.

Thus the points on £; are translated along ¢4 (that is, in the direction of v)
through a distance of rd.

Example 1.9

To determine a shear in the direction of the z-axis with factor r, let v =
(1,0). The line in the direction of v through an arbitrary point P(zo,%yo) has
equation y = yo. The line is a distance ¢ from the origin. Thus P is mapped
to P’(zo + Yo, y0) and hence

(2 ¢ )=(2+r90 % )=(z y)(i (1))
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Fig. 1.6. Shear in the direction v

The general shear transformation matrix is determined as follows. The line
through P(xg,yo) with direction v = (v;,v;) has equation

v2z — 11y + (viyo — v220) = 0.
Since v is a unit vector, the distance from this line to the origin is
d = v1yo — vaZo -

There are two lines a given distance away from the origin with a specified
direction, and the lines on either side of £y (the line through the origin with
direction v) are distinguished by the sign of v;yg — voxg. It follows that the
shear transformation maps P(zg,yo) to

P’ =P + rdv = (zo + r(v1y0 — v220)v1, Yo + r(v1¥0 — v2x0)v2) .

Thus the shear has transformation matrix
_ 2
Sh(v,r) = ( 1 r’glvg TU3 ) .

V% 14+ rvivg
In particular,
10
sn(@0n=(7 1)

verifying the result of Example 1.9.

Example 1.10

The shear in the direction v = (2 /v/5,1/ N ) with a factor r = 1.5 has trans-
formation matrix

sh((2/v5,1/V5),15) = 1_1"5(%) 2(%) -t (%5)2

fu—y

o
—~
S
~—~—"

[amry

+

ot

3]
—~ &
S
——
—~
S
~——
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_ (04 -0.3
=\12 16"

Applying the shear to the quadrilateral of Example 1.4,

11 1.6 1.3
3 1|(04 —03)_|[ 24 07
2 2 |\ 12 1.6)_ 3.2 2.6
15 3 4.2 4.35

The effect of the shear is shown in Fig. 1.7.

Exercise 1.16

Determine the transformation matrix for a shear with (a) direction
(3,—4) and factor r = 4, and (b) direction (8, 6) and factor r = —1.

1.7 Concatenation of Transformations

In many applications it is desirable to apply more than one transformation to
an object. For instance, a translation and a rotation may be required to position
and orientate an object. The process of following one transformation by another
to form a new transformation with a combined effect is called concatenation or
composition of transformations. The term concatenation is the most commonly
used in computer graphics. All of the transformations described in the earlier
sections can be concatenated to obtain new transformations.
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Example 1.11

A rotation about the origin through an angle /3 is obtained by applying the
matrix Rot (7/3) '

. cos(m/3) sin(w/3
(¢ v) = (= 9)( _miala) o)
_ 1/2 V3/2

= (= y)(~\/3_,§2 1/2)’

Next apply a scaling by a factor of 6 in the z-direction and 2 in the y-direction
(xll yll — (x/ yl)(g g)

= (= y)(_\/%g \/‘32)(8 g)

Hence, the concatenated transformation has transformation matrix
1/2 V3/2 6 0y _( 3 V3
—v3/2  1/2 0 2) \-3/3 1 )~

A problem is encountered whenever translations are concatenated with
other types of transformation since it is necessary to combine a matrix (or
vector) addition for the translation with a matrix multiplication for the other
transformations. This is an awkward procedure remedied only by the introduc-
tion of homogeneous coordinates, as discussed in Chapter 2. Thus concatena-
tion will not be discussed any further, and the approach of using 2 x 2 matrix

multiplications will be abandoned. The homogeneous coordinate system offers
the following advantages for the execution of transformations.

1. All transformations can be represented by matrices, and performed by ma-
trix multiplication.

2. Concatenation of transformations is performed by matrix multiplication of
the transformation matrices.

3. Inverse transformations are obtained by taking a matrix inverse.

The effort expended has not been in vain since the ‘homogeneous’ transforma-
tion matrices are closely related to those described in this chapter.
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1.8 Applications
1.8.1 Instancing

A geometric object is created by defining the different parts which make up
the object. For example, the front of a house in Fig. 1.8 consists of a number
of rectangles, or rather scaled squares, which form the walls, windows, and
door of the house. The square is an example of a picture element. For conve-
nience, picture elements are defined in their own local coordinate system called
the modelling coordinate system, and are constructed from graphical primitives
which are the basic building blocks. Picture elements are defined once, but may
be used many times in the construction of objects. The number and type of
graphical primitives available depends on the computer graphics system.

5]

[ R .

4
3
2l
1
0

\ 4

4 5

oo

0 1 2
Fig. 1.8. Front of a house obtained from instances of Square and Point

For example, a square with vertices (0,0), (1,0), (1,1), and (0,1) can be
obtained using the graphical primitive for the line segment, denoted Line,
which joins the points (0,0) and (1,0). One possible construction of the square
is obtained in the following manner.

1. Draw Line. This produces the horizontal base of the square.

2. Apply a rotation about the origin through an angle 7/2 to a copy of Line,
and then apply a translation of 1 unit in the z-direction. This gives the
right vertical edge of the square.

3. Apply a translation of 1 unit in the y-direction to a copy of Line. This -
gives the top of the square.

4. Apply a rotation about the origin through an angle /2 to a copy of Line.
This gives the left vertical edge of the square.
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A transformed copy of a graphical primitive or picture element is called an
instance. The square, denoted Square, is defined by four instances of Line as
depicted in Fig. 1.9.

(0,1) (1,1)

(? / (1,0)

(0,0) (1,0)

Fig. 1.9. Square obtained from four instances of Line

The completed ‘real’ object is defined in world coordinates by applying
a modelling coordinate transformation to each picture element. The house of
Figure 1.8 is defined by six instances of the picture element Square, and one
instance of the primitive Point (for the door handle). In particular, the front
door is obtained by applying a scaling of 0.5 unit in the z-direction, followed
by a translation of 3 units in the z-direction and 1 unit in the y-direction.

In the above discussion, instancing has been described in words since with-
out homogeneous coordinates the concatenation of transformations is awkward.
In the proposed homogeneous coordinate system described in the next chapter
each instance of a picture element or object can be represented by a single
modelling transformation matrix.

Exercises

1.17 Each window and the outline of the house is obta.ined'by instances
of Square. Describe in words the sequence of transformations used
for each instance.

1.18 Investigate the graphical primitives available in graphics systems
such as PHIGS, GKS, and OpenGL. See for example [17] and the
web page for the book.
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1.8.2 Robotics

Consider a planar 2R robot manipulator arm (Fig. 1.10) consisting of two rigid
links. The first link is attached to the base by a revolute joint J;. A revolute
joint permits the link to rotate about a point. The second link is attached to
the first link by a second revolute joint Jo. The robot hand or end effector is
attached to the second link. The position and orientation of the robot hand is
controlled by turning the links about the two joints.

Fig. 1.10. 2R robot

Define an (z,y)-coordinate system with J; as the origin as shown in
Fig. 1.10. The second link is given its own (X,Y)-coordinate system with Jo
as the origin. Suppose that the distance between J; and J; is d, that link 1
makes an angle ; with the z-axis, and link 2 makes an angle 62 with the
z-axis. The position and orientation of the second link is obtained by apply-
ing a rotation Rot(f;) followed by a translation T(dcos6;,dsin6,). Given the
(X,Y) coordinates of a point P, the (x,y)-coordinates of P are obtained by
the transformation

cosfy sind .
(z y)=(X Y) ( —sinez cosez )+( dcosf; dsin6; )

= ( Xcosy —Ysinfy +dcosf; Xsinf+Y cosf +dsinb; ) .

The ultimate aim is to express such concatenations with one matrix multipli-
cation with the assistance of homogeneous coordinates.

Exercises

1.19 Suppose an affine transformation L(z,y) = (az+ by +c,dx+ey+ f)
is applied to a triangle 7" with vertices A, B, C and area A. Show
that the area of L(7) is (ad — bc) - A.
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1.20 Prove that a transformation maps the midpoint of a line segment to
the midpoint of the image.

1.21 Write a computer program or use a computer package to implement
the various types of transformation. Apply the program to the ex-
amples of the chapter.



