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Preface

The twin-screw extruder is of great importance in various industrial sectors, such
as in the plastics, food, and pharmaceuticals industries. The editor published a
book on this subject in late 2007 as both English- and German-language editions,
the former of which was called simply “Co-Rotating Twin-Screw Extruders”. In the
meantime a considerably extended and updated 2nd German edition of the book
(Der gleichliufige Doppelschneckenextruder) was published in 2016. The preface
of this German edition translated into English is appended below. About half of
this German edition, with a focus on the fundamentals of co-rotating twin-screw
extruders, was published in English as “Co-Rotating Twin-Screw Extruders: Funda-
mentals” in 2019. This current book corresponds to the second half of the German
edition, focusing on the applications and functional zones of these extruders. In
particular, the following focal points are described:

® Solid transport and melting

® Degassing of polymer melts

® Scale-up and scale-down

m Extruder technology, series, housing variants, materials

= Compounding in practice, color masterbatches

® Reactive extrusion, food extrusion, pharmaceutical applications

The editor would like to thank all the section authors, especially for their English
translations. My thanks also go to Mr. Thomas Konig, who has clarified technical
terms and also carried out an overall review. Dr. Smith from Carl Hanser Verlag
has again made a considerable contribution to the success of this English edition
and has given the editor exceptional support!

Klemens Kohlgriiber, September 2020

Preface to the Second German Edition

The 50™ anniversary of the “twin-screw compounder (ZSK)” was the occasion for
the first edition of this book. Therefore, only authors of the companies Bayer (licen-
sor, Chapter 1) and Werner & Pfleiderer (today Coperion, licensee) were involved.



Preface

The elaboration of the first edition took place under considerable time pressure
because, after the first idea for this book, it should appear on the occasion of the
Plastics and Rubber Fair “K 2007”.

For the present edition it was my intention as editor to incorporate especially the
following improvements and extensions:

® The participation of different companies and universities.
® A greater involvement of technical topics.

= Naturally the consideration of the further developments that have been made in
the meantime (concerning screw geometries, calculation approaches, applica-
tions, ...).

® The basics of the extruder technique and the process descriptions by means of
models should be described in more detail.

® Especially application-oriented practical examples should be incorporated to a
larger extent.

® The contributions should be better coordinated.

This has succeeded now in many points of the present second edition. The reader
may decide himself on the qualitative improvements. The extent has grown be-
cause of the number of contributions and by the more detailed depiction of the
basics. The book should now be readable for apprentices in technical professions
and simultaneously represent a benefit for experts due to the described applica-
tions. Some chapters are partly overlapping; this has been done intentionally. Due
to different authors with different explanations regarding the same facts, some
topics will become clearer. When coordinating the contributions I have tried to
ensure that largely the same denominations and formula symbols have been used.
The description of a topic and the interpretation of findings have been the focus of
the respective author. In particular cases, a fact can be seen differently by different
authors, for example the evaluation regarding usefulness of models (for more de-
tails please see Section 1.4). For this reason I refrained from the original intention
to write a summary for each contribution. This could lead to an assessment being
“counterproductive” in the sense of cooperation.

I would like to take this opportunity to offer heartfelt thanks to all authors for their
contributions! I thank Mr. Lechner for the coordination of the contributions of
Coperion.

My thanks go to all those who contributed with their comments on improvements
and detailed definitions. Furthermore I would like to thank my daughter Kristina
for the review of my contributions.

Here my special thanks are due to Ms. Wittmann of the publisher Hanser! She
always accompanied the “book project” from the preparation phase until the end
and gave valuable contributions for designing the book.

Klemens Kohlgriiber, May 2016
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Functional Zones in
the Extruder

B 1.1 Transport of Solids into and in the
Extruder, Feed Limits

Reiner Rudolf, Carsten Conzen

During compounding, mainly solids, and in rare cases liquids or melts, are fed into
the feed hopper located at the beginning of the twin-screw extruder. Furthermore,
after the melting zone, additional solids can be fed into the extruder via side feed-
ing units and liquids and gases can be injected via injection nozzles.

Twin screw extruders can be operated either starve fed or flood fed.

When run starve fed, less product is fed into the twin-screw extruder via the feed
hopper than the screws can convey. Therefore, the feed zone is not completely
filled with product.

Advantages include, for example, better recipe accuracy when dosing several com-
ponents separately and higher flexibility due to the variable energy input caused
by the variable throughput/speed ratio (filling degree) [1].

In flood fed operation, the extruder is operated with a fully filled feed hopper. This
means that the screws convey as much product as their conveying capacity.

This section is limited to the description of the processes in the solids conveying
zone at the beginning of the twin-screw extruder in starved feed operation, as
co-rotating twin-screw extruders, unlike single-screw extruders, are generally op-
erated in a starved feed condition.

As shown in Table 1.1, the solids to be dosed can be differentiated according to
their particle shape and their melting behavior.



2 1 Functional Zones in the Extruder

Table 1.1 Classification of Solids Fed into the Twin-Screw Extruder and Typical Examples

Particle shape Melting behavior

Non-melting Low melting *) Melting
Pellet Filler-masterbatches Polymers
Powder Filler, pigments Waxes Polymers
Flakes Waxes Polymers
Fiber Glass, carbon

*) melting point lower, ca. 100 °C

Usually, solids with different particle shapes and melting behavior are fed simulta-
neously into the twin screw extruder, e.g. melting polymer granulates together
with non-melting filler powder and low-melting wax.

1.1.1 Characteristic Values and Calculation Possibilities

In order to determine the required speed range for a required throughput when
operating in starved feed mode or to determine the maximum possible throughput
at a given screw speed, it is necessary to know the solids conveying capacity. The
intake capacity depends on the free cross-section between the screw elements and
the barrel, Ay,.., the screw pitch 7, the bulk density pg, the conveying efficiency ¢,
and the screw speed n, and can be determined with Equation (1.1) [1].

My =A,, T ps-@n (1.1)

However, this approach only applies to simple bulk solids without feed limitation
with linear throughput/screw speed behavior (cf. Figure 1.3).

In co-rotating twin-screw extruders with axially open screw channels, the convey-
ing efficiency in Equation (1.1) depends on the friction conditions of the solid with
the inner cylinder surface and the screw surface as well as the inner friction of the
solid. To achieve the highest possible conveying efficiency, the circumferential
force between the cylinder surface and the solid must be as high as possible and
the circumferential force between the solid and the screw as low as possible. This
can be illustrated using a rotating threaded rod (screw) with a threaded bushing
(solid) freely movable on it. The threaded bushing rotates without forward move-
ment on the threaded rod, since the maximum friction force in the thread (screw-
solid) is much larger than the maximum air friction on the outer threaded bushing
(solid-cylinder). If the bushing is fixed, the possible force for fixing the bushing
(solid-cylinder) is considerably greater than the frictional force in the thread
(solid-screw), and the bushing is moved forward at the maximum possible axial
speed. Thus, at pure axial flow the maximum conveying capacity in a screw system
is determined by the bulk density, the free cross-sectional area, the screw pitch,
and the screw speed.
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M.=A, -T-p.-n 1.2
F free S

The conveying efficiency can now be determined at a given throughput, screw
speed, and bulk density of the polymer as follows:
M
p=———— (1.3)
Ao T-ps-n

free

and is between 0 and 1 [1].

In co-rotating twin-screw extruders, the deflection of the solid through the 8-shaped
contour of the cylinder exerts a resistance and thus an increased circumferential
force between the solid and the cylinder. This reduces the tendency for the solid to
slip off the cylinder wall and results in an increased axial movement of the solid.
Tests have shown that with the usual powder, fine grained, and granular granulate
fillings the conveying efficiency varies only slightly with the given screw geo-
metry. This can be traced back to the big influence of the suppression of rotation.
As can be seen in Figure 1.1, the conveying efficiency decreases with increasing
screw pitch. According to Equation (1.1), the optimum pitch in the feed zone is
defined by the product of the intake pitch and the conveying efficiency. Therefore,
Figure 1.1 also shows the effective intake pitch as the product of the intake pitch
and the conveying efficiency [1].
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Figure 1.1 Conveying efficiency of co-rotating two- and three-lobed twin screw elements
(effective intake pitch = conveying efficiency x intake pitch) [2]



6 1 Functional Zones in the Extruder

At Covestro (formerly Bayer Technology Services), the solids conveying behavior
was investigated experimentally in a co-rotating, tightly intermeshing twin-screw
extruder with 58 mm screw diameter and plexiglass housings, with movies being
taken from above, below, and from both sides. The selected screw had an initial
pitch of 1.4 D with subsequent pitch reduction to 0.7 D. The investigated process
conditions were simulated using DEM to determine the accuracy of the simulation.
As can be seen from Figure 1.4 to Figure 1.7, experiment and simulation agree
very well for all cases.

The different conveying angles of cylindrical and spherical granules are also repro-
duced very well, as Figure 1.8 shows.

Both experiment and simulation show that dosing fluctuations in the solids con-
veying zone cannot be compensated and, thus, have an effect at least up to the
plasticizing zone (cf. Figure 1.9).

Due to the very good reproduction of reality, it is now possible to carry out screw
design and process optimizations of the solids conveying zone of co-rotating twin-
screw extruders for granular bulk materials by means of DEM simulation.

Figure 1.4 Comparison DEM simulation (top) with experiment (bottom) - top view
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Figure 1.7 Comparison DEM simulation (top) with experiment (bottom) - right screw



1.4 Devolatilization of Polymer Melts

In the position of the screws shown in Figure 1.35 the part of the sub-stream 3
represented by the cross-sectional area A,, no longer has a free surface. The free
surface SQB of the cross-sectional area A,, is larger than that of the fully developed
liquid pool of the sub-streams 1 and 2. This is due to the greater radial distance of
the surface of the screw profile from the inner barrel surface at this point com-
pared to the fully developed liquid pool at this filling level. The free surfaces stf
and SZGIO have further decreased compared to Figure 1.33 and Figure 1.34. In con-
trast to Figure 1.34 on shaft 2 in screw channel 1 on the inside of the barrel surface
and on the liquid layer of the screw element the new free surfaces S, and S.r
have been created. The point P;;B is no longer part of the sub-stream 3 and is now
positioned on the free surface S, .

Figure 1.36 Liquid distribution in the cross-section of a twin-screw machine with double-
flighted screw elements; degree of filling e =80%; rotational angle 6,, =0, +m /i,

Figure 1.36 presents the liquid distribution in the position 6,, =0, +7 / i Com-
pared to Figure 1.33, this corresponds to a rotation of A0 = /i Iy The sub- stream
1 on shaft 1 hits the liquid layer in screw channel 1 on shaft 2 at point P12 This
coincides phase-shifted with the liquid distribution shown in Figure 1.33. This pro-
cess is repeated from one sub-stream to another depending on the number of
threads i, phase-shifted by m /i,. The change from shaft to shaft takes place for
each sub-stream by a rotation of the shafts of A6 =n(2—1/1i,). After a rotation of
AO=2n(2—-1/ ig) the sub-stream is again on the starting shaft but in the other
screw channel. After a rotation of A6 = 27r<2ig — 1) the liquid pool is again on the
same shaft in the same channel. With a double-flighted screw of i = 2 this identi-
cal situation to the start position is reached after three turns.

The free surfaces represent phase interfaces. They are necessary for the diffusive
mass transport from the polymer melt into the gas phase. Concentration boundary
layers are developed on these surfaces. For both the free surfaces of the liquid
pools and for the liquid layers on the screw elements and the barrel that are tem-
porarily covered by the liquid pool, it is assumed that the concentration boundary
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1 Functional Zones in the Extruder

layer is periodically mixed with the liquid pool. For complete mixing, the mean
concentration of a liquid element reaching the phase interface is equal to the mean
liquid concentration in the flow cross-section. Each of these periodically renewed
elements thus fulfills the conditions of the model for the diffusive mass transport
in polymers as described in Section 3.3 of Co-Rotating Twin-Screw Extruders: Funda-
mentals. Size and residence time of the liquid elements at the phase boundary
must be known to determine the change in the mean concentration of the diffusing
species in the devolatilization zone.

Both the surface of the liquid layer on the screw elements and the free surfaces of
the liquid pools are helical surfaces. In a general form, these surfaces are defined
with the independent parameters ¢, by the local vector 7 (go,w) [1]:

Fo,00) = r(p)cos(p+ v)E, +r(¢)sin (o + )&, + b, / (27)|ve. (1.24)

h, indicates the thread height (pitch) of the screw. It corresponds to the axial length
of a screw element for one winding (¢ = 2m) along the screw surface. For r(go)
the functions for describing the shape of the liquid pool and the surface of the lig-
uid layer on the screw elements have to be inserted. The used profiles are dis-
played in Figure 1.33 to Figure 1.36 The shape of the liquid layer on the screw
surface results from the geometry of the screw elements, including the layer thick-
ness. The shape of the free surface of the liquid pools is described with an empiri-
cal function that approximates the visually observed bead-like shape of the liquid
pool.

With the partial derivatives

r,=0r/dp and I, =0r /9y (1.25)
of the local vector 7 (ap,zp) follows for the surface element dS the relationship:

ds = [, <7 |didy (1.26)
By numeric integration in the limits of ¢ and ¢ one gets the surface S:

S:_U’?:pxau

dpdyp (1.27)

While the cross-sectional areas A for a screw profile are independent of the thread
height h, the surfaces S must be calculated as a function of A,.

In order to obtain quantifiable information on the size of the phase interface, the
relationship between filling degree and conveying behavior must be considered.
Partial filling is always achieved with pressure less conveying if the condition for
the volumetric flow number Vv

V<V (1.28)

max



Scale-up and
Scale-down

B 2.1 Introduction and Basis Rules for
Thermally Sensitive Products

Klemens Kohlgriiber

The scale-up of a process is an important step and will be found in several sections
of this book. The focus is on the following question: how is a production machine to
be designed so that the tests carried out with a smaller machine can be transferred
to a production machine? The desired throughput with a necessary product quality
is often in focus. The price of a large extruder usually correlates with the diameter
of the machine. Therefore, the aim is usually that the production machine is as
small as possible.

For the size of a machine, rough estimates with the following equation are often
executed at the scale-up.

ﬁ:[ﬂ] (2.1)
Vv, (D,

VX is the throughput of the test machine with diameter Dy and machine “Y” is the

v
production machine. The throughput ratio V—Y is given based on the definition of

X
the task. The diameter of the production machine Dy at the given diameter of a test
machine Dy depends strongly on the so-called scale-up exponent x: the smaller x is,
the larger becomes Dy. This is shown in a final example.

Empirical values are often given for the scale-up exponent x. For processes scaling
predominantly with the product volume, it is close to 3; for surface-dominated
processes (for example for the evaporation of volatile components) it will generally
be lower. The ratio of area/volume is 1/D and gives an exponent 2. For heat trans-
fer it can take the very unfavorable value 1.
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2 Scale-up and Scale-down

In this book, Equation (2.1) is considered in several places, for example in Sections
2.2, 4.4, and 4.5.

Even without the consideration of specific processes, different exponents can be
discussed if important basic principles are taken into account. In the following,
some examples are given which include, amongst others, the dimensionless
throughput, the geometric similarity, and the shear rate at the tip.

2.1.1 Dissimilarity

It is clear that not all functional zones of an extruder produce the same scale-up
exponent. Therefore, a scale-up usually involves compromises. A scale-up can also
be performed “dissimilarly” to the test machine so that the desired throughput
with the necessary product quality is achieved. For example, the opening cross-
section of an extruder housing behaves in relation to the volume in the extruder as
1/diameter. In the case of powder dosing, a feed limit can easily occur on a pro-
duction scale. On a production scale, the feed opening can then be chosen to be
geometrically dissimilar compared to the test machine; for example, the feed open-
ing may be relatively larger (L/D larger) or the dosing may take place via two open-
ings. If the material has a very low bulk density, the feed limit on a production
scale can be so severe that the economic use of an extruder is not possible. In this
case, special large-volume, high-viscosity reactors may be an alternative. This
example makes it clear that in many cases it makes sense first to determine a
suitable production machine and then to consider a scale-down for a suitable test
machine.

2.1.2 Comparison of Production Machines

If the product development took place, for example, in a small type of device or
machine, then quite different types of devices and machines could be considered
for a large production machine. The “process requirement profile” must be com-
pared with the “machine capability profile”. Under the requirement profile, proce-
dural aspects such as viscosity ranges, residence times, temperature control, mix-
ing and dispersing, etc., need to be understood. In addition to the process aspect of
feasibility on a production scale, many points play a role. Some points that should
be considered when comparing production machines:

® Economic feasibility (includes many points; besides investment, also operating
costs: personnel, energy, wear, availability, etc.)

® Process stability (degree of automation, complexity, constant product quality,
etc.)
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2 Scale-up and Scale-down

For the next step Potente and PreuB introduced formal relationships to compare
the two machines and processes. Only the required relationships and ratios to

explain the following method are presented here.

For the speed v:
v~ Dn,

For channel width b:

b~D

bl _ Dl

bO DO

For the channel depth h:
h~D"
P
h_| D
hy Dy

where ) is the channel depth exponent.

For the screw speed

ny~ D

—X
Moa _ ﬂ]
Ny Do

where Y is the screw speed exponent.

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

Since the material properties and the pitch angle are assumed to be constant, the

throughputs of the machines can also be set in relation to each other:

M _he
My Y po
. (] —X
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where p represents the melt density.

(2.56)



2.2 Scale-up and Scale-down by Model Laws

The channel depth exponent ¢ in Equation (2.56) is fixed due to the fixed geo-
metries of model and target machine. The speed exponent xy must be determined
based on the chosen boundary conditions. This will be discussed in Sections
2.2.3.2.2 and 2.2.3.2.5.

The consideration of the power inputs of both machines requires a consideration of
the melt temperatures on both machines. Different solutions result for the individ-
ual conditions of the model and target machines in dependency on assuming the
following:

® A constant or a variable melt temperature at the die outlet of both extruders

® A constant or variable pitch angle for both extruders

For example, based on the assumptions of a constant die outlet temperature of the
melt and a constant pitch angle, the following solution results

24+9p—x
P (D
L= [—1] (2.57)

For other assumptions regarding temperature and pitch angle, other solutions re-
sult, which are not discussed here. In this way, further model laws can be derived.

The model laws based on the assumptions of a constant melt temperature at the
screw tip and a constant pitch angle are presented in Table 2.2.

Table 2.2 Model Laws for the Case of Constant Mass Temperatures at the Screw Tip and
Constant Pitch Angle

Throughput % Dy e
M, Dy
Screw speed o1 p\"
Mo D,
Power ﬁ 2 I
B D,
Torque MD,I D, ZW
My, D,
Pressure P Dy i
Po Fo
Temperature Iy =Ty, 2 i
Tio—Top D,
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3 Machine Technology

3.1.4.1.2 Continuous Manufacture of Sealing Materials

Sealing compounds are commonly based on butyl rubber, polyisopropylene, poly-
urethane, or silicone rubber. Reactive sealing compounds can be crosslinked at
room temperature (RTV) or at higher temperatures (HTV). Silicone sealing com-
pounds are chemically hardening single-component systems in which the cross-
linking of the substrate is initiated using moisture from the air. As a result, the
reaction products are separated. After rapid skin formation on the surface, the
crosslinking within the compound continues until hardening is complete. Areas of
use include joint sealants in plumbing, construction, and the automobile industry.

Silicone sealing compounds such as those used, for example, in housing construc-
tion for sealing plumbing fixtures, are increasingly being manufactured in twin-
screw extruders. Silicone polymer (30-50%), silicone oil (35-40%), crosslinking
agents, and catalyst components are dosed into the extruder in fluid form using
injection nozzles. In the process, the catalyst that reactively activates the mixture
is worked in only at the end. As a rule, fillers such as silica (5-10%) create intake
problems due to their very low fill density of approximately 50 g/1; they fluidize
very easily and carry a great deal of air into the extruder which must then be re-
moved again. A ZSK Mv’s deeply cut flights enable significantly better powder
intake and thus a throughput increase of over 35% as well compared to a ZSK Mc
with an equal center distance. Discharge occurs during cartridge filling by means
of a gear pump with a downstream heat exchanger and buffers directly into the
cartridge filling unit. Additionally, masses can still be strained.

Typical throughputs for a ZSK 98 Mv sit at 2.6 t/h. Figure 3.15 shows one example
of high dosing effort typical for this application.

—p to cartridge filling

1 Grav. dosing Aerosil 5 Grav. dosing catalyst 9 Start-up-valve 13 Heat-exchanger
2 Grav. dosing Silicone pol. & Extruder ZSK MEGAvolume 10 On-line viscosimeter

3 Grav. dosing Silicone oil 7 Maindrive and Gearbox 11 Gearpump

4 Grav. dosing crosslinker 8 Vacuum unit 12 Screen-pack-changer

Figure 3.15 Example of silicone sealing compounds manufacture
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3.1.4.2 Chemical Reactions in Twin-Screw Extruders

The reactive extrusion in ZSK-type twin-screw extruders is used for polymeriza-
tion in the compound originating from monomers or pre-polymerizates, as well as
for modification of polymers using grafting, crosslinking, and degradation. The
demands upon a continuous reaction system vary according to the processing task.

3.1.4.2.1 Manufacture of Thermoplastic Polyurethane (TPU)

The ZSK allows for continuous manufacture of an extremely wide product spec-
trum, from soft polyurethane adhesives to the hardest thermoplastic polyurethane
elastomers with Shore hardnesses of D60. These linear, thermoplastic polyure-
thanes are used as construction materials of varying hardness, as highly elastic
coating materials, and for fibers and films. The manufacturing process (see also
Figure 3.16) requires stoichiometric dosing of components, polyol (usually pre-
mixed with a catalyst), and diisocyanates in the fluid or melted state into the ZSK’s
feed.

The TPU manufacturing process can be expanded to incorporate further additional
materials such as stabilizers, lubricants, dyes, and flame retardants that can be
added downstream from the main intake via the side feeder (ZS-B) into the melt
flow as required.

Discharge takes place via a gear pump and a screen pack changer directly into
underwater pelletizing.

3 2 1
ﬂ ﬂ ﬂ FEEDING PELLET
AGGLOMERATE
1: Polyol COOLING " CATCHER
2: MDI CENTRIFUGAL-
3: Butane Diol —_— DRYER
] 4: Catalyst = PELLET DIVERTER
| : = VALVE
79 9 - 4
) [ PRODUCT

AV| Swz UG

. ;
[T 8 [
[amf EENENNEEEEE [T | | ovess —
8-0 ZaPu AVl WATERPUMP

FINES REMOVAL
SCREEN

ZSK X
HEAT THROTTLE WATER-TANK
UNIT E@— —|—:‘_'O
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8-0: Transition-Piece CENTRIFUGAL HEATING
AV: Start-Up Valve COOLING EpeNT WATERPUMP (only for start-up)
ZaPu: Gear Pump WATER
ZSW: Screen-Pack Changer Extruder Process CHILLED
UG: Underwater-Pelletizer Control System WATER

Figure 3.16 Plant for continuous manufacture of linear thermoplastic polyurethane



4.2 Color Masterbatches

layer structures. Therefore, it is important to minimize the mechanical stress and
shear during the incorporation processes in such a way that particle assemblies
are broken up and distributed, but the micro structure of the particles remains
intact. Consequently, mixtures of organic pigments and effect pigments represent
a special case for dispersion, because the optimum processing conditions of the
two product groups can be diametrically opposed.

4.2.2.1.1 Color Index and Particle Sizes: Pigments at First Glance

Organic pigments are assigned to a color index (C.1.) based on their chemical
structure. The color index bears the color theme and a consecutive number. Pig-
ments with the same C.I. can yet have different crystal morphologies and particle
size distributions (— electron micrographs of C.1. Pigment Red 202 and C.I. Pig-
ment Purple 19: Figure 4.11, Figure 4.12). Therefore, the C.I. alone does not give
conclusive information about the dispersion behavior of a pigment. Other pigment
properties such as opacity, transparency, or hue can also be considerably different
with the same C.1.

Figure 4.12 Different types of C.I. Pigment Purple 19 [BASF AG]
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4 Applications of Co-Rotating Twin-Screw Extruders

Commercially available powder pigments consist of a mixture of primary crystals,
aggregates, and agglomerates. Primary crystals are individual crystals that are
clearly described by their crystal structure and morphology. Primary crystals that
have grown together at the corners and across common surface areas are called
aggregates. They are firmly coalesced and can hardly be separated mechanically.
Agglomerates are combinations of primary crystals and aggregates. They consti-
tute the major part of powder pigments and, in the dispersion process, need to be
broken down into primary crystals and aggregates as completely as possible.

4.2.2.1.2 Qualitative Description of the Dispersion Quality in a Masterbatch
When is an organic pigment well dispersed? This is generally the case when the
color properties and fastnesses specified by the manufacturer have been achieved.
The properties are tested in specified pigment concentrations in accordance with
industrial guidelines and standards. For this purpose, the masterbatch has to be
incorporated into defined polymers for testing. Especially hue, purity, tinting
strength, as well as opacity or transparency, if required also heat resistance, light
and migration fastness, should be checked by the colorist or the application engi-
neer and fall within the scope of the manufacturer’s specifications. Furthermore,
no implications of poor dispersion should be visible at all when the masterbatch is
compounded for testing at final concentration, such as:

® Streaks, specks, dots

® Low brilliance

® Hue shift

® Changed transparency/opacity

= Impairment of mechanical properties, failure in thin layers such as film tears or
fiber breakage

Figure 4.13 below shows a typical particle size distribution of an organic pigment
after dispersion. Maximum tinting strength and purity are achieved with a prefer-
ably large amount of particles around 0.1 pm. Particles in the range of 0.2 to
0.5 pm contribute to the opacity of the pigment. Fine particles that would impair
the migration fastness are rarely generated by the dispersion process. Microscopi-
cally visible particles > 10 pm mainly cause the above-mentioned implications of
poor dispersion. However, there is no direct correlation between the frequency of
microscopically visible particles and the color strength of the masterbatch. This
important fact will be taken up again in the considerations below.
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4 Applications of Co-Rotating Twin-Screw Extruders
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Figure 4.56 Left: natural wheat starch with visible starch granules and protein particles;
right: extruded, cooked wheat starch [Biihler AG]

The many reasons behind the success of extrusion cooking are described in more
detail in [4]. Here, we give a brief summary of the main ones:

1. Combination of the different basic process technology operations
2. Process and product flexibility

3. Low production and investment costs

4. Energy efficiency and sustainability

Cold extrusion for the production of pasta products, for instance, is based on the
same physical principles and basic process technology operations as extrusion
cooking. Semolina (200 to 500 pm) is mixed with water (30 to 33%), kneaded, and
formed at a die pressure of approximately 110 bar. This process exposes the dough
to mechanical and thermal energy, which, unlike extrusion cooking, causes little
protein and starch damage. For this reason, the dough temperatures remain below
50 °C. The aim of cold extrusion is to produce dough with a continuous protein
matrix which entraps the starch granules. In extrusion cooking, the process is the
exact opposite and it is the starch that serves as a binder, rather than the protein.



4.6 Food Extrusion

Figure 4.57

Left: cold extrusion - continuous protein matrix (green) with embedded starch granules (purple)
Right: hot extrusion - continuous starch matrix (purple) with embedded protein bodies (green)
[Blhler AG]

4.6.1 Extrusion of Breakfast Cereals

Preferences regarding breakfast tend to differ depending on the culture. However,
breakfast cereals play a significant part. Studies show that annual consumption in
Germany amounts to 1 kg per person per year. Cereals are eaten daily in 15% of
households, once a week in 33% of households, and at least once a month in 10% of
households. Interestingly, 50% of breakfast products made for children are con-
sumed by adults [5].

Based on the example of a modern plant for extruded breakfast cereals, the follow-
ing sections describe the process steps required to produce end products from the
raw materials.

This type of extruder comprises the following process steps:
1. Preparation of raw materials and mixing

2. Preconditioning and extrusion

3. Tempering and flaking

4. Drying and spraying

5. End drying and roasting

The process flow chart in Figure 4.58 illustrates this type of system.
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hot mixing 242
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initial melting 17
injection molding 334
inner friction 2

inorganic pigments 233
investment costs 220

K

kneading block 28
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machine configuration 109
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model predictive control 214
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particle size distribution 237, 311

particle tracking 42

part models 90

PAT (Process Analytical Technology)
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peroxidic degradation 156
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pitcht 111

PLA 147

plastic deformation 14
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stirred tank reactor 106
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stress-time factor 30
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structural model description 188
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products 149
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thermally sensitive products 92

thermal product degradation 94
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wear/corrosion protection 161

Weber number 31

Weber number for breaking up droplets
32

Y

yellowing of material 219

zZ

zipper formation in pelletizing 219
ZSK

- generations 139

- MEGAcompounder 142

- series and sizes 141

ZSK series and applications 139



	Deckblatt_Sample_pages
	Preface
	The Authors
	Contents
	1-3
	6-7
	53-54
	87-88
	112-113
	154-155
	235-236
	306-307
	Index



