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2 Injection Technology

A modern injection molding machine with its most
important elements is shown in Figure 2.1. The components
of the injection molding machine are the plasticating unit,
clamping unit, control unit, and the mold.

, Clamping unit N Plasticating unit
Mold Hopper
> 4 ; Z; Hydraulic lines
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Figure 2.1 Schematic of an injection molding machine. See Figure
2.7 for a more detailed representation of the machine

Motor

Today, injection molding machines are classified by the
following international convention

Manufacturer type T/P

where T'is the clamping force in metric tons and P is defined
as

= vmax pmax

1000

where v,,,, is the maximum shot size in cm® and p,,, is the
maximum injection pressure in bar. The clamping force T



The Injection Molding Cycle

can be as low as 1 metric ton for small machines, and as high
as 11,000 tons.

There is another classification regarding specific energy
consumption (kWh/kg), the Euromap 60.1. There are 10 effi-
ciency classes: Class 1 (> 1.5 kWh/kg) to Class 10 (<0.25 kWh/
kg). For small machines (screw < 25 mm) the class definition
is different.

The sequence of events during the injection molding of
a plastic part, as shown in Figure 2.2, is called the injec-
tion molding cycle. The cycle begins when the mold closes,
followed by the injection of the polymer into the mold
cavity. Once the cavity is filled, a holding pressure is main-
tained to compensate for material shrinkage. In the next
step, the screw turns, feeding the next shot to the front of the
screw. This causes the screw to retract as the next shot is
prepared. Once the part is sufficiently cool, the mold opens
and the part is ejected. Figure 2.3 presents the sequence of
events during the injection molding cycle. The figure shows
that the cycle time is dominated by the cooling of the part
inside the mold cavity. However, in some cases the plasti-
cating time can be longer than the cooling time, e.g., when
the mold cavity number is high for the plasticating unit
capacity; the plasticating time is also longer than the cooling
time when the parts have thin walls. The total cycle time can
be calculated using

t =

t,.o+t +¢ o+t +E
cycle closing injectionunitforward injection cooling ejection



3  Useful Equations and Theory

ESTIMATING COOLING DURING INJECTION
MOLDING

The cooling time for a plate-like part of thickness h can
be estimated using

h? 8 T, - T,
twnling = ln(_ = = J

2 2 —
rra \n*T,-T,

and for a cylindrical geometry of diameter D using

2 —
tc(mlin = D— ln 0692 M
<~ 23.14a T,-T,

In the above equations « represents effective thermal
diffusivity, T,, represents the average melt temperature,
Ty the average mold temperature, and T, the average
part temperature at ejection.



Useful Equations and Theory

EQUATIONS FOR PRESSURE FLOW THROUGH A SLIT

Pressure flow through a slit, such as shown in Figure 3.1,
is commonly encountered in flows inside injection
molds.The Newtonian flow field is described using

Wk Ap

=L

When using the power law model equation the flow
field is described by

v.(v)= (Z(Sh+ 1)}(% ) {1 _(Z%JM}

0- wh'_(hap )
_2@+z)2mL)

where s = 1/n and v,(y) is the velocity profile across the
gap and Q the total volumetric flow rate through a slit of
width W.

Figure 3.1 Schematic diagram of a pressure flow through a slit



5 Polymer Data (for Standard
Materials without Fillers or
Modifiers)

5.1.1 Low Density Polyethylene (LDPE)
Basic technical data

Density: 0.910 to 0.926 g/cm’
Melting point: 105 to 115°C
Glass transition temperature: =133 to —120°C
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Figure 5.1 Mold cooling with LDPE



Polymer Data
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Figure 5.2 Recommended temperature profiles for processing
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Figure 5.3 Viscosity vs shear rate of LDPE



Specific volume v in cm>.g’

Figure 5.4

Heat capacity, Cp in kJ.kg'.K

Figure 5.5

Polyolefins
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