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Preface

After 50 years of experience in plastics processing, designing, and manufacturing
of tools and equipment, in the mid-1990s I got involved in the development of a
business for the design and manufacturing of plastics extrusion dies. To develop
the business, I needed to convince my customers, with a good reason, that my
approach was different to that of anybody else. With this in mind, I searched a lot
of literature. I found that there is a lot about the theory of the flow characteristics
of molten plastics through the die channels, but there are not any solved examples
of the die design. Some of the formulae and equations given in the literature are so
complex that most of the practical engineers would find it difficult to solve these
equations.

In the computation of the melt flow characteristics through the die channel, there
are several influencing factors, such as the rheology data and the thermodynamic
properties of the materials involved. Coupled with them are the die geometry and
the processing conditions, such as the output requirements and the temperature
variations in the melt as well as in the die. The derivatives of these are the pres-
sure loss through the die channel, the velocity profile, the shear rate, the shear
stress, etc. Commercially available computer software takes all the hard work of
computation from the die design engineers. With the use of such software, die
designers can design a die that is fit for its purpose, in terms of materials being
used and outputs required for the given sizes of the products.

In this book, I have used the computer simulation software named “Virtual Extru-
sion Laboratory™, Polymer Processing Simulation Software” by Compuplast Inter-
national, Inc. Most of the dies given in the book are based on the spiral type of
distributor and the reason for using such distributor is also explained in detail. All
the dies illustrated in the book have been simulated with the aforesaid software,
and the results of the simulations are also given as a guide for the design of other
similar dies.

The range of dies covered in the book is monolayer and multilayer tubes and pipes
from @ 1 mm to $ 315 mm. Larger or smaller sizes can be designed on the same
principles. In the last chapter, the choice of commonly used steels for the manufac-
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ture of dies is also discussed. Most of the solved examples of the dies given in this
book are used in the manufacturing of specific products and are well proven. The
above-mentioned software has been used as a tool for the simulation of the melt
flow variables in the dies.

This book has been written as a practical guide for engineers and designers associ-
ated with the extrusion processes of polymers for the manufacture of plastic tubes
and pipes. As the calculations of the melt flow through the dies are very complex
and time consuming, the use of simulation software is highly recommended.

Finally, I thank Dr. Mark Smith and Dr. Julia Diaz-Luque of Hanser for their help
and support in the publication of this book.

Sushil Kainth, MBA, B.Sc., CEng, MIET.
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B 1.2 A Spider Supported Die Head

There are several names for this type of die, such as mandrel support die, ring
support die, spider supported die, or spider die. The latter is the most commonly
used term in the industry and will be employed here throughout this discussion.

This type of die is normally used for extruding PVC or similar types of thermally
unstable materials. For other materials that are not so heat sensitive, such as
polyolefins (LDPE, HDPE, and PP), polyamides, and many more, a spiral type of
distribution is recommended because of its superiority in homogenizing the flow
of plastic melt in the die head, as shown in Chapter 5.

In a spider die, a melt stream of plastic from the extruder enters the die head
through the breaker plate or connecting ring (not shown in Figure 1.1) into a round
channel. The spider cone or torpedo spreads the melt into an annular shape, as
shown in Figure 1.1, before it is divided into several sections by the spider legs.
Then, these melt sections are joined together by the converging angles of the con-
necting mandrel (04), the connecting ring (05), the die bush (07), and the mandrel
(08). Finally, the melt is forced through a parallel annulus (more commonly known
as a die land) between the mandrel and the die.

The term “die head” is used for the complete unit to distinguish it from the die or,
as sometimes referred to, the bush. The die or bush is a part of the die head that
forms the outside shape of the product to be extruded. To avoid any confusion, the
term “die” will be used for the part 07 of the die head and “pin” for the mandrel
(08).

The names of the die head parts used here are commonly known in the extrusion
industry, and almost everybody involved in plastics processing is familiar with the
function of these parts. Nevertheless, a brief description of these parts is given
here, and more details are given in Chapter 3.

1.2.1 Flange Adapter

The flange adapter (01 in Figure 1.1) is sometimes known as flange connection
and, as the name implies, on one side this part forms a connection to the extruder
flange. On the other side it is attached to the spider, which holds the whole die
head together. At the extruder end there is a recess to locate on the breaker plate
or connecting ring.

The flange part is identical to the extruder flange and both the extruder flange and
the flange adapter are clamped together with a clamp not shown in Figure 1.1. The
melt from the extruder enters into the flange adapter from the breaker plate in the
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form of strands, which are joined together into a round slug. In the case of a spider
die head, the slug of melt is spread around the spider cone or torpedo, as shown in
Figure 1.1.

The flange adapter normally has a heater and a thermocouple probe fitted to con-
trol the temperature of the material in this region. In some cases, a pressure trans-
ducer to monitor the pressure in the die head is also incorporated in this part. The
design of the flange adapter varies with the design of the other parts of the die
and the geometry of the extruder flange to which it is fitted, as can be seen in
Chapter 3 and Chapters 5 to 13.

Figure 1.2 Flange adapter

1.2.2 Spider Cone or Torpedo

The spider cone or torpedo (02 in Figure 1.1) is a conical part attached to the inner
section of the spider. It is used for dividing the flow of melt from a round slug to an
annulus form, which is pushed through the spider channels. The design of this
part is discussed in Chapter 3.
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Figure 1.3 Torpedo

1.2.3 Spider

The spider (03 in Figure 1.1) is the heart of this type of die head. It is a bridge bet-
ween the flange adapter and the connecting ring on the outside, and the torpedo
and the mandrel or pin on the inside. More importantly, it divides the melt stream
into channels around the spider legs. The melt is again joined by the compression
in the connecting ring and the mandrel or pin. The inside and outside annular
parts of the spider are kept together by the spider legs, the number of which varies
between four and eight depending on the size of the die head. The gap between the
outer ring and the inner section—in other words, the channel height—is designed
to suit the output required, considering ease of manufacturing and a minimum
residence time for the melt. A narrow channel increases the pressure in the die
head and is difficult to machine and polish. On the other hand, a large section
height increases the residence time and reduces the shear rate, resulting in degra-
dation of the heat sensitive materials in this region. The shape of the spider legs is
designed to divide the flow of melt stream and to make it join easily in the chamber
between the connecting ring and the pin, as shown in Figure 1.4.

Figure 1.4 Section through spider leg
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Figure 1.5 Spider

1.2.4 Connecting Mandrel

The connecting mandrel (04 in Figure 1.1) is connected to the inner section of the
spider on one end and the pin is connected to it on the other end. The shape and
dimensions of this part are dependent upon the shape and dimensions of the other
adjoining parts, namely, the inside section of the spider and the diameter of the
pin. The lengths of the connecting mandrel and of the corresponding connecting
ring are designed to suit the characteristics of the material. These days, a spider
die head is very rarely used for processing polyolefin materials like polyethylene
and polypropylene. However, there are instances when, for very short runs and for
economic reasons, a spider die head is used for processing these materials. In
these instances, the lengths of the connecting mandrel and of the connecting ring
are made considerably greater, to diffuse the melt disturbance caused by the spi-
der legs and to minimize the flow lines.

Figure 1.6 Connecting mandrel
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3 Design of a Simple Die

B 3.10 Detailed Drawings

Having gone through the general principles of the spider die design, the detailed
drawings prepared for manufacturing all the parts are shown below:

3.10.1 Die Bush

A detailed drawing of the die bush in Figure 3.18 shows all the common dimen-
sions for all the sizes. The dimensions, which vary with each size of the pipe, are
listed separately in Table 3.4. It should be noted that the back face of the die bush
should be perfectly flat, to provide a good seal against the corresponding face of
the outer connecting ring. The inside surface of the die bush should be highly
polished and sectional changes should be blended with generous radii.

A-A (1:1)
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Figure 3.18 Detailed drawing of die bush
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Table 3.4 Dimensions for Pipe Sizes in Section A-A

Pipe size D1 Land L1 Angle A
[mm] [mm] [mm]

50.00 52.50 58.35 42°37'

40.00 42.00 47.25 44°21

32.00 33.60 37.80 44°54!

25.00 26.25 29.93 45°29'

20.00 21.00 23.78 45°33'
3.10.2 Pin

A detailed drawing of the pin in Figure 3.19 shows all the common dimensions for
all the sizes. The dimensions, which vary with each size of the pipe, are listed
separately in Table 3.5. The front end of the pin has a hexagon cut to fit a standard
Allen key for tightening the pin to the connecting mandrel. The back face of
»73.00 mm fits against the corresponding diameter of the mandrel. Also note that
generous radii to blend the sections should be used and the outer surface should
be highly polished to eliminate the melt sticking to the surface.
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Figure 3.19 Detailed drawing of pin



Monolayer Die for Tubes
21 mm to 96 mm

The principles of designing spiral mandrel dies for tubes and pipes are explained
in Chapter 5, where a die for 20 mm to 50 mm pipe sizes was illustrated as an
example. In this chapter, the design of tubes from 1 mm to $6 mm is given to
cover a range of sizes, applications, and materials.

B 6.1 21 mm to 26 mm Fixed Center in
Line Die

This die is used for medical tubes made from different types of polymers. As
explained in the previous chapters, the starting point of die design is the design
brief. Therefore, information about the design scope, product range, materials to
be processed, output required, size of the extruder, etc. is collected as a starting
point. After collecting this information, tables of product sizes, tooling sizes using
convenient factors of draw down ratios, line speed calculations, etc. are compiled
as in Table 6.1. From the tooling sizes a rough design of the die is made to get the
geometry information for simulation purposes. From the simulation results, the
design is corrected to suit the results and finalized to meet the customer require-
ments as close to the design brief as possible. This approach is repeated time and
again for all the designs.

6.1.1 Design Brief

The information about the required die received from a particular customer is as
shown in Table 6.1.
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Table 6.1 Design Brief
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6.1.2 Draw Down Ratios and Tooling Sizes

Table 6.2 gives the product size and relevant tooling size.

Table 6.2 Draw Down Ratios for #2-6 mm Tubes

Layer Draw
thick- down
ness at | ratio
material | balance

exit (DRB)
[mm]

1 2 2.40 1.80 0.30 3.60 2.70 2.25 0.45 1.00
2 4 3.90 2.60 0.65 5.85 3.90 2.25 0.975 1.00
3 5 5.40 3.50 0.95 8.10 5.2% 2.25 1.425 1.00
4 6 5.71 4.71 0.50 8.57 7.07 2.25 0.75 1.00
5 6 6.00 4.30 0.85 12.00 8.60 4.00 1.7 1.00
6 6 6.00 4.30 0.85 12.00 8.60 4.00 1.7 1.00

Table 6.3 shows the calculations of the line speed for a given output.

Table 6.3 Calculations of Line Speed for Given Output

Material | Material | Density Tube ID | Area of | Length | Length
type output | [kg/m?] annulus | of tube | of tube
[kg/h] [mm?] [per |per
hour minute
[m/h] | [m/min]
HDPE 25.00 762 0.0328084 2.40 1.80 2 16577 276
HDPE 38.00 762 0.04986877 3.86 2.54 7 7516 125
HDPE 40.00 762 0.05249344 5.40 3.50 13 3952 66
HDPE 45.00 762 0.05905512 5.71 4.71 8 7216 120
LDPE 45.00 951 0.04731861 6.00 4.30 14 3441 57
PVC 35.00 1120 0.03125 6.00 4.30 14 2272 38

6.1.3 Design Procedure

Table 6.2 is used for starting the design from the tooling end and this information
is used for the simulation as well. From the design brief in Table 6.1 it was evident
that the output required by the customer is 45 kg/h (the maximum plasticizing

109
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6 Monolayer Die for Tubes #1 mm to 6 mm

capacity of the extruder). This level of output is used for the largest size of tooling
and smaller sizes of the tube would have less output, because of the high shear
stress in the land area of the die annulus. Table 6.3 shows that a 45 kg/h output for
a tube size of 5.71 mm in outside diameter and 4.71 mm in inside diameter will
give a line speed of 120 m/min, whereas a tube of 2.40 mm in outside diameter
and 1.80 mm in inside diameter will give a line speed of 276 m/min. It must be
checked with the customer if their equipment would be capable of handling such a
high line speed. The draw down ratio, which determines the tooling size and the
level of output, can be changed from the simulation results, when the performance
of the whole die is optimized.

From the above information, a rough design of the die is made to establish the
initial dimensions of the die geometry. This die geometry along with the material
information and the processing conditions are inserted into the simulation soft-
ware to get the simulation results. The results are then checked and the design is
changed to optimize the processing results in terms of the pressure drop in the die,
shear rate, shear stress, residence time, etc., so that the ultimate die design meets
the customer expectations and gives the most suitable results. This exercise, as
explained in the previous chapter, is completed for all the sizes of the tubes and
specified materials to be processed. The final design of the die for this particular
customer is shown in Figure 6.1 and Figure 6.2.

The die shown in Figure 6.1 and Figure 6.2 is based on the 2 mm tube tooling as
specified in Table 6.2. The die is designed for precision medical tubes, where the
tooling is semi-fixed center; in other words, the pin is inserted into a concentric
mandrel and it fits tightly on the taper in the mandrel. The die has a very slight
radial adjustment on the die carrier (08), as shown in Figure 6.1. The whole idea is
that once the small radial adjustment to get an even wall thickness of the tube is
made, then the die adjustment should be locked in place. Any further tool changes
should be made without the necessity of any adjustment to get an even wall thick-
ness of the products. As the pin is inserted in the mandrel from the front, remov-
ing the pin for tool changing would be difficult unless the whole die is dismantled.

To facilitate the quick tool changes, a pin pusher plug (12) and a pin pusher bolt
(13) are placed in the die design. The winding in of the pin pusher bolt would push
the pin pusher plug outward, which would release the pin from its taper in the
mandrel. For inserting the new pin into the mandrel, the pin pusher bolt (13) is
wound outward. For replacing the die, the die adjusting nut (09) in the front is
removed first and then the die is pushed out with a slight movement of the melt
from the extruder. In this way, a quick and easy tool changing is accomplished.
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9.2 Calculations of Draw Down Ratios for Tooling Sizes

6.  Thermodynamic properties Thermodynamic properties obtained from the material manu-
facturers and supplied by the customer.

7.  Extruder ?60 mm barrier screw extruder capable of plasticizing 400 kg/h
of HDPE.
8. Calibrators Calibrators were supplied by the manufacturer of the vacuum
bath and no further information was available.
9. Cooling bath Adequate vacuum bath and spray cooling baths facility installed.
10.  Haul-off Suitable for the product range installed.
11.  Cutter Does not concern the die design.
12.  Winder Does not apply in this case, as the pipes would be cut to set
lengths.

B 9.2 Calculations of Draw Down Ratios
for Tooling Sizes

The calculations of the inside diameters and wall thicknesses based on SDR 11, 17,
and 26 and the sizes of the pins and dies using an adequate draw down ratio, along
with the land length of the die, are given in Table 9.4.

Table 9.4 Draw Down Ratios and Tooling Sizes

12 s 4 s e |7 fs o Jio Ji1 Ji2

Pipe
spec.

1 140 140.00 11455 12.73 154.0 126.00 1.21 14.00 1.00 210 370
2 160 160.00 130.91 1455 176.0 144.00 1.21 16.00 1.00 240 380
3 180 180.00 147.27 16.36 198.00 162.00 1.21 18.00 1.00 270 400
4 225 225.00 184.10 20.45 247.50 202.50 1.21 22.50 1.00 338 400

140 140.00 123.53 8.24 168.00 148.24 144 9.88 1.00 148 340
160 160.00 141.18 9.41 192.00 169.41 1.44 11.29 1.00 169 360
180 180.00 158.82 10.59 216.00 190.59 1.44 1271 1.00 191 380
225 225.0 198.53 13.24 270.00 238.24 1.44 1588 1.00 238 400
250 250.00 220.59 14.71 300.00 264.71 1.44 17.65 1.00 265 420
10 280 280.00 247.06 16.47 336.00 296.47 1.44 19.76 1.00 296 430
11 315 315.00 277.94 18.53 378.0 333.53 1.44 22.24 1.00 334 450

O o N o0 »o
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9 Monolayer Die for Pipes 2140 mm to $315 mm

Table 9.4 Draw Down Ratios and Tooling Sizes (continued)

1 ]2 fs e s Je |7 s [o Jio frr Ji2 |

Pipe Pipe Pipe ID | Wall Max.
spec. |OD [mm] output
[mm] [kg/h]

12 250 250.00 230.77 9.26 300.00 276.92 1.44 11.54 1.00 173 380
13 280 280.00 258.46 10.77 336.00 310.15 1.44 1292 1.00 194 400
14 315 315.00 290.77 12.12 378.00 348.92 1.44 1454 1.00 218 415

Columns 1-10 in Table 9.4 are normal pre-design calculations; column 11 is the
die land length, which in this case has been fixed as 15 times the layer thickness
at the die exit. Column 12 is obtained from the die simulation results, which are
explained later in the chapter.

B 9.3 Initial Die Design

From the sizes of die and pin given in Table 9.4, initially the die is designed for a
?315 mm x 17 SDR pipe using the die inside diameter of 378.00 mm, the pin
outside diameter of 333.53 mm, and the land length of 334.00 mm. The design of
the complete die is shown in Figure 9.1. The design of the initial die is slightly
different to the previous dies discussed above. In this case, the die mandrel has
8 spirals, whereas in the previous dies 4-6 spiral designs were used. This is due to
the physical size of the die. For the same reason, the inside of the mandrel and the
pin are hollowed out to reduce the weight of the die, and internal heaters are fitted
for ease of heating up the die at the start of the operation and also for a better
temperature control. In Figure 9.2, the same die is shown with the tooling for
#140 mm x 17 SDR pipes.
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10.2 Extruded Together from One Die

Figure 10.10 Velocity profile of two melt streams
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Figure 10.11 Graph of velocity profile of two melts close to die exit

10.2.1.2 Pressure Drop

Pressure is a primary variable calculated during the solution. As has been seen in
the previous examples of dies, pressure drops from the maximum at the start of
the melt stream to zero at the die exit. As shown in Figure 10.12, the maximum
average value of pressure at the beginning of the section is 0.108 MPa and 0.00 at
the die exit.

Figure 10.12 Pressure drop downstream

231
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10 Coextrusion Pipe Dies

Figure 10.13 shows a line through the outer section, along which the pressure
drop of the outer layer is plotted in the graph in Figure 10.14. The total pressure
drop through this section is 0.10232 MPa, which is the value at the beginning of
the section on the right hand side, and it drops to zero at the die exit, as shown in
the graph of pressure drop along the line in Figure 10.14.

Figure 10.13 Pressure drop through the outer layer
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Figure 10.14 Graph of pressure drop through the outer layer

Similarly, Figure 10.15 and Figure 10.16 show the pressure drop along the line in
the inner layer. The value of pressure drop through this section is 0.10770 MPa.
This is slightly higher than for the outer layer because of the narrow section near
the junction of the two melts, and as this melt in the inner layer joins the main
stream it equalizes to the outer layer, as shown in Figure 10.15.



10.2 Extruded Together from One Die

Figure 10.15 Pressure drop through the inner layer
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Figure 10.16 Graph of pressure drop through inner layer

10.2.1.3 Temperature

Figure 10.17 shows the temperature variations in the section. The set tempera-
tures for the two melts entering the die and the die body temperature are 200 °C.
The blue areas in the section in Figure 10.17 are at 200 °C, and the yellow and red
areas are at higher temperatures.

Figure 10.17 Temperature variations through the section
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10 Coextrusion Pipe Dies

To investigate the extent of the variation in temperature near the wall of the outer
layer, a line near the inside wall of the outer layer is drawn as shown in Figure
10.18, and the graph of temperature along this line is plotted in Figure 10.19. It
can be seen from the graph that the temperature near the inside wall of the outer
layer starts at 208 °C and rises to about 209 °C closer to where the two melt
streams meet, and then it drops to 200 °C towards the die exit. For a material like
HDPE this variation is not of much concern, since HDPE has a large window of
processing temperature.

Figure 10.18 Line near the inside of outer layer
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Figure 10.19 Temperature profile along the line in Figure 10.18

10.2.1.4 Shear Stress

The last variable to be checked for the die design is the shear stress. The physical
meaning of this variable is that it shows the extent of shear stress generated during
the melt flow. The value of shear stress is given in kPa. Figure 10.20 shows that the
maximum shear stress is varying from -3.267 kPa to a maximum of 4.095 kPa in
the red area of the section, which is in the die land region and closer to the outer
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