

Professionelles Instandhaltungsmanagement

Strategie - Organisation - Kooperation

Mit Online-Analysetool Quick-Maintenance-Check

Von

Prof. Dr.-Ing. Andreas Weißenbach

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Weitere Informationen zu diesem Titel finden Sie im Internet unter ESV.info/978 3 503 17190 3

Gedrucktes Werk: ISBN 978 3 503 17190 3

eBook: ISBN 978 3 503 17191 0

Alle Rechte vorbehalten © Erich Schmidt Verlag GmbH & Co. KG, Berlin 2017 www.ESV.info

Dieses Papier erfüllt die Frankfurter Forderungen der Deutschen Bibliothek und der Gesellschaft für das Buch bezüglich der Alterungsbeständigkeit und entspricht sowohl den strengen Bestimmungen der US Norm Ansi/Niso Z 39.48-1992 als auch der ISO-Norm 9706.

Druck und Bindung: Hubert & Co., Göttingen

Geleitwort

"Dort, wo Automatisierung wirtschaftlich ist und ohne Einbuße an Flexibilität machbar, wird sie sich durchsetzen. Dies ist ein langfristiger Trend."

Wer wollte dieser Aussage angesichts der aktuellen Aussagen zum Einsatz von Robotern oder den permanenten Hinweisen zu Industrie 4.0 widersprechen. Wird jedoch in diesem Zusammenhang die menschenleere Fabrik beschworen oder gar die aus dem 3-D-Drucker kommenden Ersatzteile herbeigeredet, so sollte dem heftig widersprochen werden. Das ist Science Fiction!

In der absehbaren Zukunft wird es dies nicht geben. Ausnahmen bestätigen möglicherweise die Regel! Es wird weniger Menschen geben, die körperliche Arbeit ausführen. Dafür wird der Mensch aber erheblich stärker für die Planung gefordert werden, den Betrieb an sich ständig verändernde Anforderungen anzupassenden und nicht zuletzt auch der Instandhaltung. Dies predige ich seit über 30 Jahren. Ob dies aber von den Entscheidern zur Kenntnis genommen wird?

Damit sind wir bei diesem Buch. Das Wort "Instandhaltung" wird (wieder) häufiger verwendet. In jedem Lehrbuch zur Planung von Anlagen, zur Optimierung betrieblicher Prozesse findet sich dazu etwas. Häufig wird dann so getan, als ließen sich aus dem Katalog möglicher Verschleißprozesse und deren Indikatoren beliebig viele Maßnahmen zusammenstellen. Die durch Ausfall gefährdete technische Einheit meldet sich dann per Kurznachricht über das Mobiltelefon beim Instandhalter, teilt den voraussichtlichen Ausfallzeitpunkt mit, hat schon das Produktionsplanungs- und Steuerungssystem (PPS) hinsichtlich erforderlicher Maßnahmen zur Umplanung der Produktion informiert und die Bereitstellung notwendiger Verschleiß- und Reserveteile veranlasst. Fehlt nur noch, dass wir statt "Instandhalter" vom Instandhaltungsroboter sprechen. Dann sind wir aber erneut bei Science Fiction. Wir sind aber auch bei unseren Wünschen und Visionen.

Durch ständig sich verkürzende Lieferzeiten, auch durch erhebliche Schwankungen der betrieblichen Auslastung, werden die Folgen aus ungeplanten Störungen und Ausfällen gravierender. Dem widerspricht nicht, dass die Zuverlässigkeit unserer technischen Einheiten zunimmt.

Wie soll der Praktiker mit dieser Problematik umgehen? Er möchte auf dem aktuellen Stand der Instandhaltungstheorie gehalten werden, vor allem verstehen, was davon für ihn von Relevanz ist und wie er diese in der Praxis anwenden soll. Dabei steht er beständig im Konflikt zwischen einer möglichen Maximierung der Verfügbarkeit seiner technischen Einheiten, beispielsweise durch Einbau von Redundanzen, Vorhalten von Ersatzteilen und vor allem geeignetem Personal und zudem dem Gebot der Wirtschaftlichkeit. Ein Zuviel kann für den Betrieb ebenso fatal sein, wie ein Zuwenig!

Und dann gibt es ja auch noch unterschiedliche Betriebsgrößen, schwer erreichbare Standorte und viele Randbedingungen mehr, die in der Theorie keine Rolle spielen – in der Praxis aber durchaus schon. Oder glauben Sie, dass nach gewitterbedingtem Ausfall von Computern und Steuerungen das kleinste und am weitesten entfernte Unternehmen als erster vom Service des wichtigsten Lieferanten bedient wird?

Das vorliegende Buch wendet sich hauptsächlich an den Praktiker, also den betrieblichen Instandhalter. Es richtet sich aber auch an Lehrende und Lernende unterschiedlichster Berufs-, Fach- und Hochschulen sowie Universitäten. Es vermittelt hauptsächlich die Grundlagen der betrieblichen Instandhaltung. Vor allem ist es aber auch die Brücke von der Theorie in die Praxis. Neben der ausführlich erläuterten Instandhaltungstheorie bietet es auch in Form eines Analysetools beispielsweise dem Praktiker die Möglichkeit zur Einschätzung seiner eigenen Instandhaltung, um etwa folgende Fragen klären zu können: Wie sollte das Wissen angewendet werden, was ist die für die jeweiligen betrieblichen Belange angemessene Organisation der Instandhaltung? Wo liegen mögliche Potenziale für die Instandhaltung? Wie lassen sich Schwächen vermeiden oder gar durch neue überbetriebliche Kooperationen scheinbar vorhandene Schwächen zu Stärken gestalten? Dies alles auch im Hinblick auf den Einsatz erforderlicher Spezialisten in kürzester Zeit zu niedrigen Kosten.

Beschreiten Sie diese Brücke zur angemessen Praxis der betrieblichen Instandhaltung. Einen anderen Weg gibt es derzeit nicht!

Erfurt, im Januar 2017

Prof. Dr.-Ing. Wolf-Michael Scheid

Vorwort

Die betriebliche Instandhaltung ist als integrale Querschnittsfunktion in einem Unternehmen für die Sicherstellung einer betriebsspezifisch erforderlichen Verfügbarkeit und zuverlässigen Funktions- und Leistungsfähigkeit von technischen Einheiten verantwortlich. Nicht alle Unternehmen erkennen diesen Zusammenhang und so wird häufig der betrieblichen Instandhaltung nur wenig Beachtung geschenkt. Eine Vernachlässigung von technischen Einheiten wird in Kauf genommen, auch wenn sich dadurch die Unternehmen vielfach in eine missliche Lage bringen.

Diesen – oft verkannten – Sachverhalt konnte ich schon während meiner Tätigkeit als Serviceleiter bei einem weltweit führenden Werkzeugmaschinenhersteller feststellen. Durch meine späteren Erfahrungen als Projektleiter in einem international agierenden Beratungsunternehmen für Produktions- und Logistikorganisation wurde diese Feststellung noch einmal bestätigt. Diese Gegebenheit machte mich jedoch neugierig, wodurch mir aber auch immer mehr bewusst wurde, dass oft die notwendigen Kompetenzen, also die Fähigkeiten und Fertigkeiten, das Wissen und die Erfahrungen, das Können und die Methodenkenntnisse, in Bezug auf die betriebliche Instandhaltung fehlten oder nur ansatzweise vorhanden waren.

Erste Überlegungen zu einem Buch entstanden, die zunächst aber wieder verworfen wurden. Erst nach einiger Zeit, und aufgrund zahlreicher Gespräche, reifte der Entschluss, die zuvor angestellten Überlegungen noch einmal aufzunehmen und ein Grundlagenbuch zur betrieblichen Instandhaltung zu verfassen. Da vielen Unternehmen aber der tatsächliche Zustand ihrer eigenen betrieblichen Instandhaltung oft gar nicht bewusst ist bzw. nicht transparent vorliegt, folgten weitere Überlegungen. Im Ergebnis war aber schnell klar, dass ein brauchbares Analysetool zur schnellen Aufnahme und anschaulichen Darstellung der IST-Situation einer betrieblichen Instandhaltung notwendig ist. Die Entwicklung des Quick-Maintenance-Check begann.

Das vorliegende Buch soll nun dem geneigten Leser die Möglichkeit bieten, sich zunächst in einem Teil A mit den allgemeinen Grundlagen bzw. mit der *Bestimmung der betrieblichen Instandhaltung* vertraut zu machen. Hierbei werden nicht nur die theoretischen Kenntnisse zum Themenkomplex der Instandhaltung auf Basis der aktuellen Normen und Richtlinien erörtert, sondern auch aktuelle (Forschungs-)Ansätze zu möglichen organisatorischen Vorgehensweisen vermittelt. Anschließend wird dem Leser in einem Teil B des Buches das Analysetool *Quick-Maintenance-Check* erläutert. Dessen Anwendung soll möglichst objektive Informationen zum tatsächlichen Zustand einer untersuchten betrieblichen Instandhaltung liefern, sodass

im Anschluss daran eventuell notwendige (Verbesserungs-)Maßnahmen abgeleitet werden können. Diese wären dann ein wichtiger Schritt auf dem Weg hin zu einem verantwortungsvollen und professionellen Instandhaltungs-management in der Praxis.

An dieser Stelle möchte ich noch gerne all den Unterstützern danken, die mich bei der Erstellung dieses Buches und des Quick-Maintenance-Check hilfreich begleitet haben. Insbesondere möchte ich Herrn Prof. Dr.-Ing. Wolf-Michael Scheid für sein Geleitwort danken. Ebenso möchte ich Frau Inge Platz sowie Herrn Christoph Landgraf von Seiten des Erich Schmidt Verlags danken. Herr Landgraf, der im Übrigen auch den finalen Anstoß zu diesem Buch geliefert hat, stand mir während der Erstellungsphase mit sehr viel Geduld und jederzeit mit Rat und Tat zur Seite. Frau Platz unterstützte mich insbesondere bei der Formatierung des Buches sehr professionell und auch sie stand mir jederzeit mit Rat und Tat zur Seite.

Wertach, im Januar 2017

Prof. Dr.-Ing. Andreas Weißenbach

Inhaltsverzeichnis

Abküı	rzungsverzeichnis	XIII
	olverzeichnis	
•	dungsverzeichnis	
Tabel	lenverzeichnis	XIX
1	Einleitung	1
тан А	A. Caundlagen der Instandheltung	1.1
2	A: Grundlagen der Instandhaltung Bestimmung der betrieblichen Instandhaltung	
2.1	Definition und Grundmaßnahmen	
2.1	Begriffe und Kenngrößen.	
2.2.1	Abnutzung und Abnutzungsvorrat	
2.2.1	Ersatzteile	
2.2.2	Instandhaltbarkeit	
2.2.3	Instandhaltungsvermögen	
2.2.4		
2.2.5	Instandhaltungsrate	
2.2.0	Zuverlässigkeit	
	2.2.6.1 Zuverlässigkeitskenngrößen	
	2.2.6.2 Methoden zur Zuverlässigkeitsermittlung	
227	2.2.6.4 Ausfallratenmodelle	
2.2.7	Verfügbarkeit	
	2.2.7.1 Begriffe der Verfügbarkeit	
	2.2.7.2 Verfügbarkeitskenngrößen	
2.2	2.2.7.3 Berechnungsbeispiel für Verfügbarkeit bzw. Nichtverf	-
2.3	Instandhaltungsmanagement	
2.3.1	Strategisches Instandhaltungsmanagement	
	2.3.1.1 Ziele der Instandhaltung	
	2.3.1.2 Systematik der Instandhaltungsdurchführung	
	2.3.1.3 Klassische Instandhaltungsstrategien	
222	2.3.1.4 Moderne Instandhaltungskonzepte	
2.3.2	Operatives Instandhaltungsmanagement	
	2.3.2.1 Aufbauorganisation der Instandhaltung	
	2.3.2.2 Ablauforganisation der Instandhaltung	
	2.3.2.3 Örtliche Verteilung der Instandhaltung	
	2.3.2.4 Personelle Verteilung der Instandhaltung	
	2.3.2.5 Allgemeines Grundschema der Instandhaltung	85

2.3.3	Kooperative Instandhaltung	
	2.3.3.1 Gestaltungskriterien kooperativer Instandhaltung	87
	2.3.3.2 Komplementäre Instandhaltungskooperation	
	2.3.3.3 Kooperatives Instandhaltungsnetzwerk	99
	2.3.3.4 Horizontale Instandhaltungskooperation	
2.4	Instandhaltungskosten	105
2.4.1	Direkte Instandhaltungskosten	106
2.4.2	Indirekte Instandhaltungskosten	107
	2.4.2.1 Stillstandskosten	107
	2.4.2.2 Entgangene Deckungsbeiträge	108
	2.4.2.3 Ausfallfolgekosten	109
2.4.3	Idealtypische Kostenverlaufskurve	112
Teil B	3: Analyse der Instandhaltung	115
3	Analysetool: Quick-Maintenance-Check	117
3.1	Struktur des Quick-Maintenance-Check	118
3.2	Bewertung und Gewichtung innerhalb des Quick-Maintenance-Check.	122
3.2.1	Bewertungssystem	122
3.2.2	Gewichtung der Kategorien	126
3.3	Datenaufnahme mit dem Quick-Maintenance-Check	127
3.3.1	Stammdaten des Unternehmens	
3.3.2	Instandhaltungsobjekte	128
3.3.3	Management	
3.3.4	Organisation	134
3.3.5	Mitarbeiter	140
3.3.6	Instandhaltungscontrolling	142
3.3.7	Fremdinstandhaltung	
3.3.8	Materialwirtschaft	150
3.4	Ergebnis des Quick-Maintenance-Check	155
3.4.1	Zielerreichungsgrade der betrieblichen Instandhaltung	
3.4.2	Grafische Darstellung der Ergebnisse	
3.4.3	Vorschläge zur Verbesserung der betrieblichen Instandhaltung	
Anha	ng: Komponenten des Quick-Maintenance-Check	159
4	Bestandteile des Quick-Maintenance-Check	
4.1	Fragen des Quick-Maintenance-Check	
4.2	Bewertungssystem des Quick-Maintenance-Check	
4.3	Optimaler Zustand einer betrieblichen Instandhaltung	
4 4	Gewichtung der Kategorien des Quick-Maintenance-Checks	

Literaturverzeichnis	197
Stichwortverzeichnis	
Autorenportrait	211

Abkürzungsverzeichnis

bzw. beziehungsweise

CBM Condition Based Maintenance (dt. zustandsabhängige Instand-

haltung

DIN Deutsche Industrie Norm

dt. deutsch

e.V. eingetragener Verein

EDV Elektronische Datenverarbeitung

EN Europäische Norm

engl. englisch

FMEA Failure Modes and Effects Analysis (dt. Fehlzustandsart- und

-auswirkungsanalyse)

FMECA Failure Modes Effects and Criticality Analysis (dt.

Fehlzustandsart-, -auswirkungs- und -kritizitätsanalyse)

franz. Französisch

FTA Fault Tree Analysis (dt. Fehlerbaumanalyse)

griech. griechisch

h hour(s) (dt. Stunde(n) IH Instandhaltung(s-)

inkl. inklusive

IPS Instandhaltungsplanung und -steuerung

JIT Just-in-time (dt. rechtzeitige, bedarfssynchrone Produktion)

km Kilometer

KMU Kleinstunternehmen, kleine und mittlere Unternehmen

KVP Kontinuierlicher Verbesserungsprozess

lat. latainisch

MDT Mean Down Time (dt. mittlere Zeitspanne der Störungsdauer)

min Minute(n)

MTBF Mean Time Between Failures (dt. mittlere Zeitspanne bis zum

nächsten Ausfall)

MTTF Mean Time To Failure (dt. mittlere Zeitspanne bis zum Ausfall)
MTTFF Mean Time To First Failure (dt. mittlere Zeitspanne bis zum

ersten Ausfall)

MTTR Mean Time To Recovery (dt. mittlere Zeitspanne bis zur

Wiederherstellung)

OEE Overall Equipment Effectiveness (dt.

Gesamtanlageneffektivität)

Pkt. Punkt(e)

PM Preventive Maintenance (dt. vorbeugende Instandhaltung)

PPS Produktionsplanungs- und Steuerung

QCM Quick-Maintenance-Check

RBM Risk Based Maintenance (dt. risikoabhängige Instandhaltung)
RCM Reliability Centered Maintenance (dt. zuverlässigkeitsabhängige

Instandhaltung)

RM Reactive Maintenance (dt. reaktive Instandhaltung)

S. Seite(n)

Stk. Stück, Anzahl

TBF Time Between Failures (dt. Zeitspanne bis zum nächsten

Ausfall)

TPM Total Productive Maintenance (dt. ganzheitlich integrierte

Instandhaltung)

TTR Time To Recovery (dt. Zeitspanne bis zur Wiederherstellung)

TÜV Technischer Überwachungsverein e.V.

u. und

u. a. und andereusw. und so weiter

VDI Verein Deutscher Ingenieure e.V., Düsseldorf

vgl. vergleiche z.B. zum Beispiel

Symbolverzeichnis

Aalle Anzahl aller Aufträge

Anzahl der Aufträge mit negativem Ergebnis
Apositiv
Anzahl der Aufträge mit positivem Ergebnis

E(T) Erwartungswert der Lebensdauer

F(t) Ausfallwahrscheinlichkeit zum Zeitpunkt t

f(t) Ausfalldichte zum Zeitpunkt t

i Laufvariable L Leistungsgrad

MDT Mean Down Time (dt. mittlere Zeitspanne der Störungsdauer)
MTBF Mean Time Between Failure (dt. mittlere Zeitspanne bis zum

nächsten Ausfall)

MTTF Mean Time To Failure (dt. mittlere Zeitspanne bis zum Ausfall)
MTTFF Mean Time To First Failure (dt. mittlere Zeitspanne bis zum

ersten Ausfall)

MTTR Mean Time To Recovery (dt. mittlere Zeitspanne bis zur Wieder-

herstellung)

n Anzahl n (n-te Anzahl)

OEE Overall Equipment Effectiviness (dt. Gesamtanlageneffektivität)

P Wahrscheinlichkeit

Q Qualitätsrate

R Zuverlässigkeit der Einheit i

R(t) Überlebenswahrscheinlichkeit zum Zeitpunkt t

T Lebensdauer

t Zeit

TBF Time Between Failures (dt. Zeitspanne bis zum nächsten Aus-

fall)

TTR Time To Recovery (dt. Zeitspanne bis zur Wiederherstellung)

 U_n Unternehmen n (n-tes Unternehmen)

 $egin{array}{lll} U_A & & Unternehmen \ A \ U_B & & Unternehmen \ B \ U_C & & Unternehmen \ C \ U_D & & Unternehmen \ D \ U_E & & Unternehmen \ E \ U_F & & Unternehmen \ F \ \end{array}$

U(t) Unverfügbarkeit zum Zeitpunkt t

V Verfügbarkeit

 $\bar{V}(t)$ Nichtverfügbarkeit zum Zeitpunkt t

W_i Gewichtung der Kategorie i

Z Zustandsabweichung

z(t) Bool'sche Variable zum Zeitpunkt t

ZG_{Gesamt} Gesamtzielerreichungsgrad

ZG_i Zielerreichungsgrad der Kategorie i

€ Euro

 $\lambda(t)$ Ausfallrate zum Zeitpunkt t

μ Instandhaltungsrate

Abbildungsverzeichnis

Abbildung 1.1:	Haupt- und Nebengeschäftsprozesse eines Produktions-	
	unternehmens	3
Abbildung 1.2:	Entwicklung der Instandhaltung	7
Abbildung 2.1:	Grundmaßnahmen der Instandhaltung	.16
Abbildung 2.2:	Verlauf des Abnutzungsvorrats	18
Abbildung 2.3:	Zustandsänderung einer technischen Einheit ohne	
	Instandsetzung	22
Abbildung 2.4:	Verlauf der Ausfallwahrscheinlichkeit <i>F</i> (<i>t</i>)	23
Abbildung 2.5:	Verlauf der Überlebenswahrscheinlichkeit <i>R(t)</i>	24
Abbildung 2.6:	Beschreibung der Ausfalldichte <i>f</i> (<i>t</i>)	25
Abbildung 2.7:	Ablaufdiagramm der Fehlerzustandsart- und -auswirkungs-	
_	analyse (FMEA)	28
Abbildung 2.8:	Beispiel zum Aufbau eines Fehlerbaums	30
Abbildung 2.9:	Arten der Redundanz	31
Abbildung 2.10:	System ohne Redundanz	32
Abbildung 2.11:	System mit Redundanz	33
Abbildung 2.12:	Ausfallratenmodel "Badewannenkurve"	34
	Verschiedene Ausfallratenmodelle	
Abbildung 2.14:	Aufgaben des strategischen Instandhaltungsmanagements	43
Abbildung 2.15:	Systematik der Instandhaltungsdurchführung	45
Abbildung 2.16:	Risikomatrix	55
Abbildung 2.17:	Kernelemente der ganzheitlich integrierten Instandhaltung	59
Abbildung 2.18:	Gestaltung des operativen Instandhaltungsmanagements	66
Abbildung 2.19:	Funktionsorientierte Einlinien-Organisation	67
Abbildung 2.20:	Objektorientierte Einlinien-Organisation	68
Abbildung 2.21:	Funktions- und objektorientierte Stablinien-Organisation	69
Abbildung 2.22:	Einfache Matrix-Organisation	70
Abbildung 2.23:	Handlungs- und Vorgehensrahmen der Ablauforganisation der	
	Instandhaltung	72
Abbildung 2.24:	Aufgaben des operativen Instandhaltungsmanagements	75
Abbildung 2.25:	Eignung für den Fremdbezug von Instandhaltungs-	
	leistungen	85
Abbildung 2.26:	Allgemeines Grundschema der Instandhaltung	86
Abbildung 2.27:	Allgemeines Grundschema der kooperativen Instandhaltung	96
Abbildung 2.28:	Allgemeine Grundstruktur der komplementären	
	Instandhaltungskooperation	97

Abbildung 2.29:	Spezifisches Grundschema der komplementären Instand-	
	haltungskooperation	98
Abbildung 2.30:	Allgemeine Grundstruktur eines kooperativen Instand-	
	haltungsnetzwerkes	99
Abbildung 2.31:	Spezifisches Grundschema eines kooperativen Instand-	
	haltungsnetzwerkes	101
Abbildung 2.32:	Allgemeine Grundstruktur einer horizontalen Instand-	
	haltungskooperation	102
Abbildung 2.33:	Spezifisches Grundschema einer horizontalen Instand-	
	haltungskooperation	104
Abbildung 2.34:	Abgrenzung zwischen direkten und indirekten Instand-	
	haltungskosten	106
Abbildung 2.35:	Entgangene Deckungsbeiträge durch Ausfall einer tech-	
	nischen Einheit	109
Abbildung 2.36:	Folgen bei Ausfall von einem Element einer technischen	
_	Einheit	111
Abbildung 2.37:	Idealtypische Gesamtkostenverlaufskurve der Instandhaltung	113
Abbildung 3.1:	Einflussfaktoren auf die Instandhaltungseffizienz	119
Abbildung 3.2:	Struktur der bewerteten Kategorien des Quick-Maintenance-	
	Check	120
Abbildung 3.3:	Kombinationsmöglichkeiten der Prozessfähigkeit und	
_	Prozessbeherrschtheit	123
Abbildung 3.4:	Zielerreichungsgrade der jeweiligen Kategorien	156
Abbildung 3.5:	Detaillierung der Zielerreichungsgrade in den Unter-	
	kategorien	157
Abbildung 3.6:	Vorschlagsliste zur Verbesserung der betrieblichen	
	Instandhaltung	158
Abbildung 4.1:	Einfluss auf die Gewichtung der jeweiligen Kategorien	190
Abbildung 4.2:	Einfluss auf die Gewichtung der Kategorie Management	
Abbildung 4.3:		
Abbildung 4.4:	Einfluss auf die Gewichtung der Kategorie Mitarbeiter	193
Abbildung 4.5:	Einfluss auf die Gewichtung der Kategorie Instand-	
Č	haltungscontrolling	194
Abbildung 4.6:	Einfluss auf die Gewichtung der Kategorie	
Č	Fremdinstandhaltung	195
Abbildung 4.7:	Einfluss auf die Gewichtung der Kategorie Materialwesen	

Tabellenverzeichnis

Tabelle 2.1:	Beispiele für die Instandhaltungsrate	21
Tabelle 2.2:	Zuverlässigkeitswerte der technischen Einheiten	32
Tabelle 2.3:	Häufigkeit verschiedener Ausfallratenmodelle	37
Tabelle 2.4:	Verfügbarkeitswerte verschiedener Wirtschaftszweige und	
	Branchen	40
Tabelle 2.5:	Kenndaten zur Ermittlung der Verfügbarkeit bzw.	
	Nichtverfügbarkeit	41
Tabelle 2.6:	Daten zur Berechnung der Gesamtanlageneffektivität	62
Tabelle 3.1:	Angaben zu den Stammdaten und den technischen Einheiten	121
Tabelle 3.2:	Gewichtung der Kategorien des Quick-Maintenance-Checks	126
Tabelle 3.3:	Bewertung des Strategie-Mixes der Instandhaltung	132
Tabelle 3.4:	Wichtige Kennzahlen der Instandhaltung	146
Tabelle 3.5:	Gesamtzielerreichungsgrad	155
Tabelle 4.1:	Merkmal/Ausprägung der möglichen Zustände der	
	Instandhaltung	185
Tabelle 4.2:	Optimaler Zustand einer betrieblichen Instandhaltung	187