HANSER

Leseprobe

Wilhelm Kleppmann

Versuchsplanung

Produkte und Prozesse optimieren

ISBN (Buch): 978-3-446-44716-5

ISBN (E-Book): 978-3-446-44717-2

Weitere Informationen oder Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-44716-5 sowie im Buchhandel.

Vorwort

Total Quality Management (TQM), Prozessorientierung in der DIN ISO 9001, SixSigma-Programme, Kontinuierliche Verbesserungsprogramme (KVP), Kaizen, ... – uns allen ist die Notwendigkeit der ständigen Verbesserung bewusst. Versuchsplanung ist eine Sammlung von Ideen und Verfahren, dabei systematisch vorzugehen, um mit möglichst geringem Aufwand möglichst viel zu lernen.

Im Rahmen einer SixSigma-Strategie ist Versuchsplanung das Werkzeug zur eigentlichen Verbesserung und nimmt damit eine zentrale Stellung ein. Dadurch hat Versuchsplanung in den letzten Jahren wesentlich an Bedeutung und Verbreitung gewonnen, und so ist nun schon die 9. Auflage dieses Buches erforderlich. Diese Chance habe ich wieder zur Aktualisierung und Ergänzung genutzt.

Ziel ist es, Praktikern in Entwicklung, Konstruktion und Fertigung, sowie Studenten einen anwendungsorientierten Einstieg und Überblick zu geben. Die Methoden der klassischen Statistischen Versuchsplanung werden mit Ideen von Shainin, Taguchi u. a. zu einer neuen Kombination verbunden.

SixSigma und Versuchsplanung sind Teamarbeit. Jedes Teammitglied muss über Ziele, Möglichkeiten und die prinzipielle Vorgehensweise Bescheid wissen. Aber nicht jedes Teammitglied muss alle Einzelheiten kennen.

- Kapitel 1 bis 5 geben einen allgemeinen Überblick über die Versuchsplanung und behandeln einfache Verfahren, die bei der Vorbereitung weiterer Versuche nützlich sind. Sie sind für alle Teammitglieder gedacht.
- Kapitel 6 bis 12 behandeln die statistischen Grundlagen und die wichtigsten Versuchspläne und ihre Auswertung. Sie wenden sich an das Teammitglied, das die Versuche plant und die Ergebnisse dann auswertet. Abschnitte, die mit einem Stern * gekennzeichnet sind und Ergänzungen in Fußnoten sind für das Verständnis der folgenden Kapitel nicht erforderlich und können zunächst ausgelassen werden.
- Kapitel 13 bis 20 behandeln verschiedene weiterführende Themen. Sie können bei Bedarf und unabhängig voneinander gelesen werden.

Die JAVA-Visualisierungen auf der DVD sollen Ihnen dabei helfen, statistische Ideen besser zu begreifen. Erleben Sie selbst, wie Versuchsergebnisse streuen, was ein Vertrauensbereich ist, wie lineare Regression funktioniert und wie ein Fertigungsprozess immer besser wird.

Um das Verständnis für die Bedeutung statistischer Aussagen zu fördern, werden die meisten Beispiele ausführlich vorgerechnet. Eingestreute Übungsaufgaben verdeutlichen und vertiefen die jeweiligen Inhalte. Nutzen Sie diese Übungsmöglichkeit – die folgende Lösung dient der Selbstkontrolle.

Obwohl aus didaktischen Gründen die Beispiele und Aufgaben hier von Hand vorgerechnet werden, empfehle ich ab Kapitel 6 parallel den Einsatz einer Software. Sie vereinfacht die Auswertung wesentlich und erlaubt vielfältige grafische Darstellungen.

Die Beschreibung der Versuchsplanung in diesem Buch ist unabhängig von einer speziellen Software. Viele gute Programme sind erhältlich. Kapitel 19 gibt Entscheidungshilfen zur Auswahl und einen Überblick über neun dieser Programme. Auf der begleitenden DVD befinden sich Dateien mit Beispielen aus diesem Buch in den Formaten dieser Programme. Somit können Sie die Programme anhand bekannter Beispiele testen, direkt vergleichen und das Programm auswählen, das Ihnen am besten gefällt. Die meisten Hersteller haben Testversionen ihrer Programme für die DVD zur Verfügung gestellt, um Ihnen den Zugang zu erleichtern. Dafür möchte ich mich herzlich bedanken.

Wenn Sie die Beispiele mit der gewählten Software nachvollziehen, werden Sie feststellen:

- Das Aufstellen von Versuchsplänen und die Auswertung der Versuchsergebnisse sind nicht schwer.
- Die Darstellung der Ergebnisse unterscheidet sich etwas von der Darstellung in diesem Buch. Jede Software ist anders, anhand der durchgerechneten Beispiele sollte es jedoch kein Problem sein, die Bedeutung der Ausgaben zu verstehen.
- Mit etwas Übung erscheint dann alles plötzlich ganz einfach. Aber auch darin liegt ein gewisses Risiko. Vergewissern Sie sich immer, dass die Daten und die Ergebnisse sinnvoll sind. Verwenden Sie Ihren gesunden Menschenverstand. Versuchsplanung ist ein sehr wertvolles Hilfsmittel. Aber es soll den gesunden Menschenverstand nicht ersetzen, sondern schärfen.

Als erste eigene Anwendung empfehle ich ein überschaubares Problem mit nur wenigen Faktoren und klar definierten Zielen. Bitte achten Sie auf die sorgfältige Vorbereitung Ihrer Versuche – sie ist entscheidend für den Erfolg.

Ich möchte darauf hinweisen, dass wesentliche Teile dieses Buches (insbesondere in den Kapiteln 7 bis 12) ursprünglich den ebenfalls von mir erstellten Schulungsunterlagen der Deutschen Gesellschaft für Qualität e. V. (DGQ), Frankfurt am Main, entnommen sind. Der Lehrgang "Statistische Versuchsplanung" und das Seminar "Grundlagen der Versuchsmethodik – DoE" werden durch dieses Buch vertieft und ergänzt. Daher kann das Buch als begleitende oder weiterführende Literatur verwendet werden. Umgekehrt bieten der Lehrgang oder das Seminar eine gute Einführung bzw. Ergänzung zu diesem Buch. Interessierte Leser können sich unter www.dgq.de über das Weiterbildungsangebot der DGQ informieren.

Zum Schluss möchte ich allen danken, die zu diesem Buch beigetragen haben, insbesondere der DGQ für die Genehmigung, Teile aus ihren Lehrgangsunterlagen zu verwenden, B. Schäfer, T. Deutscher und anderen Lesern für ihre hilfreichen inhaltlichen Anregungen, den Studienarbeitern der HS Aalen für die JAVA-Visualisierungen und A. Lenner für seinen Einsatz und seine Geduld bei der Umsetzung in das neue Content-Managementsystem.

Allen Lesern bin ich dankbar für konstruktive Anregungen und Kritik. Ich wünsche Ihnen viel Erfolg bei der Anwendung der Versuchsplanung.

Inhalt

Vor	wort .		V							
1	Einfü	hrung	1							
1.1	Warur	n Versuche?	1							
1.2	Warum Statistik?									
1.3		Warum Versuchsplanung?								
1.4		Welche Art von Ergebnissen kann man erwarten?								
1.5		che oder systematische Beobachtung?	7							
1.6	Versuchsplanung und Six-Sigma-Strategie									
2	Ausg	ewählte Begriffe	11							
2.1	Zielgr	ößen	12							
2.2	Einflu	ssgrößen	12							
2.3	Steuer	größen	13							
2.4	Störgr	ößen	13							
2.5	Faktor	ren	14							
2.6	Faktor	estufen	14							
2.7	Quant	itative und qualitative Faktoren	15							
3	Vorge	ehensweise im Überblick	17							
3.1	Ausga	ngssituation beschreiben	17							
3.2	Unters	suchungsziel festlegen	19							
	3.2.1	Optimale Lage des Mittelwerts	19							
	3.2.2	Reduzierung der Streuung/Robustheit	20							
	3.2.3	Erkennen der wichtigsten Störgrößen in der Fertigung	21							
	3.2.4	Gleichzeitig fertigen und lernen	22							
2.2	3.2.5	Funktion und Zuverlässigkeit nachweisen	22							
3.3	3.3.1	ößen und Faktoren festlegen	22 22							
	3.3.2	Sammlung der Einflussgrößen	24							
	3.3.3	Auswahl der Faktoren	25							
	3.3.4	Festlegung der Faktorstufen	26							
	3.3.5	Einflussgrößen, die nicht untersucht werden	28							
3.4	Versu	chsplan aufstellen	29							
	3.4.1	Festlegung der Faktorstufenkombinationen	29							

	3.4.2	Anzahl der Realisierungen	30
	3.4.3	Blockbildung	31
	3.4.4	Randomisierung	31
	3.4.5	Aufwandsabschätzung	33
3.5	Versuc	che durchführen	35
	3.5.1	Vorbereitung	35
	3.5.2	Durchführung	36
3.6	Versuc	chsergebnisse auswerten	37
3.7	Ergebr	nisse interpretieren und Maßnahmen ableiten	40
	3.7.1	Interpretation	40
	3.7.2	Maßnahmen	41
3.8	Absich	erung, Dokumentation, weiteres Vorgehen	42
	3.8.1	Absicherung der Verbesserungen	42
	3.8.2	Dokumentation	42
	3.8.3	Weiteres Vorgehen	43
4	Syste	matische Beobachtung	45
4.1		Vari-Bild	45
4.2		llung der örtlichen Verteilung von Fehlern	49
4.3		svergleich	52
4.4	Paarwe	eiser Vergleich von Produkten	54
5	Einfac	che Versuche	57
5.1		lenvergleich zur Prozessverbesserung	57
5.2		onententausch zur Produktverbesserung	61
5.3		lick über die Methoden nach D. Shainin	64
J.J	Operbi	nck uper the methoden hach D. Shailini	04
6	Statis	tische Grundlagen	65
6.1		ung	65
0.1	6.1.1	Häufigkeitsverteilung von Versuchsergebnissen	65
	6.1.2	Verteilungsdichte und Verteilungsfunktion	68
	6.1.3	Normalverteilung	70
6.2		rtung einer Stichprobe	71
0.2	6.2.1	Repräsentative Stichprobe	71
	6.2.2	Eintragung ins Wahrscheinlichkeitsnetz	73
	6.2.3	Schätzwerte für Mittelwert μ und Varianz σ ²	76
	6.2.4	Vertrauensbereiche	77
6.3		ich von zwei Mittelwerten	82
0.5	6.3.1	Auswertung von Versuchsergebnissen	83
	6.3.2	Festlegung des Stichproben- bzw. Versuchsumfangs	89
	6.3.3	Voraussetzungen	91
6.4			
6.4	6.4.1	ormation von Messwerten	95 95
	6.4.2	Logarithmische Normalverteilung	
		Poisson-Verteilung	96 98
	6.4.3	Box-Cox-Transformation	98

7	Vollst	ändige faktorielle Versuchspläne	101
7.1	Zwei Fa	aktoren auf je zwei Stufen	101
	7.1.1	Versuchsplan und Effekte	101
	7.1.2	Auswerteformalismus und Beurteilung der Signifikanz	104
	7.1.3	Interpretation von Wechselwirkungen	106
	7.1.4	Randomisierung und Blockbildung	108
7.2	k Fakto	ren auf je zwei Stufen	113
	7.2.1	Versuchsplan	113
	7.2.2	Auswertung	115
	7.2.3	Versuchsumfang	120
7.3	Auswei	rtung von Versuchsplänen mit n = 1	121
	7.3.1	Wahrscheinlichkeitsdarstellung der Effekte	121
	7.3.2	Schätzung der Zufallsstreuung durch "Pooling"	125
	7.3.3	Risiken	127
8	Scree	ning-Versuchspläne	129
8.1	Hinterg	grund	129
8.2	Fraktio	nelle faktorielle Versuchspläne	130
	8.2.1	Der fraktionelle faktorielle 2 ⁴⁻¹ -Plan als Beispiel	130
	8.2.2	Anwendung des 2 ⁴⁻¹ -Plans zur Blockbildung	134
	8.2.3	Fraktioneller faktorieller 2 ^{k-p} -Plan	137
	8.2.4	Was bedeutet Vermengung?	140
	8.2.5	Auflösung	143
	8.2.6	Überblick über 2 ^{k-p} -Pläne	144
	8.2.7	Praxisbeispiel Reflowlöten	147
8.3		t-Burman-Versuchspläne*	156
	8.3.1	Plackett-Burman-Versuchspläne der Auflösung III	157
	8.3.2	Plackett-Burman-Versuchspläne der Auflösung IV	159
	8.3.3	Übersättigte Pläne	160
8.4	Definit	ive Screening Pläne*	160
8.5	Funktio	onstest*	161
8.6	Einsatz	empfehlungen	163
9		te Produkte/Prozesse	165
9.1	Ziel un	d Strategie von G. Taguchi	166
	9.1.1	Qualitätsziel: Streuung minimieren	166
	9.1.2	Entwicklungsstrategie: Robuste Produkte/Prozesse	166
9.2	Taguch	is Versuchspläne und ihre Auswertung	168
9.3	Alterna	ttive Ansätze	176
	9.3.1	Aus der Differenz von Messwerten abgeleitete Zielgrößen	176
	9.3.2	Wechselwirkung zwischen Steuer- und Rauschfaktoren	177
9.4	Anmer	kungen zu den "Orthogonalen Feldern" u.ä.*	178
	9.4.1	Orthogonale Felder	178
	9.4.2	Lineare Graphen und Dreieckstabellen	179
	9.4.3	Dummy Levels, Pseudo Factor Designs, Idle Columns	180

10	Regressionsanalyse 1				
10.1	Einfache line	are Regression	184		
	10.1.1 Meth	node der kleinsten Quadrate	184		
	10.1.2 Besti	immtheitsmaß und Korrelationskoeffizient	186		
	10.1.3 Grafi	ische Beurteilung der Residuen	189		
	10.1.4 Verti	rauensbereiche und Signifikanz	192		
	10.1.5 Zusa	mmenhang lineare Regression – Mittelwertvergleich	197		
	10.1.6 Quas	silineare Regression	198		
10.2	Mehrfache Re	egression	198		
			199		
	10.2.2 Tran	sformierte Einflussgrößen	202		
	10.2.3 Prinz	zip der schrittweisen Regression	205		
	10.2.4 Beur	teilung des Regressionsmodells	206		
11	Versuchspl	läne für nichtlineare Zusammenhänge	209		
11.1			209		
		3	211		
			212		
			213		
			213		
			216		
11.2			224		
			 224		
			224		
			225		
		_	227		
11.3	_		228		
			229		
			231		
11.4			232		
10	Varianzana	luce	005		
		•	235		
		,	236		
		*	241		
		0	244		
12.4	Nicht vollstär	ndige Randomisierung*	246		
			246		
	12.4.2 Split	-Plot Versuche	247		
13	Screening	für mehrstufige Faktoren*	249		
13.1			249		
	_		250		
	_		252		
_ 0.0	pre				

14	Versuchspläne für Mischungen*	253
14.1	Mischungspläne ohne Begrenzungen	254
14.2	Auswertung von Mischungsplänen	256
14.3	Mischungspläne mit Begrenzungen	256
14.4	Kombinierte Versuchspläne	257
15	Spezielle Zielgrößen*	259
15.1	Gut-Schlecht-Ergebnisse	259
	15.1.1 Möglichkeiten zur Vermeidung	259
	15.1.2 Auswertung	261
15.2	Anzahl Fehler	265
15.3	Mehrere Zielgrößen	266
16	Erweiterung von Versuchsplänen*	275
16.1	Trennung vermengter Wechselwirkungen	275
16.2	Zentrumspunkt	277
16.3	Zuordnung quadratischer Effekte	279
16.4	Nicht realisierbare Faktorstufenkombinationen	281
17	Alternative Modellierungsansätze*	285
17.1	Andere Verteilungen: Maximum Likelihood Prinzip	285
17.2	Robuste Regression	286
17.3	Andere Modellansätze	286
	17.3.1 Überanpassung und Unteranpassung	286
	17.3.2 Lokale Modelle	288
	17.3.3 Neuronale Netze	289
	17.3.4 Gaussian Process Models	289
	17.3.5 Einsatzempfehlungen	290
18	Sequentielle Optimierungsverfahren*	293
18.1	Evolutionary Operations (EVOP)	294
18.2	Methode des steilsten Anstiegs	296
18.3	Simplexverfahren	297
18.4	Neuere Entwicklungen	299
19	Software*	301
19.1	Allgemeine Hinweise	301
19.2	Beschreibung ausgewählter Programme	302
19.3	Spezielle Anwendungsgebiete	308
20	Beispiele*	311
20.1	Beispiel Motoroptimierung	311
20.2	Literaturbeispiele	316
	Übungsbeispiele	317
	20.3.1 Papier-Rotor	317
	20.3.2 Nürnberger Trichter	320

Anhang	323
Anhang A – Abkürzungen und Formelzeichen	323
Anhang B – Statistische Tabellen	324
Anhang C - Wegweiser durch die Verfahren	326
Anhang D - Ablauf einer Versuchsplanung	327
Anhang E – Ablauf einer Datenauswertung	328
Anhang F – Glossar deutsch/englisch	329
Anhang G – JAVA-Visualisierungen auf der DVD	333
Anhang H - Software/Beispiele auf der DVD	337
Anhang J – Software/Demos im Internet	339
Index	343

^{*} Für das Verständnis der folgenden Kapitel nicht erforderlich

Einfache Versuche

D. Shainin hat eine einfache Versuchsstrategie beschrieben. Sie erlaubt es, mit geringem Aufwand die wichtigsten Faktoren zu identifizieren, deren Veränderung für die Streuung eines Fertigungsprozesses bzw. für den Ausfall eines Produktes verantwortlich ist [1 – 3]. Wichtigste Voraussetzung für einen Erfolg der Strategie ist, dass die Zufallsstreuung sehr viel kleiner als der Effekt der Faktoren ist. Nur dann kann auf mehrmalige Realisierung und statistische Auswertung verzichtet werden.

Je nach Anwendungsgebiet (und damit der Art der Faktoren) verwendet Shainin verschiedene Bezeichnungen:

- Prozessverbesserung: Variablenvergleich (Abschnitt 5.1)
- Produktverbesserung: Komponententausch (Abschnitt 5.2).

Shainin nennt den wichtigsten Faktor "Rotes X". Ziel ist es, dieses "Rote X" zu erkennen.

■ 5.1 Variablenvergleich zur Prozessverbesserung

Ziel des Variablenvergleichs ist, unter einer begrenzten Anzahl von Faktoren diejenigen zu erkennen, deren Veränderung den Hauptbeitrag zur Streuung der Zielgröße erbringt. Als Faktoren werden Größen betrachtet, die sich im Verlauf der Fertigung innerhalb gewisser Grenzen verändern, wie z.B.

- Prozessparameter (innerhalb ihrer Spezifikation)
- Umgebungsbedingungen (innerhalb ihrer natürlichen Grenzen)
- Unterschiede im Ausgangsmaterial, z. B. Charge, Alter, Lieferant

Ausgangspunkt:

- Die (bis ca. 20) Faktoren A, B, C, D, E, ... stehen im Verdacht, die Streuung der Zielgröße zu verursachen.
- Für jeden Faktor gibt es einen vermutlich "guten" Wert (für A sei das Ag) und einen vermutlich "schlechten" Wert (As). Beide Werte (= Stufen) müssen realistisch sein, d. h. in der Fertigung auch wirklich auftreten.

In Bild 5-1 wird der Variablenvergleich schematisch dargestellt. Als erster Schritt werden Vorversuche durchgeführt, um zu erkennen, ob die ausgewählten Faktoren wirklich fast die gesamte Streuung verursachen:

- zwei Einzelversuche mit allen Faktoren auf dem "guten" Wert (Ergebnisse G₁, G₂)
- zwei Einzelversuche mit allen Faktoren auf dem "schlechten" Wert (Ergebnisse S₁, S₂).

Die Differenz D zwischen den Mittelwerten der beiden "guten" und der beiden "schlechten" Ergebnisse ist ein Maß für den Effekt der Faktoren:

$$D = \left| \frac{G_1 + G_2}{2} - \frac{S_1 + S_2}{2} \right| \tag{5.1}$$

Der Mittelwert d der Unterschiede zwischen den beiden "guten" bzw. "schlechten" Ergebnissen ist ein Maß für die Zufallsstreuung:

$$d = \frac{|G_1 - G_2| + |S_1 - S_2|}{2}$$
(5.2)

Die Zufallsstreuung ist so klein (im Vergleich zum Effekt der Faktoren), dass keine mehrmalige Realisierung und keine formale statistische Analyse erforderlich ist, wenn

$$D: d \ge 5:1 \tag{5.3}$$

Wird diese Bedingung nicht erfüllt, so bestehen folgende Möglichkeiten:

- Der wichtigste Faktor (das "Rote X") ist nicht im Versuch enthalten. Manchmal hilft eine bessere Auswahl der Faktoren.
- Die Zuordnung "gut" und "schlecht" ist nicht richtig. Manchmal hilft das Vertauschen oder die Änderung von einzelnen Werten.
- Die Zufallsstreuung durch andere Ursachen ist zu groß. Dann ist die Vereinfachung von D. Shainin zu grob, und die in den folgenden Kapiteln beschriebene (klassische) Versuchsplanung muss eingesetzt werden. Da der Aufwand für die vier Vorversuche klein im Vergleich zur möglichen Einsparung bei einem Erfolg ist, lohnen sie sich trotzdem.

Wenn die Bedingung D:d > 5:1 erfüllt ist, kann der eigentliche Variablentausch beginnen. Für die Faktoren A, B, C, D, ... werden nun einzeln die Werte von "gut" und "schlecht" vertauscht.

Zunächst wird ein Einzelversuch durchgeführt, bei dem alle Faktoren außer A auf "gut" gehalten werden, nur A hat den Wert "schlecht" (Bezeichnung in Bild 5-1 AsRg = A schlecht, Rest gut). Und ein Einzelversuch wird durchgeführt, bei dem alle Faktoren außer A auf "schlecht" gehalten werden, nur A hat den Wert "gut" (Bezeichnung AgRs = A gut, Rest schlecht).

Für alle Faktoren werden nacheinander diese beiden Einzelversuche durchgeführt (ähnlich zu One-factor-at-a-time). Führt das Vertauschen von guter und schlechter Stufe zu keiner wesentlichen Veränderung der Zielgröße, so ist dieser Faktor unwichtig. In Bild 5-1 sind A bis D unwichtig. Der Faktor E dagegen vertauscht gut und schlecht. Der Faktor E ist dominant ("Rotes X"). Der Faktor H liefert einen wesentlichen Beitrag, ist aber nicht alleinige Ursache ("Rosa X").

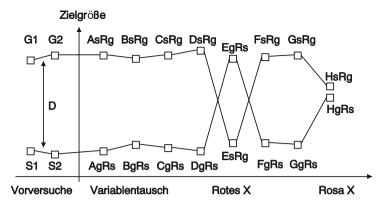
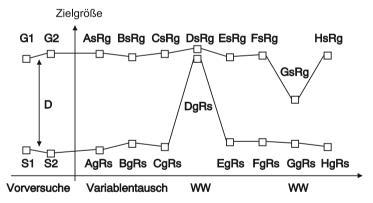



BILD 5-1 Grafische Darstellung der Ergebnisse der vier Vorversuche und des Variablentauschs

Mit dem Variablenvergleich können auch Wechselwirkungen erkannt werden (im Gegensatz zu einer reinen One-factor-at-a-time-Vorgehensweise).

Ändert sich bei einem Vertauschen nur eines der Ergebnisse der Zielgröße (gut oder schlecht, D bzw. G in Bild 5-2), so weist dies darauf hin, dass dieser Faktor eine wichtige Wechselwirkung mit einem anderen Faktor hat.

D. Shainin schlägt vor, nach Abschluss des Variablentauschs alle Faktoren, die als "Rotes X", "Rosa X" und Wechselwirkungen identifiziert wurden, in einem faktoriellen Versuch zu untersuchen (siehe Kapitel 7).

BILD 5-2 Grafische Darstellung der Ergebnisse bei Wechselwirkungen

Beispiel Metallpresse (nach Bhote [2])

In einer Presse werden Metallteile umgeformt. Die Toleranz für ein bestimmtes kritisches Maß beträgt \pm 0,005 Zoll. Manchmal streuen die Teile jedoch wesentlich mehr. In einem Brainstorming wurden die Faktoren in Tabelle 5.1 als mögliche Ursachen gesammelt.

Die Streuung des kritischen Maßes ist die Zielgröße. Um sie zu ermitteln, werden jeweils fünf Teile gefertigt, und die Differenz zwischen dem größten und kleinsten der fünf Werte (Spannweite) wird verwendet.

Faktor	gut	schlecht
A: Ausrichtung der Form	ausgerichtet	nicht ausgerichtet
B: Metalldicke	dick	dünn
C: Metallhärte	hart	weich
D: Metallbiegung	flach	gebogen
E: Stößelaufnahme	kalibriert	mit Spiel
F: Halten des Materials	waagrecht	nicht waagrecht

TABELLE 5.1 Faktoren und vermutete gute und schlechte Stufen im Beispiel Metallpresse

Ergebnisse des Vorversuchs (in 0,001 Zoll)

alle Faktoren gut

4

Spannweite

alle Faktoren schlecht

47

61 Spannweite

Voraussetzung für weiteres Vorgehen überprüfen:

$$D = \left| \frac{4+4}{2} - \frac{47+61}{2} \right| = 50 \quad \text{und}$$

$$d = \frac{|4-4|}{2} + \frac{|47-61|}{2} = 7$$

$$\Rightarrow$$
 D: d = 50:7 > 5:1.

Der Unterschied zwischen den Ergebnissen bei "alle Faktoren gut" und "alle Faktoren schlecht" ist so groß, dass der eigentliche Variablenvergleich ohne Wiederholungen durchgeführt werden kann. Signifikante Effekte sind auch ohne formale Signifikanztests ("mit bloßem Auge") erkennbar. Tabelle 5.2 zeigt die Ergebnisse des eigentlichen Variablenvergleichs.

Versuch	Kombination der Stufen	Spannweite [0,001 Zoll]	Schluss- folgerung
1	AsRg	3	A unwichtig
2	AgRs	102	
3	BsRg	5	B unwichtig
4	BgRs	47	
5 CsRg		7	C unwichtig
6	CgRs	72	
7	DsRg	23	Rosa X
8	DgRs	30	
9	EsRg	7	unklar
10	EgRs	20	
11	11 FsRg		Rotes X
12	12 FgRs		
Test	DsFsRg	70	völlige Umkehr
	DgFgRs	4	

TABELLE 5.2 Ergebnisse des Variablenvergleichs im Beispiel Metallpresse

Ergebnisse für die praktische Umsetzung:

- Die Materialbiegung ist der kritische Parameter, der gesteuert werden muss. Eine Vorrichtung wurde gebaut, damit der Maschinenbediener das Material immer waagrecht hält; dadurch wurden bedienerbedingte Variationen beseitigt.
- Die Materialdicke und -härte sind nicht wichtig, daher konnten Toleranzen erweitert werden.

Mit nur einer Versuchsreihe wurde die Streuung um den Faktor 5 reduziert.

Der Variablenvergleich ist ein effizientes Verfahren zur einfachen Verbesserung von Fertigungsprozessen. Er ist bei der (Weiter-)Entwicklung der Prozesse und in der Fertigung einsetzbar, solange die Zufallsstreuung ausreichend klein ist.

■ 5.2 Komponententausch zur **Produktverbesserung**

Der Komponententausch ist im Grunde ein Variablenvergleich, angewendet auf Produkte, die zerlegt und wieder zusammengebaut werden können. Der Ausgangspunkt ist ein gutes und ein schlechtes Produkt. "Schlecht" bedeutet, der Messwert für eine bestimmte Zielgröße liegt außerhalb der Toleranz. Ziel ist es, die Komponente zu identifizieren, die für den Ausfall des schlechten Produktes verantwortlich ist.

Die Komponenten entsprechen den Faktoren, die Stufe "gut" sind die Komponenten des guten Produkts, die Stufe "schlecht" sind die Komponenten des schlechten Produkts, und jeder Einzelversuch besteht darin, das Produkt zu zerlegen und wieder neu zusammenzubauen.

Daraus ergibt sich folgende Vorgehensweise:

Vorversuche durchführen:

- Zielgröße am "guten" Produkt messen, dann Produkt zerlegen, wieder zusammenbauen und Zielgröße wieder messen (Ergebnisse G_1 , G_2).
- Zielgröße am "schlechten" Produkt messen, dann Produkt zerlegen, wieder zusammenbauen und Zielgröße wieder messen (S_1, S_2) .

Voraussetzung für weiteres Vorgehen überprüfen:

Wie beim Variablenvergleich muss auch beim Komponententausch der Unterschied zwischen dem "guten" und dem "schlechten" Produkt ausreichend groß sein:

Differenz zwischen "gut" und "schlecht" berechnen:

$$D = \left| \frac{G_1 + G_2}{2} - \frac{S_1 + S_2}{2} \right| \tag{5.1}$$

Maß für die Streuung berechnen:

$$d = \frac{|G_1 - G_2| + |S_1 - S_2|}{2}$$
 (5.2)

Die Zufallsstreuung ist so klein, dass keine statistische Analyse nötig ist, wenn

$$D: d \ge 5:1.$$
 (5.3)

Wird dies nicht erreicht, so kann auch die Montage für den Unterschied verantwortlich sein.

Wenn D: d > 5:1 erfüllt ist, werden für die Komponenten A, B, C, D, ... einzeln ausgetauscht. Nach dem Austausch wird an beiden Produkten die Zielgröße gemessen, dann wird wieder zurückgetauscht. Die Bewertung erfolgt wie in Bild 5-1 und 5-2 beim Variablenvergleich.

Beispiel Zeitzähler (nach Bhote [2])

Ein Zeitzähler soll bis zu einer Temperatur von - 40 °C störungsfrei arbeiten. Alle Produkte arbeiten zwar bei 0 °C störungsfrei, viele fallen jedoch bei Temperaturen um – 5 °C bereits aus. Als Zielgröße wird daher die Temperatur festgelegt, bei der ein Produkt gerade noch funktioniert.

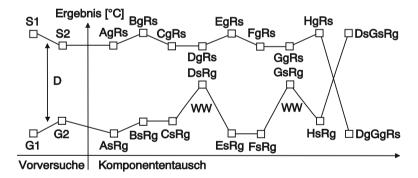
Der Zeitzähler besteht aus einer Elektronik, die Zählimpulse erzeugt, und mehreren mechanischen Teilen, die für die Anzeige benötigt werden.

Ergebnisse des Vorversuchs (in °C)

-40gutes Produkt vor: nach Zerlegen und Zusammenbau: -35schlechtes Produkt vor: 0 nach Zerlegen und Zusammenbau: -5

Voraussetzung für weiteres Vorgehen überprüfen:

D =
$$\left| \frac{(-40) + (-35)}{2} - \frac{0 + (-5)}{2} \right| = 35$$
 und
d = $\frac{|4 - 4|}{2} + \frac{|47 - 61|}{2} = 7$
 \Rightarrow D: d = 50: 7 > 5: 1.


Tabelle 5.3 zeigt die wichtigsten Einzelkomponenten und Tabelle 5.4 die Ergebnisse des eigentlichen Komponententauschs (grafische Darstellung in Bild 5-3).

Kennbuchstabe	Komponente
А	Zylinderspule mit Magnetkern
В	Zwischenradwelle
С	Ziffernwelle
D	Gehäuse
E	Kniehebel
F	Zwischenräder
G	Ziffernscheiben
Н	Elektronik

TABELLE 5.3 Liste der wichtigsten Komponenten des Zeitzählers

Versuch Nr.	Kombination der Komponenten	Ergebnis [°C]	Schlussfolgerung
1	AsRg	- 40	A unwichtig
2	AgRs	- 5	
3	BsRg	- 35	B unwichtig
4	BgRs	0	
5	CsRg	- 35	C unwichtig
6	CgRs	- 5	
7	DsRg	- 20	Wechselwirkung
8	DgRs	- 5	
9	EsRg	- 40	E unwichtig
10	EgRs	0	
11	FsRg	- 40	F unwichtig
12	FgRs	- 5	
13	GsRg	- 20	Wechselwirkung
14	GgRs	- 5	
15	HsRg	- 35	H unwichtig
16	HgRs	0	
Test	DsGsRg	0	völlige Umkehr
	DgGgRs	- 40	

TABELLE 5.4Ergebnisse des Komponententauschs am
Beispiel Zeitzähler

BILD 5-3 Grafische Darstellung der Versuchsergebnisse von Tabelle 5.4

D und G verschlechtern zwar das "Gut"-Ergebnis, verbessern aber nicht das "Schlecht"-Ergebnis, d. h. sie wirken nicht allein, sondern nur zusammen (Wechselwirkung). Dies zeigt sich auch im Testlauf, bei dem beide gleichzeitig vertauscht wurden.

Eine anschließende, genauere Analyse des Problems ergab, dass manche Gehäuse (D) einen Schwund aufweisen und manche Ziffernscheiben (G) nicht zentrisch sind. Wenn beide Abweichungen zusammentreffen (Wechselwirkung), klemmt die Mechanik bei tiefen Temperaturen. Nach einer Änderung der Ziffernscheibe war das Problem völlig beseitigt.

7.1.4 Randomisierung und Blockbildung

In Absatz 3.4.3 und 3.4.4 wurde beschrieben, wie durch Blockbildung und Randomisierung innerhalb der Blöcke eine Verfälschung der Versuchsergebnisse durch einen eventuell vorhandenen Trend oder andere systematische Unterschiede weitestgehend vermieden werden kann. Hier soll die Umsetzung von Blockbildung und Randomisierung am Beispiel von Absatz 7.1.1 gezeigt werden.

TABELLE 7.3 Vollständiger faktorieller 22-Versuch mit 4 Realisierungen mit Blockbildung und randomisierter Reihenfolge innerhalb der Blöcke:

lede Zeile stellt einen Einzelversuch dar.

- 1. Spalte: Reihenfolge, in der Einzelversuche durchgeführt werden
- 2. Spalte: Nummer der Faktorstufenkombination in Tabelle 7.1 bzw. 7.2
- 3. Spalte: Nummer der Realisierung (d. h. Block)
- 4. und 5. Spalte: Stufen der Faktoren bei jedem Einzelversuch
- 6. Spalte: Versuchsergebnisse aus Tabelle 7.2
- 7. Spalte: Postulierte Verfälschung durch einen Trend in den Ergebnissen
- 8. Spalte: Versuchsergebnisse mit Trend (Summe von 6. und 7. Spalte)

Vers. Nr.	syst. Nr.	Realisierung (Block)	Faktor A	Faktor B	Rate ohne Trend	Trend	Rate mit Trend
1	2	1	+	-	6,1	0,1	6,2
2	3	1	-	+	5,8	0,2	6,0
3	1	1	-	-	6,1	0,3	6,4
4	4	1	+	+	9,7	0,4	10,1
5	4	2	+	+	11,0	0,5	11,5
6	2	2	+	-	7,7	0,6	8,3
7	3	2	-	+	6,4	0,7	7,1
8	1	2	_	_	5,9	0,8	6,7
9	1	3	-	_	5,4	0,9	6,3
10	3	3	-	+	7,5	1,0	8,5
11	2	3	+	_	8,9	1,1	10,0
12	4	3	+	+	10,4	1,2	11,6
13	3	4	-	+	6,7	1,3	8,0
14	1	4	-	-	6,6	1,4	8,0
15	4	4	+	+	10,1	1,5	11,6
16	2	4	+	-	7,3	1,6	8,9

Die vier Faktorstufenkombinationen einer Realisierung bilden jeweils einen Block. Sie werden nacheinander durchgeführt. Randomisierung bedeutet, dass die Reihenfolge der vier Einzelversuche in jeder Realisierung zufällig (und unterschiedlich) ist. So ergibt sich z.B. die in Tabelle 7.3 dargestellte Reihenfolge der Einzelversuche. Um die Wirkung von Blockbildung und Randomisierung zu demonstrieren, wird in Tabelle 7.3 ein Trend unterstellt, der dazu führt, dass sich das Ergebnis von Einzelversuch zu Einzelversuch jeweils um 0,1 erhöht.

syst. Nr.	Α	В	AB	Ein	zelwerte R	\overline{y}_{i}	S _i ²		
1	_	_	+	6,4	6,7	6,3	8,0	6,85	0,617
2	+	_	_	6,2	8,3	10,0	8,9	8,35	2,550
3	_	+	_	6,0	7,1	8,5	8,0	7,40	1,207
4	+	+	+	10,1	11,5	11,6	11,6	11,2	0,540
Σ	5,3	3,4	2,3						4,914
Effekt	2,65	1,7	1,15					S ² =	1,228

TABELLE 7.4 Auswertung der Versuchsergebnisse mit Trend aus Tabelle 7.3 (Bezeichnungen wie in Tabelle 7.2, ohne Korrektur für den Trend)

Tabelle 7.4 zeigt die Ergebnisse aus Tabelle 7.3 in der systematischen Reihenfolge (wie in Tabelle 7.2). Die Auswertung in Tabelle 7.4 nutzt nur die Randomisierung aus. Die Blockstruktur ist nicht berücksichtigt.

Durch Randomisierung wurde vermieden, dass der Trend die Schätzwerte für die Effekte mehr als zufällig verfälscht. Allerdings hat sich der Schätzwert für die Varianz erhöht, weil die Einzelwerte in Tabelle 7.4 aufgrund des Trends von Spalte zu Spalte zunehmen. Dadurch verändert sich die Signifikanz der Effekte.

TABELLE 7.5 Auswertung der Versuchsergebnisse mit Trend aus Tabelle 7.3 (mit Korrektur für den Trend – von jedem Block [= jeder Spalte] wurde der jeweilige Mittelwert abgezogen)

syst. Nr.	Α	В	AB	korrigierte Einzelwerte				\overline{y}_{i}	S_i^2
1	_	_	+	-0,775	- 1,7	-2,8	- 1,125	- 1,6	0,785
2	+	-	-	-0,975	-0,1	0,9	-0,225	-0,1	0,594
3	_	+	-	- 1,175	- 1,3	-0,6	- 1,125	- 1,05	0,095
4	+	+	+	2,925	3,1	2,5	2,475	2,75	0,097
Σ	5,3	3,4	2,3						1,571
Effekt	2,65	1,7	1,15					S ² =	0,393

In Tabelle 7.5 wird zusätzlich die Blockbildung ausgenutzt. In jedem Block (= Spalte der Einzelwerte) tritt jede Faktorstufenkombination genau einmal auf. Daher sollten sich die Mittelwerte der Blöcke nur zufällig unterscheiden. Von den Versuchsergebnissen für jeden Block wird daher der Mittelwert dieses Blocks abgezogen, d.h. in Tabelle 7.5 sind von den Spalten der Einzelwerte in Tabelle 7.4 jeweils die Mittelwerte der Spalten (7,175; 8,40; 9,10 und 9,125) abgezogen.

Das Abziehen der Mittelwerte hat keinen Einfluss auf die Effekte, man erhält jedoch eine deutlich reduzierte Streuung, weil Unterschiede zwischen den Blöcken nicht mehr eingehen.

Durch das Abziehen der Blockmittelwerte hat man jedoch nicht nur die systematischen Unterschiede zwischen den Blöcken eliminiert, sondern auch die zufälligen Unterschiede (in Tabelle 7.2 sind die Mittelwerte der Spalten auch nicht gleich, obwohl es keinen Trend gibt). Dadurch unterschätzt man die Streuung jetzt, und eine Korrektur ist erforderlich. Bei b Blöcken reduziert sich durch das Abziehen der b Blockmittelwerte der Freiheitsgrad f um b-1 (der Gesamtmittelwert geht auch ohne Berücksichtigung der Blöcke nicht in die Rechnung ein) und man erhält statt (7.4) und (7.5):1

$$f_{korr} = f - b + 1 \tag{7.7}$$

$$s_{korr}^2 = \frac{f}{f_{korr}} \cdot s^2 \tag{7.8}$$

Für Tabelle 7.5 erhält man (b = 4 Blöcke):

$$f_{korr} = f - 4 + 1 = 12 - 3 = 9$$

$$s_{korr}^2 = \frac{12}{9} \cdot 0,393 = 0,524$$

Diese korrigierte Varianz unterscheidet sich nur zufällig vom Ergebnis ohne Trend im Anschluss an Tabelle 7.2. Durch Randomisierung konnte vermieden werden, dass der Trend die Effekte verfälscht. Aufgrund der Blockbildung konnte der Unterschied zwischen den Blöcken aus der Zufallsstreuung herausgerechnet werden (vgl. Tabelle 7.5 mit 7.4).

Tabelle 7.3 stellt somit eine ideale Reihenfolge für die Durchführung der Versuche dar. Für diese Reihenfolge müssen die Faktorstufen von Einzelversuch zu Einzelversuch geändert werden. Dies kann zu einem hohen Versuchsaufwand führen.

In der Praxis wird daher häufig der Wunsch geäußert, alle Realisierungen derselben Faktorstufenkombination (mit derselben systematischen Nummer) hintereinander durchzuführen. Dies sollte nur gemacht werden, wenn die Einstellung aller Faktorstufen genau reproduzierbar ist und wenn keine systematische Veränderung der Ergebnisse mit der Zeit (d. h. kein Trend) zu befürchten ist.

Ist die Änderung eines der Faktoren sehr aufwändig, so wird häufig der Wunsch geäußert, zunächst alle Versuche mit einer Stufe dieses Faktors durchzuführen und erst dann alle Versuche mit der anderen Stufe. Dies sollte nur im Extremfall geschehen, da dann ein Trend den Schätzwert für den Effekt dieses Faktors verfälschen kann (vgl. dazu auch Absatz 3.4.5).

Aufgabe

Die Ausbeute einer chemischen Reaktion soll erhöht werden. In einem Brainstorming wurden als vermutlich wichtigste Faktoren die Temperatur und der Druck festgelegt. Momentan sind bei der Anlage eine Temperatur von 100 °C und ein Druck von 2 bar eingestellt. Es soll untersucht werden, ob eine Erhöhung der Temperatur auf 120 °C und/oder eine Erhöhung des Drucks auf 3 bar zu einer Verbesserung der Ausbeute führt.

Software führt diese Korrekturen durch, ohne dass sich der Anwender darum kümmern muss. Ziel dieser Darstellung ist vor allem, durch eine einfache Rechnung den Hintergrund zu erläutern. Software nutzt zur Darstellung der Ergebnisse häufig Bezeichnungen aus der Varianzanalyse (siehe Kapitel 12), für das Verständnis der Vorgehensweise ist Varianzanalyse jedoch nicht erforderlich.

- a) Stellen Sie einen Versuchsplan auf. In welcher Reihenfolge würden Sie die Versuche durchführen, wenn jede Faktorstufenkombination zweimal realisiert werden soll? Diskutieren Sie Vor- und Nachteile verschiedener Alternativen.
- b) Bei der Durchführung der Versuche wurden folgende Ausbeuten gemessen. Vervollständigen Sie die Tabelle, und berechnen Sie die Effekte von Temperatur, Druck und Wechselwirkung. Welche Effekte sind signifikant? Welche Faktorstufenkombination werden Sie in Zukunft verwenden?

syst. Nr.	Temperatur	Druck	ww	Einzelausbeute [%]		Mittel \overline{y}	Varianz s ²
1	_	_		70,3	69,2	69,75	0,605
2	+	_		64,5	65,0	64,75	0,125
3	_	+		58,0	59,9	58,95	1,805
4	+	+		72,6	71,9		

Lösung

c) Vollständiger faktorieller 2²-Versuchsplan in systematischer Reihenfolge:

syst. Nr.	Temperatur	Druck		
1	100 °C	2 bar		
2	120 °C	2 bar		
3	100 °C	3 bar		
4	120 °C	3 bar		

Mögliche Reihenfolgen der Einzelversuche (Auswahl – die Beispiele sollen nur das Prinzip zeigen):

1. Randomisierte Reihenfolge der Einzelversuche mit n = 2

Vers. Nr.	syst. Nr.	Block	Temperatur	Druck	Ausbeute
1	2	1	120 °C	2 bar	
2	4	1	120 °C	3 bar	
3	1	1	100 °C	2 bar	
4	3	1	100 °C	3 bar	
5	4	2	120 °C	3 bar	
6	1	2	100 °C	2 bar	
7	3	2	100 °C	3 bar	
8	2	2	120 °C	2 bar	

Vorteile: Wegen Randomisierung keine Verfälschung der Effekte durch Trend.

Zufallsstreuung wird voll erfasst.

Unterschied zwischen Blöcken kann erkannt und eliminiert werden.

Nachteil: Häufige Änderung der Stufen, dadurch u. U. hoher Versuchsaufwand.

2. Randomisierte	Reihenfolge der	Faktorstufen	kombinationen

Vers. Nr.	syst. Nr.	Temperatur	Druck	Ausbeute
1	2	120 °C	2 bar	
2	2	120 °C	2 bar	
3	3	100 °C	3 bar	
4	3	100 °C	3 bar	
5	4	120 °C	3 bar	
6	4	120 °C	3 bar	
7	1	100 °C	2 bar	
8	1	100 °C	2 bar	

Vorteile: Wegen Randomisierung keine Verfälschung der Effekte durch Trend (zumindest bei Versuchen mit mehr Faktoren).

Geringerer Aufwand als bei Randomisierung der Einzelversuche.

Nachteile: Zufallsstreuung durch Ungenauigkeit der Einstellung der Faktorstufen wird nicht erfasst, Zufallsstreuung daher evtl. unterschätzt.

Trend kann nicht als Unterschied zwischen den Blöcken erkannt und aus Zufallsstreuung eliminiert werden.

3. Geordnete Reihenfolge der Faktorstufen für den Faktor Temperatur (Annahme: Änderung der Temperatur ist sehr aufwändig)

Vers. Nr.	syst. Nr.	Temperatur	Druck	Ausbeute
1	2	120 °C	2 bar	
2	2	120 °C	2 bar	
3	4	120 °C	3 bar	
4	4	120 °C	3 bar	
5	3	100 °C	3 bar	
6	3	100 °C	3 bar	
7	1	100 °C	2 bar	
8	1	100 °C	2 bar	

Vorteil: Geringer Aufwand – die Temperatur muss nur einmal verändert werden.

Nachteile: Zufallsstreuung durch Ungenauigkeit der Einstellung der Faktorstufen wird nicht erfasst, Zufallsstreuung daher evtl. unterschätzt.

Trend kann Effekt der Temperatur verfälschen.

Anmerkung:

Je nach Problemstellung sind auch andere Reihenfolgen denkbar. Vom statistischen Standpunkt aus betrachtet ist die 1. Reihenfolge ideal, da sie Blockbildung und Randomisierung berücksichtigt. Jede andere Reihenfolge birgt Risiken der Verfälschung, diese werden jedoch u. U. zur Reduzierung des Aufwandes bewusst in Kauf genommen.

b)

syst. Nr.	Temperatur	Druck	ww	Einzelwerte [%]		ÿ	s ²
1	-	_	+	70,3	69,2	69,75	0,605
2	+	_	_	64,5	65,0	64,75	0,125
3	-	+	-	58,0	59,9	58,95	1,805
4	+	+	+	72,6	71,9	72,25	0,245
Σ	8,3	-3,3	18,3				2,780
Effekt	4,15	-1,65	9,15			s ² =	0,695
Signifikanz	**	*	***				

$$s_{\bar{d}} = \sqrt{\frac{4}{N} \cdot s^2} = \sqrt{\frac{4}{8} \cdot 0,695} = 0,59$$

$$f = N - 4 = 8 - 4 = 4$$
.

Mit Tabelle 6.4 erhält man:

95%: $t \cdot s_{\bar{d}} = 2,776 \cdot 0,59 = 1,64$

99%: $t \cdot s_{\bar{d}} = 4,604 \cdot 0,59 = 2,71$

99,9 %: $t \cdot s_{\bar{d}} = 8,610 \cdot 0,59 = 5,08$

Da der Effekt der Wechselwirkung AB (hoch-)signifikant ist, müssen die Faktoren A und B gemeinsam betrachtet werden. Die Mittelwerte für die Faktorstufenkombinationen aus obiger Tabelle zeigen, dass die Kombination Temperatur 120 °C mit Druck 3 bar die höchste Ausbeute liefert.

7.2 k Faktoren auf je zwei Stufen

In diesem Abschnitt wird die Erweiterung auf (im Prinzip) beliebig viele Faktoren behandelt.

7.2.1 Versuchsplan

Erweitert man den Versuchsplan in Bild 7-1, so verdoppelt sich mit jedem neuen Faktor die Anzahl der Faktorstufenkombinationen. Für k Faktoren auf 2 Stufen erhält man

$$m = 2^k$$
 Faktorstufenkombinationen (7.9)

Tabelle 7.6 zeigt diese Faktorstufenkombinationen (in der allgemeinen Bezeichnung der Stufen mit + und -). Da alle möglichen Faktorstufenkombinationen enthalten sind, heißt dieser Plan vollständiger faktorieller 2^k-Versuchsplan (oder kurz: 2^k-Plan).