
Learning Heuristics to Reduce
the Overestimation of Bipartite Graph Edit

Distance Approximation

Miquel Ferrer1(B), Francesc Serratosa2, and Kaspar Riesen1

1 Institute for Information Systems, University of Applied Sciences and
Arts Northwestern Switzerland, Riggenbachstrasse 16, 4600 Olten, Switzerland

{miquel.ferrer,kaspar.riesen}@fhnw.ch
2 Departament D’Enginyeria Informàtica I Matemàtiques,

Universitat Rovira I Virgili, Avda. Päısos Catalans 26, 43007 Tarragoa, Spain
francesc.serratosa@urv.cat

Abstract. In data mining systems, which operate on complex data with
structural relationships, graphs are often used to represent the basic
objects under study. Yet, the high representational power of graphs is
also accompanied by an increased complexity of the associated algo-
rithms. Exact graph similarity or distance, for instance, can be com-
puted in exponential time only. Recently, an algorithmic framework that
allows graph dissimilarity computation in cubic time with respect to
the number of nodes has been presented. This fast computation is at
the expense, however, of generally overestimating the true distance. The
present paper introduces six different post-processing algorithms that can
be integrated in this suboptimal graph distance framework. These novel
extensions aim at improving the overall distance quality while keeping
the low computation time of the approximation. An experimental eval-
uation clearly shows that the proposed heuristics substantially reduce
the overestimation in the existing approximation framework while the
computation time remains remarkably low.

1 Introduction

One of the basic objectives in pattern recognition, data mining, and related fields
is the development of systems for the analysis or classification of objects [1,2].
These objects (or patterns) can be of any kind [3,4]. Feature vectors are one
of the most common and widely used data structure for object representation.
That is, for each object a set of relevant properties, or features, is extracted
and arranged in a vector. One of the main advantages of this representation
is that a large number of algorithms for pattern analysis and classification is
available for feature vectors [2]. However, some disadvantages arise from the
rather simple structure of feature vectors. First, vectors have to preserve the
same length regardless of the size or complexity of the object. Second, vectors
are not able to represent binary relations among different parts of the object.
As a consequence, for the representation of complex objects where relations
c© Springer International Publishing Switzerland 2015
P. Perner (Ed.): MLDM 2015, LNAI 9166, pp. 17–31, 2015.
DOI: 10.1007/978-3-319-21024-7 2

18 M. Ferrer et al.

between different subparts play an important role, graphs appear as an appealing
alternative to vectorial descriptions.

In particular, graphs can explicitly model the relations between different
parts of an object, whereas feature vectors are able to describe the object’s
properties only. Furthermore, the dimensionality of graphs, i.e., the number of
nodes and edges, can be different for every object. Due to these substantial
advantages a growing interest in graph-based object representation in machine
learning and data mining can be observed in recent years [5,6].

Evaluating the dissimilarity between graphs, commonly referred to as graph
matching, is a crucial task in many graph based classification frameworks. Exten-
sive surveys about graph matching in pattern recognition, data mining, and
related fields can be found in [7,8]. Graph edit distance [9,10] is one of the most
flexible and versatile approaches to error-tolerant graph matching. In particular,
graph edit distance is able to cope with directed and undirected, as well as with
labeled and unlabeled graphs. In addition, no constraints have to be considered
on the alphabets for node and/or edge labels. Moreover, through the concept
of cost functions, graph edit distance can be adapted and tailored to diverse
applications [11,12].

The major drawback of graph edit distance is, however, its high computa-
tional complexity that restricts its applicability to graphs of rather small size. In
fact, graph edit distance belongs to the family of quadratic assignment problems
(QAPs), which in turn belong to the class of NP-complete problems. There-
fore, exact computation of graph edit distance can be solved in exponential time
complexity only. In recent years, a number of methods addressing the high com-
putational complexity of graph edit distance have been proposed (e.g. [13,14]).
Beyond these works, an algorithmic framework based on bipartite graph match-
ing has been introduced recently [15]. The main idea behind this approach is to
convert the difficult problem of graph edit distance to a linear sum assignment
problem (LSAP). LSAPs basically constitute the problem of finding an optimal
assignment between two independent sets of entities, for which a collection of
polynomial algorithms exists [16]. In [15] the LSAP is formulated on the sets of
nodes including local edge information. The main advantage of this approach is
that it allows the approximate computation of graph edit distance in a substan-
tially faster way than traditional methods. However, it generally overestimates
the true edit distance due to some incorrectly assigned nodes. These incorrect
assignments are mainly because the framework is able to consider local rather
than global edge information only.

In order to overcome this problem and reduce the overestimation of the true
graph edit distance, a variation of the original framework [15] has been pro-
posed in [17]. Given the initial assignment found by the bipartite framework,
the main idea is to introduce a post-processing step such that the number of
incorrect assignments is decreased (which in turn reduces the overestimation).
The proposed post-processing varies the original overall node assignment by sys-
tematically swapping the target nodes of two individual node assignments. In
order to search the space of assignment variations a beam search (i.e. a tree search

Learning Heuristics to Reduce the Overestimation of Bipartite Graph 19

with pruning) is used. One of the most important observations derived from [17]
is that given an initial node assignment, one can substantially reduce the over-
estimation using this local search method. Yet, the post-processing beam search
still produces sub-optimal distances. The reason for this is that beam search
possibly prunes the optimal solution in an early stage of the search process.

Now the crucial question arises, how the space of assignment variations could
be explored such that promising parts of the search tree are not (or at least not
too early) pruned. In [17] the initial assignment is systematically varied without
using any kind of heuristic or additional information. In particular, it is not taken
into account that certain nodes and/or local assignments have greater impact
or are easier to be conducted than others, and should thus be considered first
in the beam search process. Considering more important or more evident node
assignments in an early stage of the beam search process might reduce the risk
of pruning the optimal assignment.

In this paper we propose six different heuristics that modify the mapping
order given by the original framework [15]. These heuristics can be used to
influence the order in which the assignments are eventually varied during the
beam search. With other words, prior to run the beam search strategy proposed
in [17], the order of the assignments is varied according to these heuristics.

The remainder of this paper is organized as follows. Next, in Sect. 2, the
original bipartite framework for graph edit distance approximation [15] as well
as its recent extension [17], named BP-Beam, are summarized. In Sect. 3, our
novel version of BP-Beam is described. An experimental evaluation on diverse
data sets is carried out in Sect. 4. Finally, in Sect. 5 we draw conclusions and
outline some possible tasks and extensions for future work.

2 Graph Edit Distance Computation

In this Section we start with our basic notation of graphs and then review the
concept of graph edit distance. Eventually, the approximate graph edit distance
algorithm (which builds the basis of the present work) is described.

2.1 Graph Edit Distance

A graph g is a four-tuple g = (V,E, μ, ν), where V is the finite set of nodes,
E ⊆ V × V is the set of edges, μ : V −→ LV is the node labeling function,
and ν : E −→ LE is the edge labeling function. The labels for both nodes and
edges can be given by the set of integers L = {1, 2, 3, . . .}, the vector space
L = R

n, a set of symbolic labels L = {α, β, γ, . . .}, or a combination of various
label alphabets from different domains. Unlabeled graphs are a special case by
assigning the same (empty) label ∅ to all nodes and edges, i.e. LV = LE = {∅}.

Given two graphs, g1 = (V1, E1, μ1, ν1) and g2 = (V2, E2, μ2, ν2), the basic
idea of graph edit distance is to transform g1 into g2 using edit operations,
namely, insertions, deletions, and substitutions of both nodes and edges. The
substitution of two nodes u and v is denoted by (u → v), the deletion of node

20 M. Ferrer et al.

u by (u → ε), and the insertion of node v by (ε → v)1. A sequence of edit
operations e1, . . . , ek that transform g1 completely into g2 is called an edit path
between g1 and g2.

To find the most suitable edit path out of all possible edit paths between
two graphs, a cost measuring the strength of the corresponding operation is
commonly introduced (if applicable, one can also merely count the number of
edit operations, i.e., the cost for every edit operation amounts to 1). The edit
distance between two graphs g1 and g2 is then defined by the minimum cost edit
path between them. Exact computation of graph edit distance is usually carried
out by means of a tree search algorithm (e.g. A* [18]) which explores the space
of all possible mappings of the nodes and edges of the first graph to the nodes
and edges of the second graph.

2.2 Bipartite Graph Edit Distance Approximation

The computational complexity of exact graph edit distance is exponential in
the number of nodes of the involved graphs. That is considering n nodes in g1
and m nodes in g2, the set of all possible edit paths contains O(nm) solutions
to be explored. This means that for large graphs the computation of edit dis-
tance is intractable. In order to reduce its computational complexity, in [15],
the graph edit distance problem is transformed into a linear sum assignment
problem (LSAP).

To this end, based on the node sets V1 = {u1, . . . , un} and V2 = {v1, . . . , vm}
of g1 and g2, respectively, a cost matrix C is first established as follows:

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 · · · c1m c1ε ∞ · · · ∞
c21 c22 · · · c2m ∞ c2ε · · · ∞
...

...
. . .

...
...

...
. . .

...
cn1 cn2 · · · cnm ∞ ∞ · · · cnε

cε1 ∞ · · · ∞ 0 0 · · · 0
∞ cε2 · · · ∞ 0 0 · · · 0
...

...
. . . ∞ ...

...
. . .

...
∞ ∞ · · · cεm 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Entry cij denotes the cost of a node substitution (ui → vj), ciε denotes the
cost of a node deletion (ui → ε), and cεj denotes the cost of a node insertion
(ε → vj). The left upper corner of the cost matrix represents the costs of all
possible node substitutions, the diagonal of the right upper corner the costs of
all possible node deletions, and the diagonal of the bottom left corner the costs
of all possible node insertions. In every entry cij ∈ C, not only the cost of the
node operation, but also the minimum sum of edge edit operation costs implied
by the corresponding node operation is taken into account. That is, the matching
cost of the local edge structure is encoded in the individual entries cij ∈ C.

1 Similar notation is used for edges.

Learning Heuristics to Reduce the Overestimation of Bipartite Graph 21

Note that in [19] another definition of matrix C = (cij) has been proposed.
The major idea of [19] is to define a smaller square cost matrix in combination
with some (weak) conditions on the cost function. This particular redefinition
of C is able to further speed up the assignment process while not affecting the
distance accuracy. In the present paper we make use of the original cost matrix
definition without any constraints on the cost function.

In the second step of [15], an assignment algorithm is applied to the square
cost matrix C = (cij) in order to find the minimum cost assignment of the nodes
(and their local edge structure) of g1 to the nodes (and their local edge structure)
of g2. Note that this task exactly corresponds to an instance of an LSAP and
can thus be optimally solved in polynomial time by several algorithms [16].

Any of the LSAP algorithms will return a permutation (ϕ1, . . . , ϕn+m) of the
integers (1, 2, . . . , (n+m)), which minimizes the overall mapping cost

∑(n+m)
i=1 ciϕi

.
This permutation corresponds to the mapping

ψ = {u1 → vϕ1, u2 → vϕ2, . . . , um+n → vϕm+n
}

of the nodes of g1 to the nodes of g2. Note that ψ does not only include node
substitutions (ui → vj), but also deletions and insertions (ui → ε), (ε → vj) and
thus perfectly reflects the definition of graph edit distance (substitutions of the
form (ε → ε) can be dismissed, of course). Hence, mapping ψ can be interpreted
as partial edit path between g1 and g2, which considers operations on nodes only.

In the third step of [15], the partial edit path ψ between g1 and g2 is completed
with respect to the edges. This can be accomplished since edge edit operations
are uniquely implied by the adjacent node operations. That is, whether an edge
is substituted, deleted, or inserted, depends on the edit operations performed on
its adjacent nodes. The total cost of the completed edit path between graphs g1
and g2 is finally returned as approximate graph edit distance d〈ψ〉(g1, g2). We
refer to this graph edit distance approximation algorithm as BP(g1, g2) from
now on2. The three major steps of BP are summarized in Algorithm 1.

Algorithm 1. BP(g1,g2)
1: Build cost matrix C = (cij) according to the input graphs g1 and g2
2: Compute optimal node assignment ψ = {u1 → vϕ1, . . . , um+n → vϕm+n

} on C using any

LSAP solver algorithm

3: return Complete edit path according to ψ and d〈ψ〉(g1, g2)

Note that the edit path corresponding to d〈ψ〉(g1, g2) considers the edge struc-
ture of g1 and g2 in a global and consistent way while the optimal node mapping
ψ is able to consider the structural information in an isolated way only (single
nodes and their adjacent edges). This is due to the fact that during the opti-
mization process of the specific LSAP no information about neighboring node

2 BP stands for Bipartite. The assignment problem can also be formulated as finding
a matching in a complete bipartite graph and is therefore also referred to as bipartite
graph matching problem.

22 M. Ferrer et al.

assignments is available. Hence, in comparison with optimal search methods for
graph edit distance, this algorithmic framework might cause additional edge
operations in the third step, which would not be necessary in a globally optimal
graph matching. Hence, the distances found by this specific framework are –
in the best case – equal to, or – in general – larger than the exact graph edit
distance. Yet, the proposed reduction of graph edit distance to an LSAP allows
the approximate graph edit distance computation in polynomial time.

2.3 Beam Search Graph Edit Distance Approximation

Several experimental evaluations indicate that the suboptimality of BP, i.e. the
overestimation of the true edit distance, is very often due to a few incorrectly
assigned nodes in ψ with respect to the optimal edit path [15]. An extension of
BP presented in [17] ties in at this observation. In particular, the node mapping
ψ is used as a starting point for a subsequent search in order to improve the
quality of the distance approximation.

Algorithm 2 gives an overview of this process (named BP-Beam from now
on). First, BP is executed using graphs g1 and g2 as input. As a result, both the
approximate distance d〈ψ〉(g1, g2) and the node mapping ψ are available. In a sec-
ond step, the swapping procedure BeamSwap (Algorithm 3) is executed. Beam-
Swap takes the input graphs g1 and g2, distance d〈ψ〉, mapping ψ, and a meta-
parameter b as parameters. The swapping procedure of Algorithm 3 basically
varies mapping ψ by swapping the target nodes vϕi

and vϕj
of two node assign-

ments (ui → vϕi
) ∈ ψ and (uj → vϕj

) ∈ ψ, resulting in two new assignments
(ui → vϕj

) and (uj → vϕi
). For each swap it is verified whether (and to what

extent) the derived distance approximation stagnates, increases or decreases.
Algorithm 3 (BeamSwap) systematically processes the space of possible swap-

pings by means of a tree search. The tree nodes in the search procedure corre-
spond to triples (ψ, q, d〈ψ〉), where ψ is a certain node mapping, q denotes the
depth of the tree node in the search tree and d〈ψ〉 is the approximate distance
value corresponding to ψ. The root node of the search tree refers to the opti-
mal node mapping ψ found by BP. Hence, the root node (with depth = 0) is
given by the triple (ψ, 0, d〈ψ〉). Subsequent tree nodes (ψ′, q, d〈ψ′〉) with depth
q = 1, . . . , (m + n) contain node mappings ψ′ where the individual node assign-
ment (uq → vϕq

) is swapped with any other node assignment of ψ.

Algorithm 2. BP-Beam(g1, g2, b)
1: d〈ψ〉(g1, g2) = BP (g1, g2)

2: dBeam(g1, g2) = BeamSwap(g1, g2, d〈ψ〉, ψ, b)

3: return dBeam(g1, g2)

As usual in tree search based methods, a set open is employed that holds
all of the unprocessed tree nodes. Initially, open holds the root node (ψ, 0, d〈ψ〉)
only. The tree nodes in open are kept sorted in ascending order according to
their depth in the search tree (known as breadth-first search). As a second order
criterion the approximate edit distance d〈ψ〉 is used. As long as open is not
empty, we retrieve (and remove) the triple (ψ, q, d〈ψ〉) at the first position in

Learning Heuristics to Reduce the Overestimation of Bipartite Graph 23

Algorithm 3. BeamSwap(g1, g2, d〈ψ〉, ψ, b)
1: dbest = d〈ψ〉
2: Initialize open = {(ψ, 0, d〈ψ〉)}
3: while open is not empty do
4: Remove first tree node in open: (ψ, q, d〈ψ〉)
5: for j = (q + 1), . . . , (m + n) do
6: ψ′ = ψ \ {uq+1 → vϕq+1 , uj → vϕj

} ∪ {uq+1 → vϕj
, uj → vϕq+1}

7: Derive approximate edit distance d〈ψ′〉(g1, g2)

8: open = open ∪ {(ψ′, q + 1, d〈ψ′〉)}
9: if d〈ψ′〉(g1, g2) < dbest then

10: dbest = d〈ψ′〉(g1, g2)

11: end if
12: end for
13: while size of open > b do
14: Remove tree node with highest approximation value d〈ψ〉 from open

15: end while
16: end while

17: return dbest

open, generate the successors of this specific tree node and add them to open.
To this end all pairs of node assignments (uq+1 → vϕq+1) and (uj → vϕj

)
with j = (q + 1), . . . , (n + m) are individually swapped resulting in two new
assignments (uq+1 → vϕj

) and (uj → vϕq+1). In order to derive node mapping
ψ′ from ψ, the original node assignment pair is removed from ψ and the swapped
node assignment is added to ψ′. Since index j starts at (q+1) we also allow that
a certain assignment (uq+1 → vϕq+1) remains unaltered at depth (q + 1) in the
search tree.

Note that the search space of all possible permutations of ψ contains (n+m)!
possibilities, making an exhaustive search (starting with ψ) both unreasonable
and intractable. Therefore, only the b assignments with the lowest approximate
distance values are kept in open at all time (known as beam search). Note that
parameter b can be used as trade-off parameter between run time and approxi-
mation quality. That is, it can be expected that larger values of b lead to both
better approximations and increased run time (and vice versa).

Since every tree node in our search procedure corresponds to a complete solu-
tion and the cost of these solutions neither monotonically decrease nor increase
with growing depth in the search tree, we need to buffer the best possible distance
approximation found during the tree search in dbest (which is finally returned by
BeamSwap to the main procedure BP-Beam).

As stated before, given a mapping ψ from BP, the derived edit distance
d〈ψ〉 overestimates the true edit distance in general. Hence, the objective of
any post-processing should be to find a variation ψ′ of the original mapping
ψ such that d〈ψ′〉 < d〈ψ〉. Note that the distance dbest returned by BeamSwap
(Algorithm 3) is smaller than, or equal to, the original approximation d〈ψ〉 (since
d〈ψ〉 is initially taken as best distance approximation). Hence, the distance dBeam

(finally returned by BP-Beam (Algorithm 2))is in any case smaller than, or equal
to d〈ψ〉.

24 M. Ferrer et al.

3 Sorted BP-Beam

Note that the successors of tree node (ψ, q, d〈ψ〉) are generated in an arbitrary yet
fixed order in BP-Beam (or rather in its subprocess BeamSwap). In particular,
the assignments of the original node mapping ψ are processed according to the
depth q of the current search tree node. That is, at depth q the assignment (uq →
vϕq

) is processed and swapped with other assignments. Note that beam search
prunes quite large parts of the tree during the search process. Hence, the fixed
order processing, which does not take any information about the individual node
assignments into account, is a clear drawback of the procedure described in [17].

Clearly, it would be highly favorable to process important or evident node
assignments as early as possible in the tree search. To this end, we propose six
different sorting strategies that modify the order of mapping ψ obtained from BP
and feed this reordered mapping into BeamSwap. Using these sorting strategies
we aim at verifying whether we can learn about the strengths and weaknesses of
a given assignment returned by BP before the post processing is carried out. In
particular, we want to distinguish assignments from ψ that are most probably
incorrect from assignments from ψ that are correct with a high probability (and
should thus be considered early in the post processing step).

Algorithm 4. SBP-Beam(g1,g2,b)
1: d〈ψ〉(g1, g2) = BP (g1, g2)

2: ψ′ = SortMatching(ψ)
3: dSortedBeam(g1, g2) = BeamSwap(g1, g2, d〈ψ〉, ψ′, b)

4: return dSortedBeam(g1, g2)

The proposed algorithm, referred to as SBP-Beam (the initial S stands for
Sorted), is given in Algorithm 4. Note that SBP-Beam is a slightly modified
version of BP-Beam. That is, the sole difference to BP-Beam is that the original
mapping ψ (returned by BP) is reordered according to a specific sorting strategy
(line 2). Eventually, BeamSwap is called using mapping ψ′ (rather than ψ) as
parameter. Similar to dBeam, dSortedBeam is always lower than, or equal to,
d〈ψ〉(g1, g2), and can thus be securely returned. Note that the reordering of nodes
does not influence the corresponding edit distances and thus d〈ψ〉 = d〈ψ′〉.

3.1 Sorting Strategies

On line 2 of Algorithm4 (SBP-Beam), the original mapping ψ returned by BP
is altered by reordering the individual node assignments according to a certain
criterion. Note that the resulting mapping ψ′ contains the same node assignments
as ψ but in a different order. That is, the order of the assignments is varied but
the individual assignments are not modified. Note that this differs from the
swapping procedure given in Algorithm3, where the original node assignments
in ψ are modified, changing the target nodes of two individual assignments.

In the following, we propose six different strategies to reorder the original
mapping ψ. The overall aim of these sorting strategies is to put more evident
assignments (i.e. those to be supposed that are correct) at the beginning of

Learning Heuristics to Reduce the Overestimation of Bipartite Graph 25

ψ′ such that they are processed first in the tree search. More formally, for each
strategy we first give a weight (or rank) to each source node ui of the assignments
in mapping ψ. Then, the order of the assignments (ui → vϕi) ∈ ψ′ is set either
in ascending or descending order according to the corresponding weight of ui.

Confident: The source nodes ui of the assignments (ui → vϕi) ∈ ψ are weighted
according to ciϕi

. That is, for a given assignment (ui → vϕi), the correspond-
ing value ciϕi

in the cost matrix C is assigned to ui as a weight. The assign-
ments of the new mapping ψ′ are then sorted in ascending order according
to the weights of ui. Thus, with this sorting strategy assignments with low
costs, i.e. assignments which are somehow evident, appear first in ψ′.

Unique: The source nodes ui of the assignments (ui → vϕi) ∈ ψ are given a
weight according to the following function

max
∀j=1,...,m

cij − ciϕi

That is, the weight given to a certain source node ui corresponds to the max-
imum difference between the cost ciϕi

of the actual assignment (ui → vϕi)
and the cost of a possible alternative assignment for ui. Note that this differ-
ence can be negative, which means that the current assignment (ui → vϕi)
∈ ψ is rather suboptimal (since there is at least one other assignment for ui

with lower cost than ciϕi
). Assignments in ψ′ are sorted in descending order

with respect to this weighting criteria. That is, assignments with a higher
degree of confidence are processed first.

Divergent: The aim of this sorting strategy is to prioritize nodes ui that have a
high divergence among all possible node assignment costs. That is, for each
row i we sum up the absolute values of cost differences between all pairs of
assignments

m−1∑
j=1

m∑
k=j+1

|cij − cik|

Rows with a high divergence correspond to local assignments that are some-
how easier to be conducted than rows with low sums. Hence we sort assign-
ments (ui → vϕi) in descending order with respect to the corresponding
divergence in row i.

Leader: With this strategy, nodes ui are weighted according to the maximum
difference between the minimum cost assignment of node ui and the second
minimum cost assignment of ui. Assume we have min1i = min

j=1,...,m
cij and

min2i = min
j=1,...,m,j 	=k

cij (k refers to the column index of the minimum cost

entry min1i). The weight for node ui amounts to (the denominator normal-
izes the weight)

min1i − min2i

min2i

26 M. Ferrer et al.

The higher this difference, the easier is the local assignment to be conducted.
Hence, assignments (ui → vϕi) are sorted in descending order with respect
to the weight of ui.

Interval: First we compute the interval for each row i and each column j of
the upper left corner of C, denoted as δri

and δcj
respectively. Given a row i

(or column j), the interval is defined as the absolute difference between the
maximum and the minimum entry in row i (or column j). We also compute
the mean of all row and column intervals, denoted by δr and δc respectively.
The weight assigned to a given assignment (ui → vϕi) is then
– 1, if δri

> δr and δcϕi
> δc

– 0, if δri
< δr and δcϕi

< δc

– 0.5, otherwise
That is, if the intervals of both row and column are greater than the corre-
sponding means, the weight is 1. Likewise, if both intervals are lower than
the mean intervals, the weight is 0. For any other case the weight is 0.5.

If the intervals of row i and column ϕi are larger than the mean inter-
vals, the row and column of the assignment (ui → vϕi) are in general easier
to handle than others. On the other hand, if the row and column inter-
vals of a certain assignment are below the corresponding mean intervals, the
individual values in the row and column are close to each other making an
assignment rather difficult. Hence, we reorder the assignments (ui → vϕi) of
the original mapping ψ in decreasing order according to these weights.

Deviation: For each row i and each column j of the left upper corner of the
cost matrix C we compute the mean θri

and θcj
and the deviation σri

and
σcj

. Then, for each assignment (ui → vϕi
) ∈ ψ we compute its corresponding

weight according to the following rule:
– Initially, the weight is 0.
– If ciϕi

< θri
−σri

we add 0.25 to the weight and compute the total number
p of assignments in row i that also fulfill this condition. Note that p is
always greater than, or equal to, 1 (p = 1 when ciϕi

is the sole cost that
fulfills the condition in row i). We add 0.5/p to the weight.

– Repeat the previous step for column j = ϕi using θcϕi
and σcϕi

.
Given an assignment (ui → vϕi) ∈ ψ with cost ciϕi

that is lower than the
mean minus the deviation, we assume the assignment cost is low enough to
be considered as evident (and thus we add 0.25 to the weight). The weight
increases if in the corresponding row only few (or no) other evident assign-
ments are available (this is why we add 0.5/p to the the weight, being p the
number of evident assignments). The same applies for the columns. So at the
end, assignments with small weights correspond to rather difficult assign-
ments, while assignments with higher weights refer to assignments which
are more evident than others. Hence, we reorder the original mapping ψ in
decreasing order according to this weight.

Learning Heuristics to Reduce the Overestimation of Bipartite Graph 27

4 Experimental Evaluation

The goal of the experimental evaluation is to verify whether the proposed exten-
sion SBP-Beam is able to reduce the overestimation of graph edit distance
approximation returned by BP and in particular BP-Beam and how the different
sorting strategies affect the computation time. Three data sets from the IAM
graph database repository involving molecular compounds (AIDS), fingerprint
images (Fingerprint), and symbols from architectural and electronic drawings
(GREC) are used to carry out this experimental evaluation. For details about
these data sets we refer to [20]. For all data sets, small subsets of 100 graphs are
randomly selected on which 10,000 pairwise graph edit distance computations
are performed. Three algorithms will be used as reference systems, namely A∗

which computes the true edit distance, BP as it is the starting point of our
extension, and BP-Beam (the system to be further improved).

In a first experiment we aim at researching whether there is a predominant
sorting strategy that generally leads to better approximations than the others. To
this end we run SBP-Beam six times, each using an individual sorting strategy.
Parameter b is set to 5 for these and the following experiments.

Table 1 shows the mean relative overestimation φo for each dataset and for
each sorting strategy. The mean relative overestimation of a certain approxima-
tion is computed as the relative difference to the sum of exact distances returned
by A∗. The relative overestimation of A∗ is therefore zero and the value of φo
for BP is taken as reference value and corresponds to 100 % (not shown in the
table). In addition, given a dataset we rank each sorting strategy in ascending
order according to the amount of relative overestimation (in brackets after φo).
Thus, lower ranks mean lower overestimations and therefore better results. The
last row of Table 1 shows the aggregation of ranks for a given sorting strategy,
which is a measure of how a particular sorting strategy globally behaves. Table 1
also shows the mean computation time φt of every sorting strategy.

Major observations can be made in Table 1. First, there are substantial dif-
ferences in the overestimation among all sorting strategies for a given dataset.

Table 1. The mean relative overestimation of the exact distance (φo) in % together
with rank (1-6) of the sorting strategies (in brackets), and the mean computation time
φt. Last row sums all the ranks for a given sorting strategy.

Confident Unique Divergent Leader Interval Deviation

AIDS φo [%] 15.81 (3) 15.91 (4) 14.03 (1) 15.38 (2) 18.31 (5) 20.94 (6)

φt [ms] 1.82 1.83 1.80 1.81 1.80 1.82

Fingerprint φo [%] 11.99 (1) 18.06 (6) 16.29 (5) 14.44 (4) 13.64 (3) 13.23 (2)

φt [ms] 1.48 1.50 1.49 1.49 1.50 1.50

GREC φo [%] 20.57 (4) 15.74 (2) 16.67 (3) 21.41 (5) 13.73 (1) 21.65 (6)

φt [ms] 2.63 2.63 2.63 2.61 2.65 2.58

Sum

of ranks

8 12 9 11 9 14

28 M. Ferrer et al.

For instance, on the AIDS dataset, 5 % of difference between the minimum and
the maximum overestimation can be observed (on GREC and Fingerprint the
differences amount to about 8 % and 6 %, respectively). This variability indicates
that not all of the sorting strategies are able to reduce the overestimation with
the same degree. Second, focusing on the sum of ranks we observe that there is
not a clear winner among the six strategies. That is, we cannot say that there is
a sorting strategy that clearly outperforms the others in general. However, the
sum of ranks suggests there are two different clusters, one composed by Confi-
dent, Divergent and Interval with a sum of ranks between 8 and 9, and a second
composed by the rest of the sorting strategies with (slightly) higher sums. Third,
regarding the computation time of the various sorting strategies almost no dif-
ferences can be observed. That is, all sorting strategies show approximately the
same computation time.

In a second experiment, we use the ranks obtained in the previous experiment
to measure the impact on the overestimation by running SBP-Beam with sub-
sets of sorting strategies. To this end, the following experimental setup is defined.
First, for each dataset we run SBP-Beam using the sorting strategy with rank 1
(referenced to as SBP-Beam(1)). That is, for AIDS SBP-Beam(1) employs the
Divergent strategy, while Confident and Interval are used for Fingerprint and
GREC, respectively. Then SBP-Beam is carried out on every dataset using the
two best sorting strategies, and return the minimum distance obtained by both
algorithms (referred to as SBP-Beam(2)). We continue adding sorting strate-
gies in ascending order with respect to their rank until all six strategies are
employed at once. Table 2 shows the mean relative overestimation φo and the
mean computation time φt for this evaluation.

Regarding the overestimation φo we observe a substantial improvement of the
distance quality using BP-Beam rather than BP. For instance, on the AIDS data
the overestimation is reduced by 85 % (similar results are obtained on the other
data sets). But more important is the comparison between BP-Beam and SBP-
Beam(1). Note that SBP-Beam(1) is identical to BP-Beam but uses reordered

Table 2. The mean relative overestimation of the exact distance (φo) in %, and the
mean run time for one matcing (φt) in ms. The beam size b for BP-Beam and SBP-
Beam is set to 5.

AIDS Fingerprint GREC

Algorithm φo φt φo φt φo φt

A∗ 0.00 25750.22 0.00 2535.42 0.00 7770.81

BP 100.00 0.28 100.00 0.35 100.00 0.27

BP-Beam 15.09 1.82 19.64 1.45 16.98 2.65

SBP-Beam(1) 14.03 1.81 11.99 1.49 13.73 2.64

SBP-Beam(2) 9.83 3.34 8.81 2.61 9.14 5.01

SBP-Beam(3) 8.18 4.85 5.01 3.73 7.33 7.37

SBP-Beam(4) 7.28 6.38 4.42 4.84 6.89 9.74

SBP-Beam(5) 6.06 7.86 3.81 5.95 6.55 12.05

SBP-Beam(6) 5.75 9.41 3.57 7.09 6.25 14.36

Learning Heuristics to Reduce the Overestimation of Bipartite Graph 29

mappings ψ′ according to the best individual sorting strategy. Thus, by com-
paring these two algorithms we can assess the true impact of the reordering of
mapping ψ. SBP-Beam(1) always obtains lower overestimations than BP-Beam.
The improvement on the overestimation ranges from around 1 % in the case of
AIDS dataset to near 8 % in the case of the Fingerprint dataset, which refers
to a substantial improvement of the distance quality. This result confirms the
hypothesis that the order of the mapping ψ being fed into BeamSwap is impor-
tant and that further improvements of the distance quality can be achieved by
means of intelligently ordered assignments in ψ.

Moreover, we observe further substantial reductions of the overestimation
as we increase the number of sorting strategies. Note that the overestimation
monotonically decreases as the number of sorting strategies is increased, reaching
very low overestimations with SBP-Beam(6) (between 3.57 % and 6.25 % only).
This means that we are able to obtain very accurate mappings (with very few
incorrect node assignments) that lead to results very close to the exact distance
with our novel procedure.

These substantial reductions of the overestimation from BP to BP-Beam
and SBP-Beam(6) can also be seen in Fig. 1 where for each pair of graphs in the
Fingerprint dataset, the exact distance (x-axis) is plotted against the distance
obtained by an approximation algorithm (y-axis). In fact, for SBP-Beam(6) the
line-like scatter plot along the diagonal suggests that the approximation is in
almost every case equal to the to the optimal distance.

Regarding the computation time φt we can report that BP provides the
lowest computation time on all data sets (approximately 0.3ms per matching on
all data sets). BP-Beam increases the computation time to approximately 2ms
per matching. Note that there is no substantial difference in computation time
between BP-Beam and SBP-Beam(1) (which differ only in the reordering of the
individual node assignments). As expected, the run time of SBP-Beam linearly
grows with the number of sorting strategies. For instance, on the AIDS data set
every additional search strategy increases the run time by approximately 1.5ms
(on the other data sets a similar run time increase can be observed). However, it

(a) BP (b) BP-Beam (c) SBP-Beam(6)

Fig. 1. Exact (x-axis) vs. approximate (y-axis) edit distance on the Fingerprint dataset
computed with (a) BP, (b) BP-Beam, (c) SBP-Beam(6).

30 M. Ferrer et al.

is important to remark that in any case the computation time remains far below
the one provided by A∗.

5 Conclusions and Future Work

In recent years a bipartite matching framework for approximating graph edit
distance has been presented. In its original version this algorithm suffers from a
high overestimation of the computed distance with respect to the true edit dis-
tance. Several post-processing approaches, based on node assignment variations,
have been presented in order to reduce this overestimation. In this paper, we pro-
pose six different heuristics to sort the order of the individual node assignments
before the mapping is post-processed. These novel strategies sort the individual
node assignments with respect to a weight that measures the confidence of the
assignments. The overall aim of the paper is to empirically demonstrate that the
order in which the assignments are explored has a great impact on the result-
ing distance quality. The experimental evaluation on three different databases
supports this hypothesis. Despite the results show that there is not a sorting
strategy that clearly outperforms the others, we see that all of them are able
to reduce the overestimation with respect to the unsorted version. Though the
run times are increased when compared to our former framework (as expected),
they are still far below the run times of the exact algorithm.

These results encourage pursuing several research lines in future work. First,
in order to verify whether processing non-evident assignments first could also be
beneficial, the proposed strategies can be used sorting in reverse order. Second,
new and more elaborated sorting strategies based on complex learning algorithms
can be developed. Finally, modified versions of BeamSwap using different criteria
to sort and process the tree nodes could be tested.

Acknowledgements. This work has been supported by the Swiss National Science
Foundation (SNSF) project Nr. 200021 153249, the Hasler Foundation Switzerland,
and by the Spanish CICYT project DPI2013–42458–P and TIN2013–47245–C2–2–R.

References

1. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag New York Inc, Secaucus (2006)

2. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-
Interscience, New York (2000)

3. Silva, A., Antunes, C.: Finding multi-dimensional patterns in healthcare. In:
Perner, P. (ed.) MLDM 2014. LNCS, vol. 8556, pp. 361–375. Springer, Heidelberg
(2014)

4. Dittakan, K., Coenen, F., Christley, R.: Satellite image mining for census collection:
a comparative study with respect to the ethiopian hinterland. In: Perner, P. (ed.)
MLDM 2013. LNCS, vol. 7988, pp. 260–274. Springer, Heidelberg (2013)

5. Schenker, A., Bunke, H., Last, M., Kandel, A.: Graph-Theoretic Techniques for
Web Content Mining. World Scientific, Singapore (2005)

Learning Heuristics to Reduce the Overestimation of Bipartite Graph 31

6. Cook, D.J., Holder, L.B.: Mining Graph Data. John Wiley and Sons, New York
(2006)

7. Foggia, P., Percannella, G., Vento, M.: Graph matching and learning in pattern
recognition in the last 10 years. IJPRAI 28(1), 1450001 (2014)

8. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in
pattern recognition. IJPRAI 18(3), 265–298 (2004)

9. Sanfeliu, A., Fu, K.-S.: A distance measure between attributed relational graphs for
pattern recognition. IEEE Trans. Syst. Man Cybern. SMC-13 (3), 353–362 (1983)

10. Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recogni-
tion. Pattern Recogn. Lett. 1(4), 245–253 (1983)

11. Neuhaus, M., Bunke, H.: A graph matching based approach to fingerprint clas-
sification using directional variance. In: Kanade, T., Jain, A., Ratha, N.K. (eds.)
AVBPA 2005. LNCS, vol. 3546, pp. 191–200. Springer, Heidelberg (2005)

12. Robles-Kelly, A., Hancock, E.R.: Graph edit distance from spectral seriation. IEEE
Trans. Pattern Anal. Mach. Intell. 27(3), 365–378 (2005)

13. Sorlin, S., Solnon, C.: Reactive tabu search for measuring graph similarity. In:
Brun, L., Vento, M. (eds.) GbRPR 2005. LNCS, vol. 3434, pp. 172–182. Springer,
Heidelberg (2005)

14. Justice, D., Hero, A.O.: A binary linear programming formulation of the graph
edit distance. IEEE Trans. PAMI 28(8), 1200–1214 (2006)

15. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of
bipartite graph matching. Image Vis. Comput. 27(7), 950–959 (2009)

16. Burkard, R.E., Dell’Amico, M., Martello, S.: Assignment problems. SIAM 157(1),
183–190 (2009)

17. Riesen, K., Fischer, A., Bunke, H.: Combining bipartite graph matching and beam
search for graph edit distance approximation. In: El Gayar, N., Schwenker, F.,
Suen, C. (eds.) ANNPR 2014. LNCS, vol. 8774, pp. 117–128. Springer, Heidelberg
(2014)

18. Nilsson, N.J., Hart, P.E., Raphael, B.: A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. SSC–4(2), 100–107
(1968)

19. Serratosa, F.: Fast computation of bipartite graph matching. Pattern Recogn. Lett.
45, 244–250 (2014)

20. Riesen, K., Bunke, H.: IAM graph database repository for graph based pat-
tern recognition and machine learning. In: da Vitoria Lobo, N., Kasparis, T.,
Roli, F., Kwok, J.T.-Y., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M.
(eds.) SSPR/SPR. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008)

http://www.springer.com/978-3-319-21023-0

	Learning Heuristics to Reduce the Overestimation of Bipartite Graph Edit Distance Approximation
	1 Introduction
	2 Graph Edit Distance Computation
	2.1 Graph Edit Distance
	2.2 Bipartite Graph Edit Distance Approximation
	2.3 Beam Search Graph Edit Distance Approximation

	3 Sorted BP-Beam
	3.1 Sorting Strategies

	4 Experimental Evaluation
	5 Conclusions and Future Work
	References

