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Abstract. It is well-known that concepts and methods of logic (more
specifically constructive logic) occupy a central place in computer sci-
ence. While it is quite common to identify ‘logic’ with ‘first-order logic’
(FOL), a careful examination of the various applications of logic in com-
puter science reveals that FOL is insufficient for most of them, and that
its most crucial shortcoming is its inability to provide inductive defin-
itions in general, and the notion of the transitive closure in particular.
The minimal logic that can serve for this goal is ancestral logic (AL).

In this paper we define a constructive version of AL, pure intu-
itionistic ancestral logic (iAL), extending pure intuitionistic first-order
logic (iFOL). This logic is a dependently typed abstract programming
language with computational functionality beyond iFOL, given by its
realizer for the transitive closure operator TC, which corresponds to
recursive programs. We derive this operator from the natural type the-
oretic definition of TC using intersection type. We show that provable
formulas in iAL are uniformly realizable, thus iAL is sound with respect
to constructive type theory. We further outline how iAL can serve as a
natural framework for reasoning about programs.

1 Introduction

In the famous paper with the telling name “On the Unusual Effectiveness of
Logic in Computer Science” [15], it is forcefully noted that “at present concepts
and methods of logic occupy a central place in computer science, insomuch that
logic has been called ‘the calculus of computer science’ [19]”. To demonstrate
this claim, this paper then studies an impressive (yet explicitly non-exhaustive)
list of applications of logics in different areas of computer science: descriptive
complexity, database query languages, applications of constructive type theories,
reasoning about knowledge, program verification and model checking.

But what logic has such effectiveness? Pure first-order logic (FOL) is one
of the most widely studied and taught systems of logic1. It is the base logic in
which two of the most studied mathematical theories, Peano Arithmetic (PA)
1 We use the term pure to indicate that equality, constants, and functions are not

built-in primitives.
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and Zermelo/Fraenkel set theory with choice (ZFC), are presented. However,
a simple check of the above list of applications from [15] reveals that FOL is
sufficient for none of them. All these examples indicate that the crucial short-
coming of FOL is its inability to provide inductive definitions in general, and
the notion of the transitive closure of a given binary relation in particular. The
minimal logic that can serve for this goal is ancestral logic (AL) which is a well
known extension of FOL, obtained by adding to it a transitive closure operator
(see, e.g., [4,9,17])2. Its expressive power exceeds that of FOL, since in AL one
can give a categorical characterization of concepts such as the natural numbers
and the concept of finiteness, which are not expressible in FOL (hence it is not
compact). In [4] it was argued that AL provides a suitable framework for the for-
malization of mathematics as it is appropriate for defining fundamental abstract
formulations of transitive relations that occur commonly in basic mathematics.
AL is also fundamental in computer science as reasoning effectively about pro-
grams clearly requires having some version of a transitive closure operator in
order to describe such notions as the set of nodes reachable from a program’s
variables.

The intuitionistic versions of the well-known systems mentioned above, intu-
itionistic first-order logic (iFOL), Heyting arithmetic (HA), intuitionistic ZF
(IZF ) [13] and the related CZF [2], are also well studied. These intuitionis-
tic logics are important in constructive mathematics, linguistics, philosophy and
especially in computer science. Computer scientists exploit the fact that intu-
itionistic theories can serve as programming languages [6,21] and that iFOL can
be read as an abstract programming language with dependent types. Since we
are interested in extensions of intuitionistic first-order logic that clearly reveal
the duality between logic and programming, and can capture general logical prin-
ciples that have applicable computational content, it seemed natural to develop
an intuitionistic version of AL – iAL, as a refinement of AL and an extension of
iFOL. We believe that rather than iFOL, iAL should be taken as the basic logic
which underlies most applications of logic to Computer Science. Many proofs in
iAL turn out to have interesting computational content that exceeds that of
iFOL in ways of interest to computer scientists. We prove that iAL is sound
with respect to constructive type theory by showing that provable formulas are
uniformly realizable.We further outline how iAL can serve as a natural program-
ming logic for specififying, developing, and reasoning about programs.

We adopt the presentation of iFOL from Intuitionistic Completeness of
First-Order Logic [10] where the computational content is made explicit using
evidence semantics based on the propositions as types principle [20] aka the
Curry Howard isomorphism [24]. A formal semantics of the logic we present
could be based on extensional constructive type theories such as Intuitionistic
Type Theory (ITT ) [20] or Constructive Type Theory (CTT ) [8,11,12]. How-
ever, the precise details of the semantical metatheory are not that critical to our
results, so we remain informal. For other notions of truth and validity, one can
refer to the accounts given in [25].

2 Ancestral Logic is also sometimes called Transitive Closure Logic in the literature.
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2 The System iFOL

This section reviews pure iFOL along the lines of [10]. The semantics of evidence
for iFOL is simply a compact type theoretic restatement of the propositions-
as-types realizability semantics given in [12,20,21]. This semantics plays an
important role in building correct-by-construction software and in the seman-
tics of strong constructive typed systems, such as Computational Type Theory
(CTT) [11], Intuitionistic Type Theory (ITT) [20], Intensional-ITT [8,23], the
Calculus of Inductive Constructions (CIC) [7], and Logical Frameworks such as
Edinburgh LF [16]. The basic idea behind the semantics is that constructive
proofs provide evidence terms (also called realizers) for the propositions they
prove, and these realizers allow to directly extract programs from the proofs.

Let L be a first-order signature of predicates Pni
i (with arity ni) over a

domain D of individuals of a model M for L. The domain of discourse, D, can
be any constructive type, [D]M.3 Every formula A over L is assigned a type of
objects denoted [A]M, called the evidence for A with respect to M. We normally
leave off the subscript M when there is only one model involved. Below is how
evidence is defined for the various kinds of first-order propositional functions.
The definition will also implicitly provide a syntax of first-order formulas.

Definition 1 (First-order formulas and their evidence).

– Atomic Propositional Functions. Pni
i are interpreted as functions from

Dni into P the type of propositions. For the atomic proposition Pni
i (a1, ..., ani

),
the basic evidence must be supplied, say by objects pi. In the uniform treat-
ment, we consider all of these objects to be equal, and we denote them by the
unstructured atomic element �. Thus if an atomic proposition is known by
atomic evidence, the evidence is the single element � of the unit type, {�}.4

– Conjunction. [A ∧ B] = [A] × [B], the Cartesian product.
– Existential. [∃x.B(x)] = x : [D]M × [B(x)], the dependent product.
– Implication. [A ⇒ B] = [A] → [B], the function space.5

– Universal. [∀x.B(x)] = x : [D]M → [B(x)], the dependent function space.
– Disjunction. [A ∨ B] = [A] + [B], disjoint union.
– False. [False] = ∅ the void type.

Negation is defined by ¬A := A ⇒ False.

3 As a first approximation readers can think of types as constructive sets [5]. Peter
Aczel [1] shows how to interpret constructive sets as types in ITT [21]. Intuitionists
might refer to species instead.

4 It might seem that we should introduce atomic evidence terms that might depend
on parameters, say p(x, y) as the atomic evidence in the atomic proposition P (x, y)
but this is unnecessary and uniformity would eliminate any significance to those
terms. In CTT and ITT , the evidence for atomic propositions such as equality and
ordering is simply an unstructured term such as �.

5 This function space is interpreted type theoretically and is assumed to consist of
effectively computable deterministic functions.
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H A ∧ B by pair(slota; slotb) H A ∨ B by inl(slotl)
H A by slota H A by slotl
H B by slotb

H A ∨ B by inr(slotr)
H B by slotr

H A ⇒ B by λ(x.slotb(x)) new x
H, x : A, H B by slotb(x)

H ∃x.B(x) by pair(d; slotb(d))
H d ∈ D by obj(d)

H, d : D, H d ∈ D by obj(d) H B(d) by slotb(d)

H, x : A, H A by hyp(x)
H x.B(x) by λ(x.slotb(x))
H, x : D, H B(x) by slotb(x)

H, x : A ∧ B, H G by spread(x; l, r.slotg(l, r)) new l, r
H, l : A, r : B, H G by slotg(l, r)

H, f : A ⇒ B, H G by apseq (f ; slotg; v.slg [ap(f ;slota)/v]) new v
H A by slota
H, v : B, H G by slotg(v)

H, y : A ∨ B, H G by decide(y; l.slotleft(l); r.slotright(r))
H, l : A, H G by slotleft(l)
H, r : B, H G by slotright(r)

H, x : ∃y.B(y), H G by spread(x; d, r.slotg(d, r)) new d, r
H, d : D, r : B(d), H G by slotg(d, r)

H, f : ∀x.B(x), H G by apseq(f ; d; v.slotg [ap(f ;d)/v])
H d ∈ D by obj(d)
H, v : B(d), H G by slotg(v)

H, f : False, H G by any(f)

Fig. 1. The proof system iFOL (This notation shows that ap(f ; sla) is substituted for
v in g(v). In the CTT logic we stipulate in the rule that v = ap(f ; sla) in B.) (In
the CTT logic, we use equality to stipulate that v = ap(f ; d) in B(v) just before the
hypothesis v : B(d).)
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It is easy to prove classically that a formula A is satisfied in a model M iff
there is evidence in [A]M [10]. This shows that this evidence semantics can be
read classically, and it will correspond to Tarski’s semantics for FOL.

Definition 2. The proof system iFOL is given in Fig. 1.

The rules of the system iFOL are presented in the “top down style” (also called
refinement style) in which the goal comes first and the rule name with parameters
generates subgoals. This style is compatible with the highly successful tactic
mechanism of the Edinburgh LCF proof assistant [14] and the style for rules
and proofs used in the Nuprl book [12]. Thus the sequent style trees are grown
with the root at the top. This is also compatible with the standard writing style
in which a theorem is stated first followed by its proof. For a more detailed
explanation of the syntax used in the proof rules see [10].

3 The System iAL

3.1 The Transitive Closure Operator

A standard mathematical definition of the transitive closure of a binary relation
R, denoted by R+, is as follows. Let N be the set of natural numbers. For n ∈ N

define: R(0) = R, R(n+1) = R(n) ◦ R, where the composition of relations R and
S is defined by (S ◦ R) (x, y) iff ∃z (S (x, z) ∧ R (z, y)).

Definition 3. The transitive closure R+ of binary relation R is defined by

R+(x, y) = ∃n : N.R(n)(x, y)

At appropriate places we use the notation xRy instead of R(x, y).
Note that we are using an intuitionistic semantics in our metatheory, so, for

instance, the definition of composition means that we can effectively find the
value z. Moreover, the constructive nature of the definition entails that xR+y
implies we know a natural number witness for the number of iterations of the
relation R. Hence we can prove in the semantics that given elements x and y in
D, xR+y iff we can effectively find a finite list of elements x1, ...xn from D, such
that xRx1 ∧ x1Rx2 ∧ ... ∧ xnRy.

While this definition is perfectly acceptable, it depends essentially on the type
of natural numbers with its attendant notion of equality and induction. Thus,
it requires invoking a version of intuitionistic ω-logic (e.g. [22]) as an underlying
logic. In search of simplicity, our axiomatic definition will be given in terms of
finite lists without mentioning the natural numbers explicitly. This will allow us
to frame iAL in a more generic and polymorphic way.

Observe the following (equivalent) definition for the transitive closure.

Proposition 1. R+ is the minimal transitive relation L such that R ⊆ L, i.e.

R+ =
⋂

R⊆L&Transitive(L)

L

where a relation R is said to be transitive if ∀x, y, z.(xRy ∧ yRz) ⇒ xRz.
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This definition uses the intersection type of Constructive Type Theory (CTT)
used in [3], the type

⋂
x:A B(x). Its elements are those that belong to all of

the types B(x). It generalizes the binary intersection A ∩ B, consisting of the
elements that belong to both types A and B. For instance {x : N|Even(x)}∩{x :
N|Prime(x)} is the unit type {2}. We shall use this definition to form our
axiomatic system. This is a key step toward a polymorphic account of iAL
which will support our claim that a type theoretic semantics can be not only
elementary, but even uniform.

3.2 Realizability Semantics for iAL

Instead of defining evidence for transitive closure using N, we use more generic
and polymorphic constructs to give evidence for the transitive closure, in the
spirit of using polymorphic functions, pairs, and tags. To know R+(x, y) for x
and y in D, we construct a list of elements of D, say [d, ..., d′], and a list of
evidence terms [r, ..., r′] such that r is evidence for R(x, d) and r′ is evidence for
R(d′, y) and the intermediate terms form an evidence chain. These relationships
hold because of the way the evidence is built up, so we do not need the numerical
indices to define the relationship. It is crucial to notice that the concept of lists
is subsumed into the realizers and does not appear in the logic itself.

Notice that any well-formed formula (wff) together with a pair of distinct
variables may be viewed as defining a binary relation. The notation Ax,y will be
used to specify that we treat the formula A as defining a binary relation with
respect to x and y distinct variables (other free variables that may occur in A are
taken as parameters). Thus, one may apply the transitive closure operator not
only to atomic predicates, but to any wff. We write Ax,y (u, v) for the formula
obtained by substituting u for x and v for y in A. For simplicity of presentation,
in what follows the subscript x, y is omitted where there is no chance of confusion.

Definition 4 (iAL formulas and their evidence). iAL formulas are defined
as iFOL formulas with the following addition:

– If A is a formula, x, y distinct variables, and u, v variables, then A+
x,y (u, v) is

a formula.
– The evidence type for A+

x,y (u, v) consists of lists of the form
[〈u, d1, r1〉 , 〈d1, d2, r2〉 , ..., 〈dn, v, rn+1〉] where u, d1, ..., dn, v : [D]M,
r1 ∈ [Ax,y(u, d1)], rn+1 ∈ [Ax,y(dn, v)], and ri ∈ [Ax,y(di−1, di)] for 1 < i ≤ n

Notice that the realizers for transitive closure formulas are all polymorphic and
thus independent of realizers for particular atomic formulas.

Recall that according to Definition 3, R+ (x, y) iff ∃n
(
N (n) ∧ R(n) (x, y)

)
.

This is not a legal formula in our language, but this is intuitively what
we mean, if we had the natural numbers at our disposal. The realizer
for this “formula” is of the form: 〈n, 〈nat (n) , 〈x, d1, ..., dn, y, 〈r1, ..., rn+1〉〉〉〉
where nat (n) realizes N (n). The realizer of the transitive closure corre-
lates nicely to this realizer. A realizer for a formula R+ (x, y) of the form
〈n, 〈nat (n) , 〈x, d1, ..., dn, y, 〈r1, ..., rn+1〉〉〉〉 can be easily converted into the form
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[〈x, d1, r1〉 , 〈d1, d2, r2〉 , ..., 〈dn, y, rn+1〉] simply by rearranging the data. For the
converse, the data can also be rearranged, but some additional data is required:
n – which is the length of the list minus 1; and the realizer for it being a natural
number – which is available as the length of a list is always a natural number.

3.3 Proof System for iAL over Domain D

We present a proof system for iAL which extends iFOL [10] by adding con-
struction and decomposition rules for the transitive closure operator. We here
use the standard canonical operator [ ] for list constructor, and the non-canonical
operator associated with it, concat, for concatenating two lists.

Definition 5. The proof system iAL is defined by adding to iFOL the following
rules for the transitive closure operator.

– TC Base

H,x : D, y : D,H ′ � A+(x, y) by [〈x, y, slot〉]
H,x : D, y : D,H ′ � A(x, y) by slot

– TC Trans

H,x : D, y : D,H ′ � A+(x, y) by concat (slotl, slotr)
H,x : D, z : D,H ′ � A+(x, z) by slotl
H, y : D, z : D,H ′ � A+(z, y) by slotr

– TC Ind

H, x : D, y : D, r+ : A+(x, y), H ′ � B(x, y) by tcind
(
r+; u, v, w, b1, b2.tr(u, v, w, b1, b2);

u, v, r.st(u, v, r))

H, u : D, v : D, w : D, b1 : B(u, v), b2 : B(v, w), H ′ � B(u, w) by tr(u, v, w, b1, b2)

H, u : D, v : D, r : A(u, v), H ′ � B(u, v) by st(u, v, r)

where u, v, w are fresh variables.

Rule TC Base states that the list consisting of the triple [〈x, y, r〉] where r
realizes A(x, y) is the realizer for the transitive closure A+(x, y). The crucial
point about Rule TC Trans is that it does not nest lists of triples for the same
goal; instead we “flatten the lists out” as proofs are constructed. This means
that proofs of transitive closure have a distinguished realizer. Furthermore, it
provides an adequate mechanism for creating a flat chain of evidence needed for
the transitive closure induction rule.

The realizer for Rule TC Ind computes on the list r+ and is recursively
defined as follows:

tcind(r+; u, v, w, b1, b2.tr(u, v, w, b1, b2); u, v, r.st(u, v, r)) computes to:
If base(r+) then st(r+.11, r

+.12, r
+.13) ; else

tr(r+.11, r
+.12, r

+.22, tcind
(
rest(r+); u, v, w, b1, b2.tr(u, v, w, b1, b2); u, v, r.st(u, v, r)

)
.

The operator base(r+) is true when r+ is simply the singleton triple. We use
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the notation r+.u to denote the uth element in the list r+, and the subscript
r+.ui selects the ith elements of the triple (i ∈ {1, 2, 3}). The operator rest(r+)
returns the list r+ without its first element.

The more commonly used induction rule (see [4,17]) is derivable in iAL.

Proposition 2. The following rule is derivable in iAL:

H,x : D, y : D, r+ : A+(x, y), g : G(x),H ′ � G(y)
H,u : D, v : D, r : A(u, v), g′ : G(u),H ′ � G(v)
where u, v are fresh variables.

We next demonstrate that iAL is an adequate system for handling the transitive
closure operator by showing that fundamental, intuitionistically valid statements
concerning the TC operator are provable in iAL. Given a signature with a binary
relation R, intuitively we may think of its interpretation as a directed graph
whose vertices are the elements of the domain and two vertices are adjoined by
an edge iff their interpretations are in the interpretation of the relation R. Then,
R+ is interpreted by the existence of a path between two vertices. Observe the
following basic statement: “if there is a path between x and y in a graph G, then
either x and y are neighbors, or there is a neighbor z of x, such that from z
there is a path to y”. This statement is classically valid, and though at first sight
one may doubt that it is intuitionistically valid (as it contains a disjunction), it
is provable in iAL.

Proposition 3. The following are provable in iAL:

A+ (x, y) � A (x, y) ∨ ∃z
(
A (x, z) ∧ A+ (z, y)

)
(1)

A+ (x, y) � A (x, y) ∨ ∃z
(
A+ (x, z) ∧ A (z, y)

)
(2)

Another basic statement in graph theory is: “if there is a path between x and
y in a graph G, then x and y are not isolated”. Again, while it may seem to
be intuitionistically invalid because of the existential nature of the argument, it
turns out to be provable in iAL.

Proposition 4. The following are provable in iAL:

A+ (x, y) � ∃zA (x, z) (3)
A+ (x, y) � ∃zA (z, y) (4)

The above proposition is based on the more general fact that the existential
quantifier is definable by the transitive closure operator (see [4]).

Proposition 5. The following is provable in iAL:

� ∃xA ↔
(
A

{u

x

}
∨ A

{ v

x

})+

u,v
(u, v)

where u and v are fresh variables.6

6 The notation A
{

u
x

}
denotes substituting u for x in A.
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Notice that there is a strong connection between our choice for the realizer of
the transitive closure and the standard realizers for iFOL. For example, Propo-
sition 5 entails that the existential quantifier is definable using the transitive
closure operator. The standard realizer for ∃xP (x) is a pair 〈d, �〉, since P is
an atomic relation. The realizer for the defining formula, (P (u) ∨ P (v))+ (u, v),
is of the form [〈u, d1, r1〉 , 〈d1, d2, r2〉 , ..., 〈dn, v, rn+1〉] where each ri is a real-
izer for P (di) ∨ P (di+1), and d0 := u and dn+1 := v. Now, suppose we have
a realizer of the form 〈d, �〉 of ∃xP (x). The realizer for the defining formula in
iAL will be [〈u, d, inr (�)〉]. For the converse, suppose we have a realizer of the
form [〈u, d1, r1〉 , 〈d1, d2, r2〉 , ..., 〈dn, v, rn+1〉]. Then we can create a realizer for
∃xP (x) in the following way: if r1 is inl (�) return 〈u, �〉, else return 〈d1, �〉.

3.4 Soundness for iAL

We next prove that iAL is sound by showing that every provable formula is
realizable, and even uniformly realizable. We do this by giving a semantics to
sequents and then proceed by induction on the structure of the proofs. It is
important to note that the realizers are all polymorphic, they do not contain
any propositions or types as subcomponents and thus serve to provide evidence
for any formulas built from any atomic propositions.

Given a type D (empty or not) as the domain of discourse, and given atomic
propositional functions from D to propositions, P, for the atomic propositions,
and given the type theoretic meaning of the logical operators and the transitive
closure operator, we can interpret an iAL sequent over dependent types by saying
that a sequent x1 : T1, x2 : T2(x1), ..., xn : Tn(x1, ..., xn−1) � G(x1, ..., xn) defines
an effectively computable function from an n-tuple of elements of the dependent
product of the types in the hypothesis list to the type of the goal, G(x1, ..., xn).

Theorem 1 (Realizability Theorem for iAL). Every provable formula of
iAL is realizable in every model.

Proof. The proof is carried out by induction on the structure of proofs in iAL.
The proof rules for iAL show how to construct a realizer for the goal sequent
given realizers for the subgoals. Also, the atomic (axiomatic) subgoals are of
the form x1 : T1, x2 : T2(x1), ..., xn : Tn(x1, ..., xn−1) � Tj(x1, ..., xn), which are
clearly realizable.

Since propositions-as-types realizability is usually regarded as the definition of
constructive truth, this theorem allows us to also say that every provable formula
is true in every constructive model (i.e. intuitionistically valid).

Theorem 2 (Soundness Theorem for iAL). Every provable formula of iAL
is intuitionistically valid.

Corollary 1 (Consistency Theorem for iAL). iAL is consistent, i.e. False
is unprovable in iAL.
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3.5 Reasoning About Programs in iAL

In this section we provide some examples of how iAL can be used for reason-
ing about programs, and the benefits of using it for this task. We leave for
an extended version of this paper a more detailed insight on the connections
between iAL and programming.

iFOL can be viewed and used as an abstract programming language, partic-
ularly suitable for correct-by-construction style of programming [10]. This is due
to the following key feature of iFOL: proofs of specifications in its proof sys-
tem carry their computational content in the realizers. Thus, proving an iFOL
formula results in a realizer which can be thought of as holding the computa-
tional element of a program, and so one can extract programs from proofs that
iFOL specifications are solvable. iAL enjoys these features too, but has greater
expressive and proof-theoretic power. Accordingly, iAL can serve as a much bet-
ter framework for specifying, developing, and reasoning about programs. There
are many meaningful statements about programs that cannot be formulated in
iFOL but can be captured in iAL, such as “there is a state to which each run gets
to (on any input)”, which can be formulated in iAL by the formula ∃y∀xP+(x, y).
Moreover, even simple provable assertions, such as A+(x, y) ⇒ ∃zA(z, y), have
interesting realizers that depend on the tcind realizer, and thus correspond to
recursive programs.

When reasoning about programming, it is important to notice that the if and
while program constructs can be encoded in iAL (similar to the way it is done
in propositional Dynamic Logic). For instance, “while b do p” can be encoded by
the formula (B (x) ∧ P (x, y))+ ∧¬B (y). Thus, there is also a strong connection
to programming that derives from the relation between iAL and the theory
of flowchart schemes (e.g., [18]). A flowchart scheme is a vertex-labeled graph
that represents an uninterpreted program, and a central question in the theory
of flowchart schemes is scheme equivalence. In [18] Manna presents examples
of equivalence proofs done by transformations on the graphs of the schemes.
Since each flowchart scheme can be assigned a iAL formula (as it is simply a
vertex-labeled graph), the question of scheme equivalence can be replaced by the
question of equivalence between two iAL formulas in the effective, constructive
proof system iAL.

4 Further Research

We argue that iAL is a natural “next step” one needs to take, starting from
iFOL, in order to capture many applications in computer science. Further work
is still needed to investigate the natural scope of iAL and to demonstrate its
usefulness by exploring several applications of it in diversity of areas of com-
puter science and mathematics, such as database query languages, specification
languages, and programs development and verification. For instance, one such
example might be related to distributed protocols. One can develop efficient
deployed algorithms from the natural constructive proofs of theorems about
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data structures expressible in iAL, and explore specific direct use of such proofs,
e.g. in building distributed protocols and making them attack-tolerant.

Acknowledgment. This research was partially supported by the Ministry of Science,
Technology and Space, Israel, and the Cornell University PRL Group.

Appendix

In this appendix we provide full proofs of some of the results above.

Proof of Proposition 2:

The result immediately follows from TC Ind by taking A (u, v) to be the formula
G (u) ⇒ G (v). ��
Lemma 1. The following are provable in iAL:

A (x, z) , A+ (z, y) � A+ (x, y) (5)

A+ (x, z) , A (z, y) � A+ (x, y) (6)

Proof of Lemma1:

Both sequents are derivable by one application of TC Base followed by an appli-
cation of TC Trans. ��

Proof of Proposition 3:

Denote by ϕ (x, y) the formula ∃z (A (x, z) ∧ A+ (z, y)). For (1) apply TC Ind on
the following two subgoals:

1. A (u, v) � A (u, v) ∨ ϕ (u, v)
2. A (u, v) ∨ ϕ (u, v) , A (v, w) ∨ ϕ (v, w) � A (u,w) ∨ ϕ (u,w)

(1) is clearly provable in iFOL. For (2) it suffices to prove the following four
subgoals, from which (2) is derivable using Or Decomposition and Or Composi-
tion:

1. A (u, v) , A (v, w) � ϕ (u,w)
2. A (u, v) , ϕ (v, w) � ϕ (u,w)
3. ϕ (u, v) , A (v, w) � ϕ (u,w)
4. ϕ (u, v) , ϕ (v, w) � ϕ (u,w)

We prove ϕ (u, v) , ϕ (v, w) � ϕ (u,w), the other proofs are similar. It is easy
to prove (using Lemma 1) that ∃z (A (v, z) ∧ A+ (z, w)) � A+ (v, w). By TC
Trans we can deduce d : D,A (u, d) , A+ (d, v) , A+ (v, w) � A+ (d,w), from which
∃z (A (u, z) ∧ A+ (z, w)) is easily derivable.

The proof of (2) is similar. ��
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Proof of Proposition 4:

(3) is derivable applying TC Ind on the following two subgoals:

1. A (x, y) � ∃zA (x, z), which is easily provable in iFOL.
2. ∃zA (u, z) ,∃zA (v, z) � ∃zA (u, z), which is valid due to Hypothesis.

The proof of (4) is symmetric. ��

Proof of Proposition 5:

Denote by ϕ (u, v) the formula A (u,−→y )∨A (v,−→y ). The right-to-left implication
follows from Proposition 4 since ∃z (A (u,−→y ) ∨ A (z,−→y )) � ∃xA (x,−→y ) can be
easily proven in iFOL, and Proposition 4 entails that ϕ+ (u, v) � ∃zϕ (u, z).
For the left-to-right implication it suffices to prove d : D,A (d,−→y ) � ϕ+ (u, v).
Clearly, in iFOL, d : D,A (d,−→y ) � ϕ (d, v) is provable, from which we can deduce
by TC Base d : D,A (d,−→y ) � ϕ+ (d, v). Since we also have d : D,A (d,−→y ) �
ϕ (u, d), by Lemma 1 we obtain d : D,A (d,−→y ) � ϕ+ (u, v). ��
Proposition 6. The following is provable in iAL:

(
A+

)+ (x, y) � A+ (x, y)

Proof of Proposition 6:

Applying TC Ind on A+ (u, v) , A+ (v, w) � A+ (u,w) (which is derivable using
TC Trans) and A+ (x, y) � A+ (x, y) (which is clearly provable) results in the
desired proof. ��
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