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Abstract. We describe the music renotation problem, in which one
transforms a collection of recognized music notation primitives (e.g. note
heads, stems, beams, flags, clefs, accidentals, etc.) into a different nota-
tion format, such as transposing the notation or displaying it in a
rectangle or arbitrary size. We represent a limited degree of image under-
standing through a graph that connects pairs of symbols sharing layout
constraints that must be respected during renotation. The layout prob-
lem is then formulated as the optimization of a convex objective function
expressed as a sum of penalty terms, one for each edge in the graph. We
demonstrate results by generating transposed parts from a recognized
full score.

Keywords: Music renotation · Optical music recognition · Music nota-
tion layout

1 Introduction

Optical Music Recognition holds great promise for producing the symbolic music
libraries that will usher music into the 21st century, allowing flexible display,
automated transformation, search, alignment with audio, and many other excit-
ing possibilities. Work in this area dates back to the 1960s [1–11], with a nice
overview of important activity given by [12]. However, collective efforts have
not yet produced systems ready for the grand challenge of creating large-scale
definitive music libraries [13,15]. Viro’s recent work on the IMSLP constitutes
a promising current approach to large-scale OMR [14]. Simply put, the problem
is very hard, lacking obvious recognition paradigms and performance metrics
[13,27], while containing a thicket of special notational cases that make OMR
difficult to formulate in a general and useful manner.

One of the many challenges, and one central to the effort discussed here,
concerns the representation of OMR output. There are a number of fairly general
music representations [16], such as MEI [17] and MusicXML [18], that provide
sufficiently expressive formats for music encoding. As these representations are
extensible, they can be modified to include additional information relevant for
a particular perspective. However, there remains a significant gap between the
natural results of OMR, which tend toward loosely structured collections of
symbols, and the necessary symbol interpretations for encoding music data in
these formats. Rhythm and voicing are among the issues that pose the greatest
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difficulty. Lurking in the background is the fact that OMR must try to capture
the literal contents of the printed page, while music representations tend to take
a more abstract view of music content. For instance, symbols or text that span
several staves must be recognized as such in OMR, while this layout problem is
not relevant for a symbolic encoding.

Rather than solving the OMR-to-encoding problem, here we explore the pos-
sibility of making OMR results useful with only a minimal understanding of the
recognized symbols’ meaning. In particular we address the renotation problem —
perhaps the most important application of OMR. Renotation refers to a collec-
tion of problems that transform recognized notation into related formats, such
as transposition, score-to-parts, and reformatting for arbitrary display sizes. In
all cases, the output is music notation in an image format. In our approach,
we seek only the level of notational understanding necessary to accomplish this
task, which is considerably less than what is required by familiar symbolic rep-
resentations. For instance, we do not need to understand the rhythmic meaning
of the symbols. We bind our process to the original image, rather than a more
abstract symbolic representation, in an attempt to leverage the many intelli-
gent choices that were made during is construction. For instance we beam notes,
choose stem and slur directions, etc. exactly as done in the original document,
while we use the original symbol spacing as a guide to resolving symbol conflicts
in our renotated document. However, we cannot renotate simply by cutting and
pasting measures as they appear in the original source. For instance, the spacing
considerations of parts are quite different than those for a score, where alignment
of coincident events is crucial.

Our essential approach is to cast the renotation problem as an optimization
expressed in terms of a graph that connects interdependent symbols. This view
is much like the spring embedding approach to graph layout, so popular in recent
years [19–22]. Our problem differs from generic graph layout in that many aspects
of our desired layout are constrained, such as the vertical position of note heads,
clefs and accidentals. This leads to an easier optimization task, where one can
model with a convex objective functions whose global optimum is easy to identify
and satisfies our layout objectives. A significant difference between our problem
and graph layout is the origin of our graph edges, which come from known
semantic relations between symbols. For instance we know that an accidental
belongs to a note head, and thus introduce an edge that constrains their relative
positions. Thus the edges of our graph come mostly from the meaning of the
symbol, rather than their spatial proximity. This work bears some resemblance
to the work of Renz [28], who takes a spring embedding view of one-dimensional
music layout.

We will describe our basic approach and present a score-to-parts with exam-
ple with transposition, using the Nottorno from Borodin’s Second String Quartet.

1.1 Background: The Ceres System

Our Ceres OMR system [23–25] is named after the Roman goddess of the har-
vest, as we seek to harvest symbolic music libraries from the tens of thousands
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of images on the International Music Score Library Project (IMSLP) [26]. At
present, Ceres is composed of two phases: recognition and correction. The recog-
nition phase begins by identifying staff lines, then simultaneously grouping them
into systems and identifying system measures. In the heart of the recognition
process we identify the contents of each measure. Here we recognize both com-
posite and isolated symbols. By composite symbols, we mean beamed groups
and chords (including isolated notes), which are composed by grammatically
constrained configurations of note heads, stems, beams, flags, and ledger lines,
as well as the decorations that belong note heads and stems (accidentals, articu-
lations, augmentation dots, etc.) The isolated symbols we currently seek include
rests, clefs, slurs, “hairpin” crescendos, text dynamics, and various other sym-
bols. We refer to both the isolated symbols and the building blocks of the com-
posite symbols as primitives.

While OMR system comparisons are suspect due to the lack of accepted met-
rics and ground-truthed test data [13,27], Ceres’ performance was competitive
with what many regard as the currently-best system, SharpEye [1], a commercial
system, in a recent limited test [23]. That said, all OMR researchers we know
ackowledge that system performance varies greatly between music documents,
while our evaluation was narrow relying on hand-marked ground truth. While
we expect that considerable progress is still possible with the core recognition
engine, it seems futile to pose the problem entirely in terms of recognition. Music
notation contains a long and heavy tail of special cases and exceptions to general
rules that must be handled somehow. The OMR researcher is continually faced
with modeling scenarios where accounting for greater notational generality may
lead to worse overall recognition performance. As an example, beamed groups
can span several staves, several measures, and can have stems that go in both
directions, however, allowing for these unusual cases inevitably results in false
positive detections. The only reasonable modeling strategy chooses tradeoffs on
the basis of overall recognition performance. Consequently, we should expect
that our recognition results will contain errors, perhaps many.

Ceres complements its recognition engine with a user interface allowing a
person to correct mistakes and address special cases not handled through recog-
nition. The Ceres user interface, depicted in Fig. 1, facilitates a drag-and-drop
process we call “tagging,” in which the user views the original image with the
recognized results superimposed, while editing the recognized notation at the
primitive level. In choosing to operate on primitives, we disregard the grammat-
ical structure of composite symbols recovered in the recognition phase, instead
treating the results as a “bag of primitives.” While we lose useful information in
the process, there are significant advantages to this approach. First of all, we can
present the user with a well-defined task requiring no knowledge of the inner-
workings of our recognition engine: she must simply cover the image “ink” with
appropriately chosen primitives. In addition, operating at the primitive level
allows one to recover from partially correct recognition results that are awkward
to handle at the composite symbol level. For instance, consider the situation of
the last measure in Fig. 2, where the beamed groups have each been recognized
as two separate beamed groups with opposite stem directions. Converting this
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Fig. 1. Ceres’ drag-and-drop user interface for correction primitives. Color figure with
color coding of various symbol types can be seen at www.music.informatics.indiana.
edu/papers/mcm15

Fig. 2. Working at the primitive level allows the user to easily recover from partially
correct results, as depicted in the rightmost measure. Color figure showing recognized
symbols can be seen at www.music.informatics.indiana.edu/papers/mcm15

result at the beamed group level requires that all of the hierarchical relations
are correctly expressed through the editor; in contrast, editing at the primitive
level only requires that one delete the two recognized beams while substituting
a longer beam in their place.

2 Music Renotation

Music renotation seeks to transform recognized music notation into related for-
mats, such as converting a score into parts, transposition, or reformatting nota-
tion to fill a window of arbitrary size. Each of these tasks requires some degree
of understanding of the notated symbols’ meaning. For instance, we must know
which configurations of primitives constitute beamed groups and chords, since

www.music.informatics.indiana.edu/papers/mcm15
www.music.informatics.indiana.edu/papers/mcm15
www.music.informatics.indiana.edu/papers/mcm15
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these must be rendered subject to collective constraints (stems must terminate
at beams, note heads and flags must touch stems, multiple beams must be par-
allel, etc.). We also need to know which symbols belong to which measures, since
they must “travel” with the measure as the notation is reformatted. We need
to understand other ownership notions such as the way accidentals, augmen-
tation dots, and articulations belong to note heads, as spacing and alignment
constraints must implicitly represent this ownership. We need to understand
time coincidence between notes, rests, and other symbols, as such relations are
expressed, notationally, as vertical alignment. Finally, for polyphonic music it
is helpful to understand some degree of voicing as the events within a voice
require spacing that makes the results readable. It is worth noting that there is
much that we do not need to understand, including details of rhythm, meaning
of most text, dynamics, and other “mark up” symbols. In fact, when transposi-
tion is not involved we don’t even need to understand the pitches of the notes.
As the interpretation of music notation is a challenging problem, a basic tenet
of our approach here is to accomplish renotation with the minimal degree of
understanding possible.

2.1 The Symbol Graph

A simple way to represent these relations is by introducing a graph structure
with the connected symbols as vertices, meaning those collections of primitives,
including singletons, that form connected regions of image ink (e.g. beamed
groups or chords without their non-touching satellites, or any other isolated
symbol). We then connect these vertices with labeled edges representing the
desired spatial relationships between the symbols they connect. Thus, the graph
structure describes the pairwise interrelations between symbols needed to con-
strain the renotation process’ modification of symbol locations and parameters.
We briefly describe the construction of this graph, accomplished bottom up using
the known locations and labels of the symbols through a process called assem-
bly. In this process we first construct the subgraphs for each composite symbol,
treating the connected portion as a single symbol, and connecting the satellites
(accidentals, augmentation dots, articulations, etc.) to the body with edges. We
then create the symbol graph on the entire collection of symbols by introduc-
ing additional edges. The edges we introduce are labeled as either “horizontal”
or “vertical” meaning that they constraing the horizontal or verticial distance
between symbols while being indifferent to the other dimension.

We assemble the primitives into beamed groups and isolated chords in a
rule-based greedy manner. In essence, we regard the primitives as being either
“plugs” or “sockets,” and seek to hook up these connectors, choosing an order of
decisions that avoids ambiguity. For instance, every non-whole note head must
connect to a stem; every beam must connect to two stems; every flag must
connect to a stem, etc. For brevity’s sake we will omit the individual assembly
steps, as the details are many. While such approaches tend to be vulnerable to
early incorrect decisions, we have not encountered this difficulty in practice. It
is worth noting that the recognition and tagging processes distinguish between
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various “look-alike” symbols, such as staccato marks and augmentation dots,
or key signature accidentals and note modifier accidentals, thus simplifying the
process.

Occasionally during this process we encounter “plugs” with no available
“socket.” Such cases are nearly always due to either mislabeled or unlabeled
primitives. When this occurs, our interface displays the offending composite
symbol in a special color to alert the user to the inconsistency. Thus, during the
tagging process, the user is directed toward uninterpretable situations requiring
further attention.

Fig. 3. Example of a symbol graph resulting from our assembly process.

Having constructed the composite symbols and connected their various satel-
lites with edges, we then order the notes, rests, and clefs, within each staff, estab-
lishing horizontal connections between neighboring symbols, while adding vertical
connections between apparently time-coincident members of this set. Clearly this
process could benefit from a rhythmic or voice analysis, and we expect this will be
necessary as we examine greater degrees of polyphony than exhibited in our cur-
rent experiments. However, at present, we detect coincidence simply by threshold-
ing differences in horizontal position. Finally vertical connections are established
between the slurs, hairpins, and remaining symbols representing the appropriate
coincidence relations.

We emerge from this assembly/tagging process with a graph structure that
expresses the various ownership and hierarchical relations necessary to correctly
interpret and use the symbols for renotation. Figure 3 gives an example of a
symbol graph.

2.2 Music Renotation as Optimization

We formulate renotation as an optimization problem using the graph structure
of the previous section. Here we denote the vertices of our graph by S (the
connected symbols), while the drawing of each s ∈ S is governed by a parame-
ter vector θ(s). For instance, if s is a beamed group containing n notes, then
θ(s) would represent the (n + 2)-tuple needed to fully specify its rendering:
the horizontal positions of the note heads and the two “corners” of the primary
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beam. (The vertical positions of the note are fixed at the appropriate staff posi-
tion). For any non-composite s ∈ S, θ(s) simply gives the location of the symbol.
In many cases there is a sharing or “tying” of parameters, representing hard lay-
out constraints. For instance, the vertical position of an accidental, s, should be
the same as the note head it modifies, thus constraining its vertical coordinate.
Thus the edge between a note head and its accidental refers to the flexible hori-
zontal distance. Similarly, a staccato dot should be centered above the note head
it belongs to, thereby constraining its horizontal coordinate. In such cases θ(s)
would have only a single component representing the “free” parameters that are
not determined by such constraints.

Fig. 4. The quadratic spline we use to represent the asymmetric penalty associated
with an edge.

We denote by E the collection of edges in our symbol graph. Each edge,
e = (s1, s2) ∈ E, s1, s2 ∈ S, has an associated affine function that reduces the
edge parameters to a single quantity: λ(e) = lt1θ(s1) + lt2θ(s2) + c. In most cases
the lt1, l

t
2 vectors simply “choose” a single parameter of θ(s1) or θ(s2) though we

occasionlly need the greater degree of generality the linear combination offers.
We then write our objective function, H, as

H =
∑

e∈E

Qe(λ(e)) (1)

where Qe is a quadratic spline function as that depicted in Fig. 4.
The idea here is best illustrated in terms of an example. Consider the case of

an accidental that modifies a note head. There is a desired horizontal distance
between the two: other considerations aside we would prefer to have a fixed
and known distance separating the two symbols. However we feel differently
about moving the two symbols closer together and further apart. As the symbols
become too close they crowd one another, and eventually touch, which is highly
undesirable in music layout. However, the presence of other accidentals may
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require that we separate the symbols further than the ideal. As this is common
with the notation of accidentals surrounding a chord, this choice should not
come at a great cost. Thus when λ(e) < 0, |λ(e)| measures the degree to which
we are less than the ideal, while when λ(e) > 0, λ(e) measures the amount we
are greater than the ideal. Qe captures our asymmetric penalty for these two
situations. The situation described above applies more generally to the layout
problem, thus all aspects of notation we wish to control are expressed as edges
in the the graph, with corresponding penalty terms.

As a sum of nearly quadratic terms, the objective function, H, is easy to opti-
mize and converges in just a few iterations of Newton’s method. As H is strictly
convex, this point of convergence is the global optimum. However, since the objec-
tive function modifies the parametrization of the notation, pairs of symbols can
come into contact that have no edges penalizing their spacial relations — we don’t
know what symbols are in potential conflict when we construct the original graph.
Thus, when such conflicts arise, we augment our graph with additional edges for
each conflicting pair. The penalty term for each such edge causes the symbols to
“repel” thus resolving the conflict. We iterate between optimizing our objective
function and modifying the function to include new terms arising from newly-
detected conflicts.

3 Results and Discussion

We applied our approach in a score-to-parts application on the 3rd movement,
Notturno, of Borodin’s Second String Quartet, with the Ernst Eulenburg edition
from around 1920. In addition, the parts were trasposed from A major to B�
major. The complete score can be seen at http://imslp.org/wiki/String Quartet
No.2 (Borodin, Aleksandr). In rendering our results we used the Bravura music
font by Daniel Spreadbury available under the SIL open font license [30]. Perhaps
the most challenging aspect of the score-to-parts problem is that scores require
the alignment of time-coincident notes and rests between parts, thus creating
spacing that would be completely unnatural for a single part. Thus the spacing
needs to be modified considerably to create something that looks acceptable —
this is essentially the main task of our algorithm.

There are some aspects of the score-to-parts problem that don’t occur in our
particular example, thus not addressed here. For instance, some scores, such as
those for large ensemble, leave out staves of instruments that don’t play on any
given page. Thus the system must determine which instruments play which staves
before staves can be assembled into complete parts. Also, sometimes scores will
notate two or more instruments on a single staff, for instance, the bassoons and
contrabassoon in orchestral score. Producing single-instrument parts in this case
requires that the voices must be identified and separated. Both of these problems
are examples of interest to us, though we do not implement solutions here.

Here we present results in “page” mode, in which we show the part as a single
(tall) page, using line breaks and laying out the symbols so that the right bar
lines of each staff align. We don’t add page breaks, though this could be handled

http://imslp.org/wiki/String_Quartet_No.2_(Borodin,_Aleksandr)
http://imslp.org/wiki/String_Quartet_No.2_(Borodin,_Aleksandr)
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Fig. 5. A portion of the symbol graph generated for the 1st violin part of the Borodin
2nd String Quartet, 3rd movement. The red and green edges correspond to horizontal
and vertical soft constraints (terms in Eq. 1). The blue edges are terms that appeared
during the optimization due to unanticipated conflicts.

analogously to line breaks. We accomplish this by first partitioning the measures
into lines using the standard Knuth dynamic programming approach [29]. As bar
lines are treated like other stand-alone symbols, this simply amounts to fixing
the horizontal location of each right bar line while optimizing over the remaining
parameters. Thus each line of the page is regarded as a separate optimization
problem.

A portion of the resulting symbol graph for the first violin part is shown
in Fig. 5, while the complete set of resulting parts and graphs are available at
www.music.informatics.indiana.edu/papers/mcm15. One can observe from the
discussion surrounding Eq. 1 that our objective function, H, is a sum of one-
dimensional penalty terms; these penalties consider either horizontal or vertical
distances between symbols, though it is possible that both arise in some cases.
In Fig. 5 these are shown as red (horizontal), green (vertical), and blue (conflict)
edges drawn between symbols. One will also see that there are a number of edges
that connect adjacent notes in a beamed group. While these are technically edges
that go from a vertex to itself, this requires no change in our formulation of the
problem, reflecting a desired relation, e.g. note spacing, between the parameters
of a beamed group.

We perform transposition simply by moving the staff position of each note by
a fixed number of steps, changing the key signature, and respelling all accidentals,
viewing them as either +1,0, or –1 modifiers. For instance, an E� in the key of
D major moves the E up by +1, and would thus appear as F double sharp in
the key of E major or B� in the of A�. For the Borodin we find this creates some
rather unusual spellings, such as the section rendered in B double flat major

www.music.informatics.indiana.edu/papers/mcm15
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(9 flats!) at the start of the fifth line of the violin part. Of course, this would
normally be spelled as A major, though this would require harmonic analysis to
detect, and certainly constitutes a rare case.

A notation maven may find a fair bit to criticize about the resulting layout.
We view our effort as more of a proof of concept, rather than recipe for ideal nota-
tion. We have not considered many aspects of layout usually included in serious
notation systems, such as spacing that reflects note length. Rather, it has been
our intent to show that OMR results can be utilized effectively by addressing
only a minimal portion of the symbol interpretation problem. We continue to
explore the symbol graph as a possible alternative to more expressive music rep-
resentations such as MEI and MusicXML — capturing less about the notational
structure and its meaning, but easier to derive automatically from OMR. Anal-
ogous approaches are promising for other OMR applications requiring symbol
interpretation, such as music playback.
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