
A Framework for Scalable Correlation
of Spatio-temporal Event Data

Stefan Hagedorn1(B), Kai-Uwe Sattler1, and Michael Gertz2

1 Technische Universität Ilmenau, Ilmenau, Germany
{Stefan.Hagedorn,Kai-Uwe.Sattler}@tu-ilmenau.de

2 Heidelberg University, Heidelberg, Germany
gertz@informatik.uni-heidelberg.de

Abstract. Spatio-temporal event data do not only arise from sensor
readings, but also in information retrieval and text analysis. However,
such events extracted from a text corpus may be imprecise in both dimen-
sions. In this paper we focus on the task of event correlation, i.e., finding
events that are similar in terms of space and time. We present a frame-
work for Apache Spark that provides correlation operators that can be
configured to deal with such imprecise event data.

1 Introduction

An event is often described as “something that happens at some place at some
time”. Thus, events inherently have a spatial and a temporal component. These
spatio-temporal events do not only origin from sensor readings, but can also be
extracted from text corpora like news, weblogs, and tweets.

The task we focus on in this paper is to find events that are correlated to a
given event in terms of its time and place of occurrence. The result is, e.g., a list
of pointers to documents in which similar events have been detected. For such
correlation tasks, we are facing the following problems:

– First, event specifications are often imprecise. For example, for the event
extracted from the sentence “Obama visited Germany in April 2009”, we do
not know (using only the text source) which part of Germany Obama visited
or at what exact dates he visited Germany.

– Second, for comparing events in terms of their similarity solely based on their
temporal and geographic components, we need a distance measure.

– Third, depending on the specific application different correlation techniques
are needed: for finding similar events, nearest neighbor or skyline queries are
an appropriate approach, whereas for determining hot spots, clustering (such
as DBSCAN) might be a better choice.

– Finally, because (extracted) event data can be large datasets, scalable tech-
niques are required. Modern data processing frameworks such as Apache
Hadoop or Spark provide a suitable platform for addressing this challenge.
In [2] an adaption of DBSCAN to MapReduce is proposed, whereas in [1] and
[4] adaptions of the skyline algorithm are shown.

c© Springer International Publishing Switzerland 2015
S. Maneth (Ed.): BICOD 2015, LNCS 9147, pp. 9–15, 2015.
DOI: 10.1007/978-3-319-20424-6 2



10 S. Hagedorn et al.

In this paper, we propose a framework that addresses the problem of deter-
mining the correlation between events. For this, we introduce an event model
and indicate different distance measures for both the temporal and geographic
components of events. We further introduce a set of basic operators for prepar-
ing as well as exploring and analyzing event data correlations. These operators
are provided as transformation operators in Apache Spark and allow to define
application-specific spatio-temporal event analysis pipelines including top-k and
skyline processing as well as (density-based) clustering.

2 Event Data Model

We assume an event model in which information about events has been extracted
from some document and is represented by a temporal and a geographic compo-
nent along with other information like an ID and metadata such as the origin.
The expressions underlying these components are based on concept hierarchies
for time and space.

Temporal expressions can be of different granularities, with days being the
finest and years the coarsest level of granularity. Although further granularities
such as weeks or centuries can be included. For the sake of simplicity, in the
following, we only focus on days, months, and years. We denote the corresponding
domains as T = {Tday, Tmonth, Tyear}.

Analogously, geographic expressions are taken from the domains in G =
{Gcity, Gstate, Gcountry}. We assume that with each expression a spatial object
in the form of a single polygon (without holes) is associated.

Definition 1. (Event) Given concept hierarchies T and G for temporal and
geographic expressions, respectively. An event e = 〈t, g〉 consists of a temporal
expression t with t.type ∈ T and a geographic expression g with g.type ∈ G.

Examples of (imprecise) event specifications are (2013-09-02, Munich), (1955,
Germany), or (2000-04, Bavaria). To account for these types of imprecision, in
our framework we make the following assumptions:

1. Temporal and geographic expressions of the finest granularity are certain.
2. Every temporal (resp. geographic) expression of type P ′ that refines a given

temporal (resp. geographic) expression of type P , with P ′ being of finer gran-
ularity than P , is equally likely.

Distance Measures. To compute correlations between events, we need a dis-
tance measure that takes both the temporal and the geographic component of
an event into account, both of which can be imprecise. For the most fine-grained,
point-based locations (e.g., cities) and days, this is trivial, resulting in a scalar
value for time (e.g., distance in days) and location (e.g., distance in kilome-
ters), which can be combined into some single (weighted) distance value. For
events having an imprecise temporal or geographic expressions, different types
of distance functions are meaningful and can be specified accordingly.



A Framework for Scalable Correlation of Spatio-temporal Event Data 11

In general, there are two approaches for realizing a distance function for
imprecise event data. First, dates representing a month or year can be mapped
to intervals of days (e.g., “2014-05” can be mapped to [2014-05-01, 2014-05-30])
with each subinterval being valid instance of “2014-05”. Similarly, a country can
be mapped to a polygon or minimum bounding box. Then, a function is devised
that determines the distance between intervals (for time) and boxes/polygons
(for regions). Each such a function can either yield a single scalar value (e.g., the
average distance between points of two intervals/boxes), or an interval, giving the
minimum and maximum distance between two intervals/boxes. In our current
framework, we only consider the former case where single scalar values for both
the temporal and geographic component are determined and linearly combined
using a weight. That is, for two events e1 and e2, we assume a distance function
dist(e1, e2) := wt distt(e1, e2) + wg distg(e1, e2), with diste and distg functions
for determining the distance between intervals and regions/boxes, respectively,
and wt, wg ∈ [0, 1], wt + wg = 1.

3 Techniques for Correlating Event Data

Correlating events means to find events in the dataset that have something in
common or which have the same or a similar context. In this paper, we focus on
the spatio-temporal aspect of events, which means we consider the similarity of
events in terms of their spatial and/or temporal properties. Depending on the
specific application different approaches can be used to determine correlations.

Nearest Neighbor Queries. Nearest neighbor queries represent the most straight-
forward solution. Given a set of events E , a reference event er and a distance
function dist, the task is to find the set kNN(er) of the k nearest events. In the
case of our spatio-temporal event data this requires a single distance measure,
which is usually defined using weights for the spatial and temporal distances.

Skyline. Defining appropriate weights is often difficult. Skyline queries avoid
this problem. Adapted to our scenario, the notion of the Skyline algorithm is to
find those events in E that “match” a query event q = 〈tq, gq〉 best. Since we
consider two dimension for events, time and space, it is thus intuitive to employ
a skyline-based approach as there might be events that match tq well but not
gq, and vice versa. A core concept of skylines is the dominance relationship. The
skyline Sq consists of all events that are not dominated by any other event in E
with respect to q. Because the dominance of an event with respect to another
event is decided by their respective distances to q, the distance function outlined
in the previous section come into play.

Clustering. Clustering represents another useful technique for correlating event
data. Applied to the problem of event correlation we can form clusters of events
on their distance values and, in this way, events belonging to the same cluster are
considered to be correlated. Focusing only on the spatial and temporal dimension
results in clusters of events that occur in close proximity in terms of space and time.



12 S. Hagedorn et al.

SkylineOp

EventCluster

ClusteringOpCalcDistance

PrepareEvents EventData

EventSkyline

RawEventData

EventDistanceData

time, location

distancedominates

reference 
event

GeoDB

TopKOp

EventList

k, weights

distance-func

Fig. 1. Framework showing operators and event analysis pipeline

4 A Spark-Based Correlation Framework

Given the event data model, the distance functions, and the set of correlation
functions described above, the goal of our work is to provide a framework for scal-
able event data correlation. As the underlying platform we have chosen Apache
Spark1, but our framework can be easily ported to other platforms providing a
similar (Scala-based) API such as the Apache Flink2 project. Figure 1 shows the
components of the framework and their role in an event analysis pipeline.

The core components are the following operators implemented as transfor-
mations on Spark’s resilient distributed datasets (RDD):

PrepareEvents: This operator transforms a set of raw (textual) event data into
a set of event records 〈t, q〉 conforming to our framework. This means that
textual temporal and spatial properties are normalized into numerical values,
i.e., date/time values and points or polygons for the spatial descriptions such
as names of cities or locations. For the latter, a service such as GeoNames3

can be used.
CalcDistance: This implements a transformation operator for calculating the

spatial and temporal distance dist of each event of a RDD to a given reference
event.

TopKOp: This operator computes the top-k list of events from an input RDD
produced by CalcDistance. Parameters to this operator are k as well as the
weights for the geographic (wg) and temporal (wt) distance.

SkylineOp: This operator computes the skyline of event records from a RDD
produced by CalcDistance. The dominance relation can be passed as para-
meter to the operator.

ClusteringOp: Finding groups of correlated events is realized by the
ClusteringOp operator implementing a parallel variant of DBSCAN [3] for
spatio-temporal data. Parameters are the standard clustering parameters ε

1 http://spark.apache.org.
2 http://flink.apache.org.
3 http://www.geonames.org.

http://spark.apache.org
http://flink.apache.org
http://www.geonames.org


A Framework for Scalable Correlation of Spatio-temporal Event Data 13

and MinPts as well as a global distance function taking both spatial and
temporal distances into account.

While the implementation of PrepareEvents, CalcDistance, and – a sort-
based – TopKOp operator is rather straightforward, efficient skyline processing
and density-based clustering require more effort. As mentioned in Sect. 1, there
already exist some proposals for MapReduce-based implementations of these
operators that have inspired our Spark implementations.

Both SkylineOp and ClusteringOp are based on a grid partitioning, where
the dimensions of the grid are either the spatial and temporal dimensions (in
case of skyline processing) or longitude, latitude, and time in case of clustering.
For simplicity, we assume – non-optimal – equally-sized grid cells representing
partitions of Spark’s RDDs.

Our skyline operator implements the idea presented in [4] by computing in a
first phase bitstrings representing grid cells containing data points. This can be
done in parallel without moving data. By combining these bitstrings in a reduce
step, dominated as well as empty cells can be pruned. In the second phase, all
nodes compute a local skyline of their data by taking the information from this
global bitstring into account. Finally, the local skylines are merged.

For density-based clustering, grid cells must not be disjoint in order to deter-
mine the neighborhood for objects at the border of cells. Thus, we compute an
overlap between neighboring cells and assign objects in this overlap area to its
neighbor cells, too. Next, for each cell a local DBSCAN is performed. Note that
compared to the skyline processing strategy, this requires to repartition data
according their grid cell membership. Finally, we build a global graph of all local
clusters in order to merge clusters from different cells.

5 Use Cases

In this section, we show the outcome of the skyline and top-k operations. Due
to space limitations we do not present a full performance evaluation. Our test
dataset was crawled from the website eventful.com and contains 122,467 events.
It consists only of events that took place in Germany where the earliest event
appeared on 2007-06-30 and the latest on 2020-06-30. For the test of our opera-
tors, we manually removed all events in the eastern part of Germany (which is
the federal state of Saxony).

Figure 2 shows the spatial distribution of all events in our dataset. On the left,
the skyline (marked with +) is shown. The right figure shows the result of the top-
k query (k = 10; marked with •). The reference point for both queries is shown
as �. One can see that the spatio-temporal skyline not only finds correlated
events that have both a small spatial and temporal distance to the reference
event, but also considers events as correlated that are near to the reference event
in at least one dimension. The two shown skyline points in the north and the
south have a large spatial distance, but only a small temporal distance and thus,
are considered correlated to the reference event. On the other hand, the top-
k operator accepts user-defined weights for the spatial and temporal distances



14 S. Hagedorn et al.

Fig. 2. Left: the skyline (+); right: top-10 result (•) for a reference event (�).

to express a desired preference over one or the other dimension. In the given
example these weights are wg = 0.10 for the geographic and wt = 0.90 for the
temporal dimension, i.e., the temporal distance is considered more important. As
Fig. 2 shows, the resulting points have a large geographic distance, but are near
to the reference event in the temporal dimension. Note, there are events that
take place at the exact same position, so that they cover each other in the figure
and appear as one point. Thus, the figure shows only eight result points. Due to
space limitations, we cannot show the results of the spatio-temporal clustering.

6 Conclusions and Ongoing Work

In this paper, we presented a framework for Apache Spark that provides opera-
tors for computing correlated events. We provide operators for data import and
cleaning as well as operators for the actual correlation tasks. These operators can
be configured by their parameters and the distance function - for which we also
provide several alternatives. Our ongoing work focuses more on imprecise data
and respective distance functions that return intervals instead of scalar values,
which will result in, e.g., SkyBands instead of Skylines.

Acknowledgement. This work was funded by the DFG under grant no. SA782/22.



A Framework for Scalable Correlation of Spatio-temporal Event Data 15

References

1. Chen, L., Hwang, K., Wu, J.: MapReduce skyline query processing with a new
angular partitioning approach. In: IPDPSW (2012)

2. Dai, B.-R., Lin, I.-C.: Efficient map/reduce-based DBSCAN algorithm with opti-
mized data partition. In: CLOUD (2012)

3. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: KDD (1996)

4. Mullesgaard, K., Pederseny, J.L., Lu, H., Zhou, Y.: Efficient skyline computation in
MapReduce. In: EDBT (2014)



http://www.springer.com/978-3-319-20423-9


	A Framework for Scalable Correlation of Spatio-temporal Event Data
	1 Introduction
	2 Event Data Model
	3 Techniques for Correlating Event Data
	4 A Spark-Based Correlation Framework
	5 Use Cases
	6 Conclusions and Ongoing Work
	References


