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Abstract. Ontology-based data access is an approach to organizing
access to a database augmented with a logical theory. In this approach
query answering proceeds through a reformulation of a given query into
a new one which can be answered without any use of theory. Thus the
problem reduces to the standard database setting.

However, the size of the query may increase substantially during the
reformulation. In this survey we review a recently developed framework
on proving lower and upper bounds on the size of this reformulation by
employing methods and results from Boolean circuit complexity.

1 Introduction

Ontology-based data access is an approach to storing and accessing data in a
database!. In this approach the database is augmented with a first-order logical
theory, that is the database is viewed as a set of predicates on elements (entities)
of the database and the theory contains some universal statements about these
predicates.

The idea of augmenting data with a logical theory has been around since at
least 1970s (the Prolog programming language, for example, is in this flavor [19]).
However, this idea had to constantly overcome implementational issues. The
main difficulty is that if the theory accompanying the data is too strong, then
even standard algorithmic tasks become computationally intractable.

One of these basic algorithmic problems will be of key interest to us, namely
the query answering problem. A query to a database seeks for all elements in
the data with certain properties. In case the data is augmented with a theory,
query answering cannot be handled directly with the same methods as for usual
databases and new techniques are required.

Thus, on one hand, we would like a logical theory to help us in some way
and, on the other hand, we need to avoid arising computational complications.
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! We use the word “database” in a wide informal sense, that is a database is an
organized collection of data.
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Ontology-based data access (OBDA for short) is a recent approach in this
direction developed since around 2005 [8,10,12,21]. Its main purpose is to help
maintaining large and distributed data and make the work with the data more
user-friendly. The logical theory helps in achieving this goal by allowing one to
create a convenient language for queries, hiding details of the structure of the
data source, supporting queries to distributed and heterogeneous data sources.
Another important property is that data does not have to be complete. Some
of information may follow from the theory and not be presented in the data
explicitly.

A key advantage of OBDA is that to achieve these goals, it is often enough in
practice to supplement the data with a rather primitive theory. This is important
for the query answering problem: the idea of OBDA from the algorithmic point
of view is not to develop a new machinery, but to reduce query answering with
a theory to the standard database query answering and use the already existing
machinery.

The most standard approach to this is to first reformulate a given query in
such a way that the answer to the new query does not depend on the theory any-
more. This reformulation is usually called a rewriting of the query. The rewriting
should be the same for any data in the database. Once the rewriting is built we
can apply standard methods of database theory. Naturally, however, the length
of the query typically increases during the reformulation and this might make
this approach (at least theoretically) inefficient.

The main issue we address in this survey is how large the rewriting can be
compared to the size of the original query. Ideally, it would be nice if the size
of the rewriting is polynomial in the size of the original query. In this survey
we will discuss why rewritings can grow exponentially in some cases and how
Boolean circuit complexity helps us to obtain results of this kind.

In this survey we will confine ourselves to data consisting only of unary and
binary predicates over the database elements. If data contains predicates of larger
arity, the latter can be represented via binary predicates. Such representations
are called mappings in this field and there are several ways for doing this. We
leave the discussion of mappings aside and refer the reader to [18] and references
therein. We call a data source with unary and binary predicates augmented with
a logical theory a knowledge base.

As mentioned above, in OBDA only very restricted logical theories are con-
sidered. There are several standard families of theories, including OWL 2 QL
[2,9,20] and several fragments of Datalog® [3,5-7]. The lower bounds on the
size of rewritings we are going to discuss work for even weaker theories con-
tained in all families mentioned above. The framework we describe also allows
one to prove upper bounds on the size of the rewritings that work for theories
given in OWL 2 QL. We will describe the main ideas for obtaining upper bounds,
but will not discuss them in detail.

To give a complete picture of our setting, we need also to discuss the types
of queries and rewritings we consider. The standard type of queries (as a logi-
cal formulas) considered in this field is conjunctive queries, i.e. conjunctions of
atomic formulas prefixed by existential quantifiers. In this survey we will discuss
only this type of queries.
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As for rewritings, it does not make sense to consider conjunctive formulas
as rewritings, since their expressive power is rather poor. The simplest type
of rewritings that is powerful enough to provide a rewriting for every query
is a DNF-rewriting, which is a disjunction of conjunctions with an existential
quantifiers prefix. However, it is not hard to show (see [11]) that this type of
rewriting may be exponentially larger than the original query. More general stan-
dard types of rewritings are first-order (FO-) rewritings, where a rewriting can
be an arbitrary first-order formula, positive existential (PE-) rewritings, which
are first-order formulas containing only existential quantifiers and no negations
(this type of rewritings is motivated by its convenience for standard databases),
and the nonrecursive datalog rewriting, which are not first-order formulas but
rather are constructed in a more circuit-flavored way (see Sect. 3 for details).

For these more general types of rewritings it is not easy to see how the
size of the rewriting grows in size of the original query. The progress on this
question started with the paper [17], where it was shown that the polynomial
size FO-rewriting cannot be constructed in polynomial time, unless P = NP.
Soon after that, the approach of that paper was extended in [11,15] to give a
much stronger result: not only there is no way to construct a FO-rewriting in
polynomial time, but even there is no polynomial size FO-rewriting, unless NP C
P/poly. It was also shown (unconditionally!) in [11,15] that there are queries and
theories for which the shortest PE- and NDL-rewritings are exponential in the
size of the original query. They also obtained an exponential separation between
PE- and NDL-rewritings and a superpolynomial separation between PE- and
FO-rewritings.

These results were obtained in [11,15] by reducing the problems of lower
bounding the rewriting size to some problems in computational complexity the-
ory. Basically, the idea is that we can encode a Boolean function f € NP into a
query ¢ and design the query and the theory in such a way that a FO-rewriting
of ¢ will provide us with a Boolean formula for f, a PE-rewriting of ¢ will corre-
spond to a monotone Boolean formula, and an NDL-rewriting — to a monotone
Boolean circuit. Then by choosing an appropriate f and applying known results
from circuit complexity theory, we can deduce the lower bounds on the sizes of
the rewritings.

The next step in this line of research was to study the size of rewritings for
restricted types of queries and knowledge bases. A natural subclass of conjunctive
queries is the class of tree-like queries. To define this class, for a given query
consider a graph whose vertices are the variables of the query and an edge
connects two variables if they appear in the same predicate in the query. We
say that a query is a tree-like if this graph is a tree. A natural way to restrict
theories of knowledge bases is to consider their depth. Informally, the theory is of
depth d if, starting with a data and generating all new objects whose existence
follows from the given theory, we will not obtain in the resulting underlying
graph any sequences of new objects of length greater than d. These kinds of
restrictions on queries and theories are motivated by practical reasons: they are
met in the vast majority of applications of knowledge bases. On the other hand,
in papers [11,15] non-constant depth theories were used to prove lower bounds
on the size of rewritings.
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Subsequent papers [4,16] managed to describe a complete picture of the sizes
of the rewritings in restricted cases described above. To obtain these results, they
determined, for each case mentioned above, the class of Boolean functions f that
can be encoded by queries and theories of the corresponding types. This estab-
lishes a close connection between ontology-based data access and various classes
in Boolean circuit complexity. Together with known results in Boolean circuit
complexity, this connection allows one to show various lower and upper bounds
on the sizes of rewritings in all described cases. The precise formulation of these
results is given in Sect. 4.

To obtain their results, [4,16] also introduced a new intermediate computa-
tional model, the hypergraph programs, which might be of independent interest.
A hypergraph program consists of a hypergraph whose vertices are labeled by
Boolean constants, input variables x1, . .., x, or their negations. On a given input
Z € {0,1}"™, a hypergraph program outputs 1 iff all its vertices whose labels are
evaluated to 0 on this input can be covered by a set of disjoint hyperedges. We
say that a hypergraph program computes f: {0,1}" — {0, 1} if it outputs f(Z)
on every input Z € {0,1}". The size of a hypergraph program is the number of
vertices plus the number of hyperedges in it.

Papers [4,16] studied the power of hypergraph programs and their restricted
versions. As it turns out, the class of functions computable by general hyper-
graph programs of polynomial size coincides with NP/poly [16]. The same is
true for hypergraph programs of degree at most 3, that is for programs in which
the degree of each vertex is bounded by 3. The class of functions computable
by polynomial size hypergraph programs of degree at most 2 coincides with
NL/poly [16]. Another interesting case is the case of tree hypergraph programs
which have an underlying tree and all hyperedges consist of subtrees. Tree hyper-
graph programs turn out to be equivalent to SAC' circuits [4]. If the underlying
tree is a path, then polynomial size hypergraph programs compute precisely the
functions in NL/poly [4].

The rest of the survey is organized as follows. In Sect. 2 we give the necessary
definitions from Boolean circuit complexity. In Sect.3 we give the necessary
definitions and basic facts on knowledge bases. In Sect.4 we describe the main
idea behind the proofs of bounds on the size of the rewritings. In Sect.5 we
introduce hypergraph programs and explain how they help to bound the size of
the rewritings. In Sect. 6 we discuss the complexity of hypergraph programs.

2 Boolean Circuits and Other Computational Models

In this section we provide necessary information on Boolean circuits, other com-
putational models and related complexity classes. For more details see [13].

A Boolean circuit C' is an acyclic directed graph. Each vertex of the graph is
labeled by either a variable among x4, ..., x,, or a constant 0 or 1, or a Boolean
function —, A or V. Vertices labeled by variables and constants have in-degree
0, vertices labeled by — have in-degree 1, vertices labeled by A and V have in-
degree 2. Vertices of a circuit are called gates. Vertices labeled by variables or
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constants are called input gates. For each non-input gate g its inputs are the
gates which have out-going edges to g. One of the gates in a circuit is labeled
as an output gate. Given & € {0,1}", we can assign the value to each gate of
the circuit inductively. The values of each input gate is equal to the value of
the corresponding variable or constant. The value of a —-gate is opposite to the
value of its input. The value of a A-gate is equal to 1 iff both its inputs are 1.
The value of a V-gate is 1 iff at least one of its inputs is 1. The value of the
circuit C(%) is defined as the value of its output gate on & € {0,1}™. A circuit
C' computes a function f: {0,1}" — {0,1} iff C(Z) = f(&) for all ¥ € {0,1}".
The size of a circuit is the number of gates in it.

The number of inputs n is a parameter. Instead of individual functions,
we consider sequences of functions f = {f,}nen, where f,: {0,1}" — {0,1}.
A sequence of circuits C = {C), }nen computes f iff C,, computes f,, for all n.
From now on, by a Boolean function or a circuit we always mean a sequence of
functions or circuits.

A formula is a Boolean circuit such that each of its gates has fan-out 1.
A Boolean circuit is monotone iff there are no negations in it. It is easy to see
that any monotone circuit computes a monotone Boolean function and, on the
other hand, any monotone Boolean function can be computed by a monotone
Boolean circuit.

A circuit C' is a polynomial size circuit (or just polynomial circuit) if there
is a polynomial p € Z[z] such that the size of C,, is at most p(n).

Now we are ready to define several complexity classes based on circuits. A
Boolean function f lies in the class P/poly iff there is a polynomial size circuit C'
computing f. A Boolean function f lies in the class NC" iff there is a polynomial
size formula C' computing f. A Boolean function f lies in the class NP /poly iff
there is a polynomial p(n) and a polynomial size circuit C' such that for all n
and for all Z € {0,1}"

f@) =1« e {0,1}*"™ C\ iy (@ 9) = 1. (1)

Complexity classes P/poly and NP /poly are nonuniform analogs of P and NP.

We can introduce monotone analogs of P/poly and NC! by considering only
monotone circuits or formulas. In the monotone version of NP /poly it is only
allowed to apply negations directly to y-inputs.

The depth of a circuit is the length of the longest directed path from an input
to the output of the circuit. It is known that f € NC' iff f can be computed
by logarithmic depth circuit [13]. By SAC' we denote the class of all Boolean
functions f computable by a polynomial size logarithmic depth circuit such that
V-gates are allowed to have arbitrary fan-in and all negations are applied only
to inputs of the circuit [24].

A nondeterministic branching program P is a directed graph G = (V| E),
with edges labeled by Boolean constants, variables x1, ..., z, or their negations.
There are two distinguished vertices of the graph named s and ¢. On an input
Z € {0,1}™ a branching program P outputs P(Z) = 1 iff there is a path from s to
t going through edges whose labels evaluate to 1. A nondeterministic branching
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program P computes a function f: {0,1}"™ — {0,1} iff for all ¥ € {0,1}" we
have P(Z) = f(Z). The size of a branching program is the number of its vertices
plus the number of its edges |V|+|E|. A branching program is monotone if there
are no negated variables among labels.

Just as for the functions and circuits, from now on by a branching program
we mean a sequence of branching programs P,, with n variables for all n € N.

A branching program P is a polynomial size branching program if there is a
polynomial p € Z[x] such that the size of P, is at most p(n).

A Boolean function f lies in the class NBP iff there is a polynomial size
branching program P computing f. It is known that NBP coincides with
nonuniform analog of nondeterministic logarithmic space NL, that is NBP =
NL/poly [13,23].

For every complexity class K introduced above, we denote by mK its
monotone counterpart.

The following inclusions hold between the classes introduced above [13]

NC!' € NBP C SAC! C P/poly C NP/poly. (2)

It is a major open problem in computational complexity whether any of these
inclusions is strict.
Similar inclusions hold for monotone case:

mNC' € mNBP € mSAC! € mP/poly € mNP /poly. (3)

It is also known that mP/poly # mNP/poly [1,22] and mNBP # mNC' [14].
We will use these facts to prove lower bounds on the rewriting size.

3 Theories, Queries and Rewritings

In this survey a data source is viewed as a first-order theory. It is not an arbitrary
theory and must satisfy some restrictions, which we specify below.

First of all, in order to specify the structure of data, we need to fix a set of
predicate symbols in the signature. Informally, they correspond to the types of
information the data contains. We assume that there are only unary and binary
predicates in the signature. The data itself consists of a set of objects (entities)
and of information on them. Objects in the data correspond to constants of the
signature. The information in the data corresponds to closed atomic formulas,
that is predicates applied to constants. These formulas constitute the theory
corresponding to the data. We denote the resulting set of formulas by D and the
set of constants in the signature by Ap.

We denote the signature (the set of predicate symbols and constants) by X.
Thus, we translated a data source into logical terms. To obtain knowledge base,
we introduce more complicated formulas into the theory. The set of these formu-
las will be denoted by T and called an ontology. We will describe which formulas
can be presented in T' a bit later. The theory D U T is called a knowledge base.
Predicate symbols and the theory T determines the structure of the knowledge
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base and thus will be fixed. Constants Ap and atomic formulas D, on the other
hand, determine the current containment of the data, so they will be varying.

As we mentioned in Introduction, we will consider only conjunctive queries.
That is, a query is a formula of the form

q(Z) = (T, ),

where ¢ is a conjunction of atomic formulas (or atoms for short). For simplicity
we will assume that ¢ does not contain constants from Ap.

What does the query answering mean for standard data sources without
ontology? It means that there are values for £ and ¥ among Ap such that the
query becomes true on the given data D. That is, we can consider a model Ip
corresponding to the data D. The elements of the model Ip are constants in Ap
and the values of predicates in Ip is given by formulas in D. That is, a predicate
P ¢ ¥ is true on @ from Ap iff P(@) € D. The tuple of elements @ of Ip is an
answer to the query ¢(&) if

Let us go back to our setting. Now we consider data augmented with a logical
theory. This means that we do not have a specific model. Instead, we have a
theory and we need to find out whether the query is satisfied in the theory. That
is, the problem we are interested in is, given a knowledge base DUT and a query
q(Z), to find @ in Ap such that

DUT [ ¢(a).

If Z is an empty tuple of variables, then the answer to the query is ‘yes’ or ‘no’.
In this case we say that the query is Boolean.

The main approach to solving the query answering problem is to first refor-
mulate the query in such a way that the answer to the new query does not
depend on the theory T" and then apply the machinery for standard databases.
This leads us to the following definition. A first-order formula ¢’(Z) is called a
rewriting of ¢(x) w.r.t. a theory T' if

DUT [ q(@) & Ip k= ¢'(a) (4)

for all D and for all @&. We emphasize that on the left-hand side in (4) the
symbol ‘=" means logical consequence from a theory, while on the right-hand
side it means truth in a model.

We also note that in (4) only predicate symbols in X' and the theory T are
fixed. The theory D (and thus, the set of constants in the signature) may vary,
so the rewriting should work for any data D. Intuitively, this means that the
structure of the data is fixed in advance and known, and the current content of
a knowledge base may change. We would like the rewriting (and thus the query
answering approach) to work no matter how the data change.

What corresponds to a model of the theory D UT? Since the data D is not
assumed to be complete, it is not a model. A model correspond to the content
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of the “real life” complete data, which extends the data D. We assume that all
formulas of the theory hold in the model, that is all information in the knowledge
base (including formulas in T") is correct.

However, if we allow to use too strong formulas in our ontology, then the
problem of query answering will become algorithmically intractable. So we have
to allow only very restricted formulas in 7. On the other hand, for the practical
goals of OBDA also only very simple formulas are required.

There are several ways to restrict theories in knowledge bases. We will use
the one that fits all most popular restrictions. Thus our lower bounds will hold
for most of the considered settings. As for the upper bounds, we will not discuss
them in details, however, we mention that they hold for substantially stronger
theories and cover OWL 2 QL framework [20].

Formulas in the ontology T are restricted to the following form

Va(p(x) — Jyd(z,y)), ()

where x and y are (single) variables, ¢ is a unary predicate and ¥(z,y) is a
conjunction of atomic formulas.

It turns out that if T consists only of formulas of the form (5), then the
rewriting is always possible. The (informal) reason for this is that in this case
there is always a universal model Mp for given D and T'.

Theorem 1. For all theories D,T such that T consists of formulas of the
form (5) there is a model Mp such that

DUT | q(@) & Mp [ q(a@)
for any conjunctive query q and any d.

Remark 1. Note that the model Mp actually depends on both D and T. We do
not add 7" as a subscript since in our setting 7" is fixed and D varies.

The informal meaning of this theorem is that for ontologies T specified by (5)
there is always the most general model. More formally, for any other model M
of D UT there is a homomorphism from the universal model Mp to M. We
provide a sketch of the proof of this theorem. For us it will be useful to see how
the model Mp is constructed.

Proof (Proof sketch). The informal idea for the existence of the universal model
is that we can reconstruct it from the constants presented in the data D. Namely,
first we add to Mp all constants in Ap and we let all atomic formulas in D to be
true on them. Next, from the theory T it might follow that some other predicates
should hold on the constants in Ap. We also let them to be true in Mp. What
is more important, formulas in 7" might also imply the existence of new elements
related to constants (the formula (5) implies, for elements x that satisfy ¢(z),
the existence of a new element y). We add these new elements to the model and
extend predicates on them by deducing everything that follows from 7. Next,
T may imply the existence of further elements that are connected to the ones
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obtained on previous step. We keep adding them to the model. It is not hard
to see that the resulting (possibly infinite) model is indeed the universal model.
We omit the formal proof of this and refer the reader to [11].

So, instead of considering a query g over DUT we can consider it over Mp. This
observation helps to study rewritings.

It is instructive to consider the graph underlying the model Mp. The vertices
of the graph are elements of the model and there is a directed edge from an
element m; to an element my if there is a binary predicate P such that Mp |
P(mi,msz). Then in the process above we start with a graph on constants from
Ap and then add new vertices whose existence follows from 7. Note that the
premise of the formula (5) consists of a unary predicate. This means that the
existence of a new element in the model is implied solely by one unary predicate
that holds on one of the already constructed vertices. Thus for each new vertex
of the model we can trace it down to one of the constants a of the theory and
one of the atomic formulas B(a) € D.

The maximal (over all D) number of steps of introducing new elements to
the model is called the depth of the theory T'. This parameter will be of interest
to us. We note that Mp and thus the depth of T are not necessarily finite.

In what follows it is useful to consider, for each unary predicate A € X, the
universal model Mp for the theory D = {A(a)}. As we mentioned, the universal
model for an arbitrary D is “build up” from these simple universal models.
We denote this model by M4 (instead of My A(a)}) and call it the universal tree
generated by A. The vertex a in the corresponding graph is called the root of the
universal tree. All other vertices of the tree are called inner vertices. To justify
the name “tree” we note that the underlying graph of M4 in all interesting cases
is a tree, though not in all cases. More precisely, it might be not a tree if some
formula (5) in T" does not contain any binary predicate R(z,y).

Ezxample 1. To illustrate, consider an ontology T describing a part of a student
projects organization:

Va (Student(z) — Jy (worksOn(z, y) A Project(y))),

Va (Project(z) — Jy (isManagedBy(z,y) A Professor(y))),
Y,y (worksOn(x, y) — involves(y,x)),

Y,y (isManagedBy(x, y) — involves(x, y))

Some formulas in this theory are of the form different than (5), but it will not be
important to us. Moreover, it is not hard to see that this theory can be reduced
to the form (5) (along with small changes in data).

Consider the query ¢(x) asking to find those who work with professors:

q(z) = 3y, z (worksOn(z, y) A involves(y, z) A Professor(z)). (6)
It is not hard to check that the following formula is a rewriting of ¢:
¢ (x) = 3y,z|[worksOn(z,y) A
(worksOn(z,y) V isManagedBy(y, z) V involves(y, z)) A Professor(z)] v
Jy [worksOn(z,y) A Project(y)] Vv Student(z).
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That is, for any data D and any constant a in D, we have
DUT k q(a) & Ip F ¢'(a).
To illustrate the universal model, consider the data
D = { Student(c), worksOn(c,b), Project(b), isManagedBy(b, a) }.

The universal model Mp is presented in Fig. 1. The left region corresponds to
the data D, the upper right region corresponds to the universal tree generated
by Project(b) and the lower right region corresponds to the universal tree gener-
ated by Student(c). The label of the form P~ on an edge, where P is a predicate of
the signature, means that there is an edge in the opposite direction labeled by P.

<

\
: a 1isManagedBy meSSSOT MP?“oject
: b : involves
: e | M.S'tudent
| involves” : :
: D @ l worksOn Project isManagedBy PTO]Z()&SSOT
N Student /1 involves™ involves

Fig. 1. An example of a universal model

We note that for our query ¢(x) we have that ¢(c) follows from D U T and
we can see that the rewriting ¢’(c) is true in Mp. Note, however, that g(c) is not
true in D due to the incompleteness of the data D: it is not known that a is a
professor.

From the existence of the universal model (and simplicity of its structure) it can
be deduced that for any ¢ there is a rewriting ¢’ having the form of (existentially
quantified) disjunction of conjunctions of atoms. However, it is not hard to pro-
vide an example that this rewriting is exponentially larger than ¢ (see [11]). By
the size of the rewriting we mean the number of symbols in the formula.

So to obtain shorter rewriting it is helpful to consider more general types of
formulas. A natural choice would be to allow arbitrary first-order formula as a
rewriting. This type is called a first-order rewriting, or a FO-rewriting. Another
option is a positive existential rewriting, or a PE-rewriting. This is a special case
of FO-rewriting in which there are no negations and there are only existential
quantifiers. PE-rewritings are more preferable than FO-rewritings since they are
more accessible to algorithmic machinery developed for usual databases. The
size of a PE- or a FO-rewriting is a number of symbols in the formula.

Another standard type of rewriting is a nonrecursive datalog rewriting, or
NDL-rewriting. This rewriting does not have a form of first-order formula and
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instead has the form of DAG-representation of a first-order formula. Namely,
NDL-rewriting consists of the set II of formulas of the form

VE(AL AL N Ap — Ag),

where A; are atomic formulas (possibly new, not presented in the original sig-
nature ) not necessarily of arity 1 or 2. Each A; depends on (some of) the
variables from & and each variable in Ay must occur in A; A ... A A,. Finally,
we need the acyclicity property of II. To define it, consider a directed graph
whose vertices are predicates A of IT and there is an edge from A to B iff there
is a formula in IT which has B as the right-hand side and contains A in the
left-hand side. Now II is called acyclic if the resulting graph is acyclic. Also an
NDL-rewriting contains a goal predicate G and we say that a@ in Ap satisfies
(I, G) over the data D iff
DUII EG(a).

Thus, a (I1,G) is called an NDL-rewriting of the query ¢ if

DUT E ¢(@) & DUII E G(a)
for all D and all @. The size of an NDL-rewriting (II, G) is the number of symbols
in it.

Example 2. To illustrate the concept of NDL-rewriting we provide explicitly a
rewriting for the query ¢ from Example 1:

Yy, z (worksOn(z,y) — Ni(y, 2)),
Wy, 2 (isManagedBy(y, 2) — Ni(y, 7))
Yy, z (involves(y, z) — N1(y, 2))

Ve, y, z (worksOn(z,y) A N1(y,
Va,y (worksOn(z,y) A Project(y) —
Va (Student(z) — G(z)),

z) A Professor(z) — G(z)),
) = G(2),

where N7 is a new binary predicate and G is the goal predicate of this NDL-
rewriting.

It is not hard to see that this rewriting is similar to the PE-rewriting ¢’ from
Example 1. Indeed, N1(y, 2) is equivalent to the subformula

(worksOn(z, y) V isManagedBy(y, z) V involves(y, z))
of ¢’ and G(z) is equivalent to ¢'(z).

It turns out that NDL-rewritings are more general than PE-rewritings. Indeed,
a PE-rewriting ¢’ has the form 3y (7, ¥), where ¢ is a monotone Boolean formula
applied to atomic formulas (note that the existential quantifiers can be moved
to the prefix due to the fact that there are no negations in the formula). The
formulas in IT can model V and A operations and thus can model the whole
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formula . For this, for each subformula of ¢ we introduce a new predicate
symbol that depends on all variables on which this subformula depends. We
model V and A operations on subformulas one by one. In the end we will have
an atom F(Z, 7). Finally, we add to II the formula

VE, g (F(Z,9) — G(@)). (7)

Then we have that, for any @, b, (@, b) is true on D iff F(@,b) is true over DUII.
Finally, 35(d, §) is true over D iff there is b among constants such that ¢(da, 5)
is true. On the other hand, in JT we can deduce G(@) iff there is b such that
F(@,b) is true. Thus, given a PE-rewriting, we can construct an NDL-rewriting
of approximately the same size.

It is unknown whether NDL-rewritings and FO-rewritings are comparable.
On the one hand, NDL-rewritings correspond to Boolean circuits and FO-
rewritings—to Boolean formulas. On the other hand, FO-rewritings can use
negations and NDL-rewritings are monotone.

As we said above, we will consider only conjunctive queries ¢(z) to knowl-
edge bases. However, in many cases queries have even simpler structure. To
describe these restricted classes of queries, we have to consider a graph under-
lying the query. The vertices of the graph are variables appearing in ¢q. Two
vertices are connected iff their labels appear in the same atom of ¢. If this graph
is a tree we call a query tree-like. If the graph is a path, then we call a query
linear.

4 Rewriting Size Lower Bounds: General Approach

In this section we will describe the main idea behind the proofs of lower bounds
on the size of query rewritings.

Very informally, we encode Boolean functions inside of queries in such a way
that the rewritings correspond to Boolean circuits computing these functions. If
we manage to encode hard enough function, then there will be no small circuits
for them and thus there will be no small rewritings.

How exactly do we encode functions inside of queries? First of all we will
restrict ourselves to the data D with only one constant element a. This is a
substantial restriction on the data. But since our rewritings should work for any
data and we are proving lower bounds, we can make our task only harder. On
the other hand, this restriction makes our lower bounds more general.

Next, we introduce several unary predicates Ay, As, ..., A, and consider the
formulas A;(a). These predicates correspond to Boolean variables x1, ..., x, of
encoded function f: the variable z; is true iff A;(a) € D. There are other pred-
icates in the signature and other formulas in D. Their role would be to make
sure that

DUT = q(a)

iff the encoded function f is true on the corresponding input.
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depth 1 depth d > 1 |arbitrary depth
linear queries | < NC* [16] | NL/poly [4] | NL/poly [4]
tree-like queries | < NC* [16] | SAC! [4] NP /poly [11]
general queries | NL/poly [16] | NP/poly [16] | NP /poly [11]

This approach allows us to characterize the expressive power of various
queries and theories. This characterization is summarized in the following table.

The columns of the table correspond to the classes of the theories T'. The
rows of the table correspond to the classes of the queries ¢. An entry of the table
represents the class of functions that can be encoded by queries and theories of
these types. The results in the table give both upper and lower bounds. However,
in what follows we will concentrate on lower bounds, that is we will be interested
in how to encode hard functions and we will not discuss why harder functions
cannot be encoded.

Next, we need to consider a rewriting of one of the types described above
and obtain from it the corresponding computational model computing f. This
connection is rather intuitive: rewritings has a structure very similar to certain
types of Boolean circuits. Namely, FO-rewritings are similar to Boolean formulas,
PE-rewriting are similar to monotone Boolean formulas and NDL-rewritings are
similar to monotone Boolean circuits. Thus, polynomial size FO-rewriting means
that f is in NC', polynomial size PE-rewriting means that f is in mNC', and
polynomial size NDL-rewriting means that f is in mP/poly. We omit the proofs
of these reductions.

Together with the table above this gives the whole spectrum of results on
the size of rewritings. We just need to use the results on the relations between
corresponding complexity classes. For example, in case of depth 1 theories and
path-like or tree-like queries there are polynomial rewritings of all three types. In
case of depth 2 theory and path-like or tree-like queries there are no polynomial
PE-rewriting, there are no polynomial FO-rewritings under certain complexity-
theoretic assumption, but there are polynomial NDL-rewritings. In case of depth
2 theories and arbitrary queries there are no polynomial PE- and NDL-rewritings
and there are no polynomial FO-rewritings under certain complexity-theoretic
assumption.

Below we provide further details of the proofs of aforementioned results. The
paper [11] used an add-hoc construction to deal with the case of unbounded
depth and non-linear queries. Subsequent papers [4,16] provided a unified app-
roach that uses the so-called hypergraph programs.

In the next section we proceed to the discussion of these programs.

5 Hypergraph Programs: Origination

For the sake of simplicity we will restrict ourselves to Boolean queries only.
Consider a query ¢ = 37p(¥) and consider its underlying graph G. Vertices of
G correspond to the variables of ¢. Directed edges of G correspond to binary
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predicates in q. Each edge (u,v) is labeled by all atomic formulas P(u,v) in g.
Each vertex v is labeled by A if A(v) is in q.

Let us consider data D. We can construct a universal model Mp just by
adding universal trees to each element of D. Let us see how the query can be
satisfied by elements of the universal model. For this we need that for each
variable ¢ of the query we find a corresponding element in Mp satisfying all the
properties of ¢ stated in the query. This element in Mp can be an element of the
data and also can be an element of universal trees.

Thus, for a query ¢ to be satisfied we need an embedding of it into the univer-
sal model. That is we should map vertices of GG into the vertices of the universal
model Mp in such a way that for each label in G there is a corresponding label
in Mp. We call this embedding a homomorphism.

Now let us see how a vertex v of G can be mapped into an inner element
w of a universal tree R. This means that for all labels of v the vertex w in a
universal tree R should have the same labels and for all adjacent edges of v
there should be corresponding edges adjacent to w in a universal tree. Thus all
vertices adjacent to v should be also mapped in the universal tree R. We can
repeat this argument for the neighbors of v and proceed until we reach vertices
of G mapped into the root of R. So, if one of the vertices of G is embedded into
a universal tree R, then so is a set of neighboring vertices. The boundary of this
set of vertices should be mapped into the root of the universal tree.

Let us summarize what we have now. An answer to a query corresponds to
an embedding of G into the universal model Mp. There are connected induced
subgraphs in G that are embedded into universal trees. The boundaries of these
subgraphs (the vertices connected to the outside vertices) are mapped into the
root of the universal tree. Two subgraphs can intersect only by boundary vertices.
These subgraphs are called tree witnesses.

Given a query we can find all possible tree witnesses in it. Then, for any
given data D there is an answer to the query if we can map the query into the
universal model Mp. There is such a mapping if we can find a set of disjoint tree
witnesses such that we can map all other vertices into D and the tree witnesses
into the corresponding universal trees.

Now assume for simplicity that there is only one element a in D. Thus D
consists of formulas A(a) and P(a,a). To decide whether there is an answer to
a query we need to check whether there is a set of tree witnesses which do not
intersect (except by boundary vertices), such that all vertices except the inner
vertices of tree witnesses can be mapped in a. Consider the following hypergraph
H: it has a vertex for each vertex of G and for each edge of G; for each tree
witness there is a hyperedge in H consisting of vertices corresponding to the
inner vertices of the tree witness and of vertices corresponding to the edges
of the tree witness. For each vertex v of the hypergraph H let us introduce a
Boolean variable z,, and for each hyperedge e of the hypergraph H — a Boolean
variable x.. For a given D (with one element a) let z, be equal to 1 iff v can
be mapped in a and let z. be equal to 1 iff the unary predicate generating the
tree witness corresponding to the hyperedge e is true on a. From the discussion
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above it follows that there is an answer to a rewriting for a given D iff there is
a subset of disjoint hyperedges such that . = 1 for them and they contain all
vertices with z, = 0.

This leads us to the following definition.

Definition 1 (Hypergraph Program). A hypergraph program H is a hyper-
graph whose vertices are labeled by Boolean variables x1, ..., x,, their negations
or Boolean constants 0 and 1. A hypergraph program H outputs 1 on input
Z € {0,1}"™ iff there is a set of disjoint hyperedges covering all vertices whose
labels evaluates to 0. We denote this by H(Z) = 1. A hypergraph program com-
putes a Boolean function f: {0,1}" — {0,1} iff for all T € {0,1}" we have
H(Z) = f(Z). The size of a hypergraph program is the number of vertices plus
the number of hyperedges in it. A hypergraph program is monotone iff there are
no negated variables among its labels.

Remark 2. Note that in the discussion above we obtained somewhat different
model. Namely, there were also variables associated to hyperedges of the hyper-
graph. Note, however, that our definition captures also this extended model.
Indeed, we can introduce for each hyperedge e a couple of new fresh vertices
ve and u, and a new hyperedge e’. We add v, to the hyperedge e and we let
€' = {ve, u.}. The label of v, is 1 and the label of u, is the variable x.. It is easy
to see that z, = 0 iff we cannot use the hyperedge e in our cover.

So far we have discussed how to encode a Boolean function by a query and a
theory. We have noted that the resulting function is computable by a hypergraph
program. We denote by HGP the class of functions computable by hypergraph
programs of polynomial size (recall, that we actually consider sequences of func-
tions and sequences of programs).

Various restrictions on queries and theories result in restricted versions of
hypergraph programs. If a theory is of depth 1, then each tree witness has one
inner vertex and thus two different hyperedges can intersect only by one vertex
corresponding to the edge of G. Thus each vertex corresponding to the edge of
G can occur in at most two hyperedges and the resulting hypergraph program
is of degree at most 2. We denote by HGPj the set of functions computable by
polynomial size hypergraph programs of degree at most k.

If a query is tree-like (or linear), then the hypergraph program will have
an underlying tree (or path) structure and all hyperedges will be its subtrees
(subpaths). We denote by HGPyee (HGPpqur) the set of functions computable
by hypergraph programs of polynomial size and with underlying tree (path)
structure.

However, to prove lower bounds we need to show that any hypergraph pro-
gram in certain class can be encoded by a query and a theory of the corresponding
type. These statements are proved separately by various constructions of queries
and theories. We will describe a construction for general hypergraph programs
as an example.

Consider a hypergraph program P and consider its underlying hypergraph
H = (V, E). It would be more convenient to consider a more general hypergraph
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program P’ which has the same underlying hypergraph H and each vertex vin V
is labeled by a variable x,. Clearly, the function computed by P can be obtained
from the function computed by P’ by fixing some variables to constant and
identifying some variables (possibly with negations). Thus it is enough to encode
in a query and a theory the function computed by P’. We denote this function
by f.

To construct a theory and a query encoding f consider the following directed
graph G. It has a vertex z, for each vertex v of the hypergraph H and a vertex
ze for each hyperedge e of the hypergraph H. The set of edges of G consists of
edges (2, 2¢) for all pairs (v, e) such that v € e. This graph will be the underlying
graph of the query. For each vertex z. the subgraph induced by all vertices on
the distance at most 2 from z. will be a tree witness. In other words, this tree
witness contains vertices z, for all v € e and z. for all €’ such that ¢/ Ne # (.
The latter vertices are boundary vertices of the tree witness.

The signature contains unary predicates A, for all v € V| unary predicates
A, B. and binary predicates R. for all e € E. Intuitively, the predicate A,
generates tree-witness corresponding to z., the predicate B, encodes that its
input correspond to z, with v € e, the predicate R, encodes that its inputs
correspond to (z., 2,) and v € e, the predicate A, encodes the variable z, of f.

Our Boolean query ¢ consists of atomic formulas

{A,(2y) | v € VIU{Re(2e,20) |v Ee, forveV and e € E}.

Here z, and z, for all v € V and e € E are existentially quantified variables of
the query.

Theory T consists of the following formulas (the variable x is universally
quantified):

Ae(x) - Hy /\ (Re’(xay> /\BE(y))a
eNe’#£0
e#e!

B.(w) = \\ Au(@), B.(x) — FyR.(y,).

vee

In particular, each predicate A, generates a universal tree of depth 2 consisting
of 3 vertices a,w and of the following predicates (a is a root of the
universal tree):

e e
vertex’ wedge

a0 A.
Ae(a), R
Re(a, WS, per) for all €' £ e, €' Ne # 0, ¢
e wsertez o B€7 A’U
B€ (wvertew)’ R
Ay (Wepiey) for all v € e, . 4
wedgc

R@ (wzdgea wzertex)'
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There are other universal trees generated by predicates B, but we will con-
sider only data in which B, are not presented, so the corresponding universal
trees also will not be presented in the universal model.

There is one constant a in our data and we will restrict ourselves only to the
data containing A.(a) for all e and R,(a,a) for all e and not containing B, for all
e. For convenience denote Dy = {A.(a), Rc(a,a) for all e € E}. The predicates
A, will correspond to the variables x, of the function f. That is the following
claim holds.

Claim. For all ¥ € {0,1}™ f(Z&) = 1iff DUT = ¢ for D = DyU{A,(a) | z, = 1}.

Proof. Note first that if A,(a) is true for all v then the query is satisfiable. We
can just map all vertices z. and z, to a. However, if some predicate A,(a) is not
presented, then we cannot map z, to a and have to use universal trees.
Suppose f(&) =1 for some & € {0,1}"™ and consider the corresponding data
D. There is a subset of hyperedges E' C E of H such that hyperedges in E’ do
not intersect and all v € V such that z, = 0 lie in hyperedges of E’. Then we
can satisfy the query in the following way. We map the vertices z, with e ¢ E’ to
a. We map all vertices z, such that v is not contained in hyperedges of E’ also
into a. If for z, we have v € e for e € E’, then we send z, to the w¢ vertex in

vertex
the universal tree M4, . Finally, we send vertices z, with e € E’ to Wegge Vertex
of the universal tree M4, . It is easy to see that all predicates in the query are
satisfied.

In the other direction, suppose for data D the query ¢ is true. It means that
there is a mapping of variables z, and z, for all v and e into universal model
Mp. Note that the vertex z. can be sent either to a, or to the vertex wgdge in
the universal tree M4,. Indeed, only these vertices of Mp has outgoing edge
labeled by R.. Consider the set £’ = {e € E | z is sent to wg,,,}. Consider
some e € E’ and note that for any ¢, such that ¢’ # ¢ and €' Ne # ), z. is on
the distance 2 from z. in G and z.s should be mapped in a. Thus hyperedges
in E’ are non-intersecting. If for some z, the atom A,(a) is not in D, then z,
cannot be mapped into a. Thus it is mapped in the vertex w¢ in some M4,

vertexr
for some e containing v. But then z. should be mapped into w¢, = of the same

edge

universal tree (there is only one edge leaving w¢,, ., labeled by R, ). Thus e € E’

and thus v is covered by hyperedges of E’. Overall, we have that hyperedges in
E’ give a disjoint cover of all zeros in P’ and thus f(z) = 1.

6 Hypergraph Programs: Complexity

We have discussed that hypergraph programs can be encoded by queries and
theories. Now we need to show that there are hard functions computable by
hypergraph programs. For this we will determine the power of various types
of hypergraph programs. Then the existence of hard functions will follow from
known results in complexity theory.

We formulate the results on the complexity of hypergraph programs in the
following theorem.
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Theorem 2 ([4,16]). The following equations hold both in monotone and non-
monotone cases:

1. HGP = HGP3 = NP/poly;
2. HGP, = NBP;

3. HGP,qi, = NBP;

4. HGPy,c. = SAC'.

Together with the discussion of two previous sections this theorem gives the
whole picture of proofs of lower bounds on the rewriting size for considered
types of queries and theories.

We do not give a complete proof of Theorem 2 here, but in order to present
ideas behind it, we give a proof of the first part of the theorem.

Proof. Clearly, HGP3 C HGP.

Next, we show that HGP C NP/poly. Suppose we have a hypergraph pro-
gram of size m with variables . We construct a circuit C(&, %) of size poly(m)
satisfying (1). Its Z-variables are precisely the variables of the program, and cer-
tificate variables i correspond to the hyperedges of the program. The circuit C'
will output 1 on (Z, %) iff the family {e | y. = 1} of hyperedges of the hypergraph
forms a disjoint set of hyperedges covering all vertices labeled by 0 under Z. It
is easy to construct a polynomial size circuit checking this property. Indeed, for
each pair of intersecting hyperedges (e, e’) it is enough to compute disjunction
—Ye V e, and for each vertex v of the hypergraph with label ¢t and contained
in hyperedges eq, ..., e it is enough to compute disjunction ¢tV ye, V -+ V ye, -
It then remains to compute a conjunction of these disjunctions. It is easy to see
that this construction works also in monotone case (note that applications of —
to g-variables in the monotone counterpart of NP /poly are allowed).

Now we show that NP/poly C HGP3. Consider a function f € NP/poly
and consider a circuit C(Z,¥) satisfying (1). Let g1,...,g, be the gates of C
(including the inputs & and g). We construct a hypergraph program of degree
< 3 computing f of size polynomial in the size of C. For each ¢ we introduce a
vertex g; labelled with 0 and a pair of hyperedges ¢4, and e4,, both containing
gi- No other hyperedge contains g;, and so either e, or ey, should be present in
any cover of zeros in the hypergraph program. Intuitively, if the gate g; evaluates
to 1 then ey, is in the cover, otherwise €4, is there. To ensure this property for
each input variable x;, we add a new vertex v; labelled with —z; to e,, and a
new vertex u; labelled with z; to €,,. For a non-variable gate g;, we consider
three cases.

— If g; = g, then we add a vertex labelled with 1 to ey, and €,,, and a vertex
labelled with 1 to €y, and ey;.

— If g; = gj Vg, then we add a vertex labelled with 1 to ey, and €y, , add a vertex
labelled with 1 to e, , and ég,; then, we add vertices h; and hj: labelled with
1 to e,4; and €9, respectively, and a vertex w; labeled with 0 to &4,; finally,
we add hyperedges {h;, w;} and {h;, w;}.

— If g; = gj A gj» then we use the dual construction.
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In the first case it is not hard to see that ey, is in the cover iff €, is in the
cover. In the second case €4, is in the cover iff at least one of e4; and ¢4, is
in the cover. Indeed, in the second case if, say, the cover contains e, then it
cannot contain €y, and so it contains eg4,. The vertex w; in this case can be
covered by the hyperedge {h;,w;} since €y, is not in the cover. Conversely, if
neither eg; nor e, , is in the cover, then it must contain both €, and ¢,, and
so, neither {hj,wz} nor {hj/,w;} can belong to the cover and we will have to
include &4, to the cover. Finally, we add one more vertex labelled with 0 to e,
for the output gate g of C. It is not hard to show that, for each &, there is ¥
such that C(#,y) = 1 iff the constructed hypergraph program returns 1 on Z.

For the monotone case, we remove all vertices labelled with —x;. Then, for
an input &, there is a cover of zeros in the resulting hypergraph program iff there
are ¢ and ¥’ < ¥ with C(&',¢) = 1.
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