
Matrix Multiplication on High-Density
Multi-GPU Architectures: Theoretical

and Experimental Investigations

Peng Zhang1(&) and Yuxiang Gao2

1 Biomedical Engineering Department,
Stony Brook University, Stony Brook, NY 11794, USA

peng.zhang@stonybrook.edu
2 Cluster Solution Department, Cray Inc., San Jose, CA 95112, USA

Abstract. Matrix multiplication (MM) is one of the core problems in the high
performance computing domain and its efficiency impacts performances of
almost all matrix problems. The high-density multi-GPU architecture escalates
the complexities of such classical problem, though it greatly exceeds the
capacities of previous homogeneous multicore architectures. In order to fully
exploit the potential of such multi-accelerator architectures for multiplying
matrices, we systematically evaluate the performances of two prevailing tile-
based MM algorithms, standard and Strassen. We use a high-density multi-GPU
server, CS-Storm which can support up to eight NVIDIA GPU cards and we test
three generations of GPU cards which are K20Xm, K40m and K80. Our results
show that (1) Strassen is often faster than standard method on multicore
architecture but it is not beneficial for small enough matrices. (2) Strassen is
more efficient than standard algorithm on low-density GPU solutions but it
quickly loses its superior on high-density GPU solutions. This is a result of more
additions needed in Strassen than in standard algorithm. Experimental results
indicate that: though Strassen needs less arithmetic operations than standard
algorithm, the heterogeneity of computing resources is a key factor of deter-
mining the best-practice algorithm.

Keywords: Matrix multiplication � Performance evaluation � Heterogeneous
architectures � High-density multi-GPU architectures

1 Introduction

Since ENIAC was announced in 1946, researchers never stop to seek a faster approach
for multiplying matrices. Not only one of the kernels in numerical linear algebra, the
problem of matrix multiplication (MM) is also a bottleneck for almost all matrix
problems such as least square problem and eigenvalue problem [1–5]. The key problem
has widely been studied in computing theory and in practical implementation. Math-
ematicians have been looking for the possible lowest bound for multiplying matrices.
The standard method for multiplying two n × n matrices is O(n3). In 1969, Strassen
reduced the computing complexity to O(n2.807) [6]. In 1987, a big breakthrough of this
problem is the Coppersmith-Winograd algorithm which can do MM in O(n2.376)

© Springer International Publishing Switzerland 2015
J.M. Kunkel and T. Ludwig (Eds.): ISC High Performance 2015, LNCS 9137, pp. 17–30, 2015.
DOI: 10.1007/978-3-319-20119-1_2

operations [7]. More new algorithms are proposed for beating the records and
approaching the true lowest bound [8].

Practical implementation is essential to exploit the proposed algorithms on the
novel parallel computing facilities [5, 9–20]. Different from theoretical studies, the
complex characteristics of computing facilities need to be taken into the design of
parallel programs. In distributed computing, communication needs to be minimized
[12, 19, 21]. Particularly the task mapping problem for the Strassen algorithm is
addressed for balancing multiplications [9, 18]. In the latest heterogeneous architec-
tures, MM needs to be optimized on special-purposed processors and accelerators, such
as CELL processor [5] and graphics processing units (GPUs) [11]. Besides, many high-
performance implementations of MM are developed such as in GotoBLAS [22, 23],
ATLAS [10], LAPACK [24] and CUBLAS [23]. To accommodate the ever-changing
computing architectures, new algorithms have been designed and developed with the
birth of new technologies. Recently, high-density multi-GPU technologies are available
to the community of supercomputing. For example, a 2U server node can be confi-
gurated with 8 NVIDIA GPU cards in CS-Storm [25, 26], featuring up a high-density
space-efficient design for integrating multiple GPUs. This design has significantly
escalated computing complexities, though it greatly improves computing performance.
There is a need to investigate MM algorithms on this novel architecture.

This motivated the work to investigate the performance of the standard and Strassen
tile-based algorithms on the high-density multi-GPU architecture. Our contributions in
the work are: (i) to systematically compare the performances of the standard and
Strassen algorithms on the high-density multi-GPU platforms; (ii) to find out the
optimal algorithms through extensive experiments for a wide range of problem sizes
under different system configurations; (iii) to present the performance characteristics to
the researchers and the engineers for better algorithmic and engineering designs.

The paper is organized as follows: standard and Strassen algorithms are reviewed in
Sect. 2. Theoretical evaluation is presented in terms of floating-point operations and
execution time in Sect. 3. High-density multi-GPU architecture is described in terms of
hardware specifications and software stacks in Sect. 4. Experimental results are pre-
sented and analyzed in Sect. 5. Conclusion is drawn in Sect. 7.

2 Matrix Multiplication Algorithms

We consider the tiled matrix multiplication (MM) algorithms on shared-memory
multicore and multi-accelerator systems. The first method is the standard tiled MM
algorithm and it is also referred to as the Naïve method thereafter. Naïve method
partitions each input matrix into a block matrix whose tiles are submatrices of identical
sizes. Based on the given partition, the computing products of submatrices are per-
formed concurrently. The other method is the Strassen algorithm, which is often faster
than Naïve on the multicore systems for large size matrices. Figure 1 gives the
examples to show the data partition and computing flows for both methods. In the
examples, the input matrices A and B are partitioned into 2 × 2 block matrices. Each
tile (namely, submatrix) is referred to as atomic data module. Intermediate data
modules are needed to buffer intermediate results. Finally, the resultant matrix C is

18 P. Zhang and Y. Gao

computed and stored in the same manner. This case of multiplying two 2 × 2 matrices
shows that Strassen saves one multiplication at the expense of 14 more additions. The
cost of multiplying matrices is often highlighted; however, the cost of adding matrices
is somewhat ignored in the analysis of most algorithms. This could result in the
problems in practical implementations. For example, clearly the benefit of Strassen
would be marginal for small enough matrices. It is observed that in practice on the
multicore systems, there is a performance crosspoint between Strassen and Naïve
[10, 27]. However, in this work, we’d ask one question: is there a performance
crosspoint for large matrices on heterogeneous architectures?

For convenience of description, we assume that: input matrix is a square matrix of
size N × N; the tiled partition is (2p) × (2p); and, each tile is a square submatrix of size
n × n. Thus, N = 2p × n. N, p and n are positive integers. p is called as partition factor.
In the example (Fig. 1), the titled partition is 2 × 2 and p = 1.

3 Theoretical Evaluation

We conduct the theoretical evaluation for two methods in terms of floating-point
operations (FLOP) and execution time.

Floating-point operations (FLOP): Let Fmm (p, n) and Fst (p, n) be the number of
floating-point operations (FLOP) that is required by Naïve and Strassen, respectively.
The formulas are written as:

Fmmðp; nÞ ¼ 8p3 � fmðnÞ þ p2ð8p� 4Þ � faðnÞ ð1Þ

Fstðp; nÞ ¼ 7p3 � fmðnÞ þ p2ð22p� 4Þ � faðnÞ ð2Þ

Here fmðnÞ ¼ n2ð2n� 1Þ and fa nð Þ ¼ n2 are the FLOP for multiplying and adding
n × n matrices.

Fig. 1. Data partitions and computing procedures for Naïve and Strassen algorithms

Matrix Multiplication on High-Density Multi-GPU Architectures 19

Let the ratio of Fst p; nð Þ over Fmm p; nð Þ be c p; nð Þ written as:

c p; nð Þ ¼ Fst p; nð Þ
Fmm p; nð Þ ¼

7p 2n� 1ð Þ þ 22p� 4
8p 2n� 1ð Þ þ 8p� 4

� 0:875� 15
n

ð3Þ

The partition factor p is often small in tiled algorithms. Then, we see: c p; nð Þ !
0:875 as n ! 1. Figure 2 illustrates the evolution of ratio c p; nð Þ under certain con-
ditions. This reaffirmed the asymptotic complexities for Naïve and Strassen and it also
indicated the performances on multicore architectures [6].

Execution Time: The performances of these two methods are then evaluated in terms of
execution time. Let Tm nð Þ and Ta nð Þ be the time for multiplying and adding two
submatrices of size n × n, respectively. Let Tmn p; nð Þ and Tst p; nð Þ are the total time
needed for Naïve and Strassen and written as:

Tmm p; nð Þ ¼ 8p3 � Tm nð Þ þ p2 8p� 4ð Þ � Ta nð Þ ð4Þ

Tst p; nð Þ ¼ 7p3 � Tm nð Þ þ p2 22p� 4ð Þ � Ta nð Þ ð5Þ

On homogeneous multicore architectures, multiplication is often more time-con-
suming than addition for large enough matrices so we assume: Tm nð Þ � Ta nð Þ for large
n. Let np be the number of processor cores that process concurrently. Thus, we have the
facts on homogenous multicore systems that:

• Strassen is more efficient than Naïve and its improvement is *12.5 %.
• Parallel efficiency is nearly perfect when the number 7p3 is a multiple of np. Nat-

urally, it is because 7p3 multiplication instances could be distributed evenly on the
np processor cores, thus leading to perfect balanced multiplying operations [9].

Fig. 2. Ratio of FLOP (Strassen) over FLOP (Naïve) with varied partition factor p and
submatrix size n

20 P. Zhang and Y. Gao

However, the situation may be different on the heterogeneous multi-GPU architecture.
The difference is due to the disparity of GPU and CPU performances (Table 1). We
calculate the ratio of Tst p; nð Þ over Tmm p; nð Þ as:

b p; nð Þ ¼ Tst p; nð Þ
Tmm p; nð Þ ¼

p 7 � j nð Þ þ 22ð Þ � 4
p 8 � j nð Þ þ 8ð Þ � 4

� 7 � j nð Þ þ 22
8 � j nð Þ þ 8

ð6Þ

Here j nð Þ ¼ Tm nð Þ=Ta nð Þ is the ratio of multiplication time over addition time for
submatrices of size n × n. Smaller b p; nð Þ means that Strassen is more efficient than
Naïve. Writing j nð Þ as a function of b p; nð Þ yields:

j nð Þ� � 8 � b p; nð Þ � 22
8 � b p; nð Þ � 7

ð7Þ

This helps find out the asymptotic trend:

limbðp;nÞ!1 j nð Þ ¼ 14 ð8Þ

Secondly, we have:

@b p; nð Þ
@j nð Þ � �15

8 j nð Þ þ 1ð Þ2 \0 ð9Þ

From Eqs. (8) and (9), we find out that:

• If j nð Þ[14, Strassen could be faster than Naïve. On the other hand, if j nð Þ\14,
Naïve could outperform Strassen, though it required more FLOP.

• Thus, when multiplication is much faster than addition, Strassen is greatly benefi-
cial, compared to Naïve. However, when multiplication becomes as fast as addition,
Naïve may in turn surpass Strassen.

Figure 3 shows the changes of b p; nð Þ under varied p and j nð Þ. Therefore, this made a
possible: when/if the multiplication could be as fast as addition, Naïve could outper-
form Strassen. This assumption is hardly achievable in today’s processors but it maybe
holds on the hybrid multi-GPU architectures.

Table 1. Performance comparison between GPUs and CPUs

Peak floating point performances (TFlops)
Double-precision Single-precision

Tesla K20 1.17 3.52
Tesla K40 1.43 4.29
Tesla K80 1.87 5.60
Xeon E5-2670 0.166 0.333

Matrix Multiplication on High-Density Multi-GPU Architectures 21

4 High-Density Multi-GPU Architecture

4.1 Hardware

CS-Storm [25] is used for performing all experiments and it is a 2U sever that can be
equipped with up to 8 NVIDIA Tesla GPU cards and 2 Intel Xeon processors. In this
work, we test three multi-GPU systems. Table 2 lists the hardware specifications. On
the board, four PCIe switches are enclosed; each hooking up to 2 GPUs with the host.

4.2 Software

System software includes RHEL 6.5 and NVIDIA driver 340.32. For best perfor-
mances of subprograms on CPUs and GPUs, we select two BLAS (basic linear algebra
subprograms) libraries: Intel Math Kernel Library (MKL v11.2) for CPUs and CU-
BLAS (CUDA 6.5) for GPUs. Complier package is Intel Parallel Studio 2015.

A data-oriented mapping paradigm (DMP) is extended to distribute tasks
among CPUs and GPUs [28]. Following the work [28], we describe the scheduler

Fig. 3. Ratio of Tst p; nð Þ (Strassen) over Tmm p; nð Þ (naïve) with varied partition factor p and j nð Þ

Table 2. Hardware specification for multi-K20/K40/K80 server nodes

Systems GPU hardware CPU hardware
Model # of

GPUS
Total
CUDA
Cores

GDDR5 /
GPU (GB)

Model # of
CPUS

Total
CPU
Cores

Total Host
Memory (GB)

K20 K20Xm
(1x Kepler
GK110)

4 10,752 5.76 Intel Xeon
E5-2670
v2

2 20 165

K40 K40m
(1x Kepler
GK110B)

8 23,040 11.52 Intel Xeon
E5-2670
v2

2 20 165

K80 K80
(2x Kepler
GK210)

16 39,936 11.52 Intel Xeon
E5-2680
v3

2 24 165

22 P. Zhang and Y. Gao

work. In the tiled algorithms, the tiles are treated as data modules. All the tiles asso-
ciated with input matrices are treated as initial data modules. All the tiles that belong to
the resultant matrix are referred to as resultant data modules. Intermediate tiles are
treated as intermediate data modules. All of data modules are given by an identifier. In
the method, when a function is defined as ds = f (d1, d2), we say ds depends on d1 and
d2. Here, ds, d1 and d2 are the identifiers of data modules and the function f is either the
multiplication or the addition. In this manner, the data dependency is defined.
A function in the method is referred to as a task in the computing. In the computing,
initial data modules are first loaded and ready to use. Then a dedicated scheduler
checks the availability of new tasks until all tasks are done. A task is available as long
as the input data modules it requires are ready to use. The scheduler sends a new task to
the next available CPU core or GPU card, as long as the task is available. We further
add an arbitrator layer in the scheduler, which allows the scheduler to distribute
specified tasks to preferred platforms. For example, the scheduler could distribute the
addition tasks only on CPUs and the multiplication tasks only on GPUs.

5 Experimental Evaluation

5.1 Performance Metrics

Wallclock time (in seconds) is used for timing. TðAÞ=TðBÞ denotes the wallclock time
for method A and B. SðA;BÞ ¼ TðBÞ=TðAÞ is the speedup for A over B. Performance
improvement for A over B is defined as PðA;BÞ and calculated as:

P A;Bð Þ ¼ T Bð Þ � TðAÞ
TðBÞ ¼ 1� S A;Bð Þ�1 ð10Þ

As this equation suggests, a positive PðA;BÞ implies A is faster than B; otherwise,
B is faster than A. In addition, for the clarity of showing schedulability, parallel
activities trace (PAT) is proposed to illustrate the activities of concurrent computations.
PAT is the 2D graphic scheme, in which the horizontal axis shows wallclock time and
the vertical axis implies the device type (CPU/GPU) and thread identifiers (IDs).
Different colors refer to different types of tasks (functions). Naturally, two ends of a
color bar indicate starting and ending time points of data processing of a particular task
so the length means the amount of time the task takes. PAT graphically helps illustrate
the complexities of parallel activities of parallel programs. 64-bit and 32-bit precision
floating-point formats are tested. Input matrices are partitioned as 4 × 4 tiles.

5.2 Homogeneous Multicore Architectures

Parallel efficiency is nearly perfect when the number of concurrent processes is a
multiple of 7 thanks to the nature of Strassen [9, 29]. Thus, we benchmark both
methods using 7 and 14 processor cores for a range of varied problem sizes. Figures 6
and 7 present the performances for Strassen and Naïve using the 64-bit (double) and
32-bit (single) precisions, respectively. Performance improvements of Strassen over

Matrix Multiplication on High-Density Multi-GPU Architectures 23

Naïve are accordingly calculated. From these results, we can find out: (i) Strassen lost
its superiority for small enough sizes. With the increase of problem sizes, Strassen
gains more benefits and it becomes consistently more efficient than Naïve. On seven
cores, Strassen improved the performance by a factor of 13 * 14 %, compared with
Naïve. On 14 cores, performance improvements of Strassen over Naïve increase to
16 * 17 %. This reaffirms: Strassen is more beneficial for large enough sizes. The
precision of floating-point numbers has a dominating impact on absolute performances
but it has a relatively small impact on performance improvements of Strassen
over Naïve.

5.3 Heterogeneous Multi-GPU Architectures

5.3.1 Heterogeneity of Performances
When migrating from homogeneous multicore to heterogeneous multi-GPU architec-
tures, we need to exam the performances of two key operations, multiplication and
addition, on processors and accelerators. Figure 4 presents the performances for varied
problem sizes. The results show that: (i) GPU multiplication (CUBLAS_DGEMM/
CUBLAS_SGEMM) is dominantly faster than CPU multiplication (MKL_DGEMM/
MKL_SGEMM). (ii) CPU addition (MKL_DOMATADD/MKL_SOMATADD) is
even faster than GPU addition (CUBLAS_DAXPY/CUBLAS_SAXPY), due to data
transfer overhead between the host and the GPU devices. Thus, CPU is still the optimal
platform to perform the matrix addition but GPU becomes the best choice for the
matrix multiplication for large enough size. (iii) Lastly, CPU multiplication is typically
2 * 3 orders of magnitude slower than CPU addition; however, GPU multiplication is
merely one order of magnitude slower than CPU addition. Figure 5 shows the ratios.
This trend made a possible that Naïve may outperform Strassen on multi-GPU archi-
tectures, on which multiplication is not that slower than addition.

Fig. 4. Multiplication and addition performances on CPU/GPU

24 P. Zhang and Y. Gao

5.3.2 Strassen vs. Naïve on 8x K40m
Figures 6 and 7 present the absolute performances of two methods in (a) and (b), and
then the performance improvements for Strassen over Naïve in (c), for 64-bit (double)
and 32-bit (single) precision, respectively. From the results, we can find out that: (i) The
GPU-solutions are often superior to the CPU-only solutions for large enough matrices.
(ii) High-density GPU-solutions are always better than low-density GPU-solutions. (iii)
In the single-GPU solution (i.e., 1-GPU), Strassen still retains its superiority over Naïve.
This could be because single GPU per node cannot give enough competitive perfor-
mance for multiplying matrices, compared with the performance for adding matrices
given by the many processor cores. Under this condition, Strassen could be still more
efficient than Naïve since it needs fewer multiplications than Naïve. (iv) However, with
the increase of GPU cards in one system, the efficiency of Naïve is greatly improved and
in turn, Naïve outperforms Strassen. For examples, in the 4-GPU and 8-GPU solutions,
Naïve appears much more efficient than Strassen. The results from the high-density
multi-GPU tests verified the assumption that: Naïve may surpass Strassen under the
condition that the time of multiplying two matrices is approx. one order of magnitude
slower than the time of adding matrices of same sizes. Currently, this condition is hardly
satisfied on low-density multi-GPU configurations since the processor cores are rela-
tively more powerful than single GPU card. However, with the capability of densely
integrating accelerators, the performance gap between multiplying and adding matrices is
further reduced, thus directly affecting the best practice for MM on these novel archi-
tectures. (v) Naïve is more efficient than Strassen on 4-/8-GPU solutions regardless of
floating-point precision (32-bit/64-bit). Figure 8 shows the parallel activities traces
(PAT) of the case for multiplying two matrices of size 48,000, partitioned as 4 × 4 tiles,
on the 8-K40 m system. PAT illustrates that (i) multiplication tasks are evenly distributed
on GPU cards; and (ii) Strassen needs significantly more addition tasks than Naïve.
Particularly, Fig. 8 shows that, at the beginning of program, all of cores are busy with
these substantial additions for Strassen. Similarly, at the finishing of program, Strassen
needs more addition tasks than Naïve (Fig. 1). In the middle of program, multiple GPU
cards could be more efficient for multiplication tasks, compared with traditional pro-
cessor cores. In this, the results show that Naïve becomes more efficient than Strassen.

Fig. 5. Ratios of CPU-/GPU multiplication time over CPU addition time

Matrix Multiplication on High-Density Multi-GPU Architectures 25

Fig. 6. Experimental results for Naïve and Strassen on 8-K40 m (double precision): (a) and (b)
present the wallclock time in seconds for Naïve and Strassen, respectively. (c) shows the
performance improvements for Strassen over Naïve. In the legend, 7 CORE (14 CORE) means a
CPU-only solution using 7 (14) processor cores. The rest of tests are GPU solutions where 16
CPU cores used. Figures 7, 9, 10, 11 and 12 use the same legends.

Fig. 7. Experimental investigation for Naïve and Strassen on 8-K40 m (single precision).

Fig. 8. Parallel activities traces for Naïve and Strassen for problem size 48,000 on 8x K40 m

26 P. Zhang and Y. Gao

5.3.3 Strassen vs. Naïve on 4x K20Xm and 16x K80
In the literature of NVIDA GPU cards, K20Xm and K80 are the predecessor and
successor of K40m. Figures 9 and 10 show the absolute performances and performance
comparisons between Strassen and Naïve on 4-K20Xm, using double and single pre-
cisions, respectively. Similarly, Figs. 11 and 12 show the results on 16-K80 system.
Furthermore, Fig. 13 presents the best performances of three multi-GPU platforms,
which undoubtedly shows that 16-K80 is the optimal. The results on 4-K20Xm system
reaffirm previous discoveries: on 1-GPU configuration, Strassen is the optimal algo-
rithm while on 2-/4-GPU configurations, Naïve appears more efficient than Strassen.
The same results appear in the 16-K80 tests.

Fig. 9. Experimental investigation for Naïve and Strassen on 4-K20Xm (double precision)

Fig. 10. Experimental investigation for Naïve and Strassen on 4-K20Xm (single precision).

Fig. 11. Experimental investigation for Naïve and Strassen on 16-K80 (double precision)

Matrix Multiplication on High-Density Multi-GPU Architectures 27

6 Discussions

Through extensive experiments, we have demonstrated the big performance dis-
parities for MM on different architectures. The greatest advantage of Strassen is that
Strassen needs fewer multiplication operations than the naïve method. Thus on the
classical multicore architectures and single-GPU architecture, Strassen is often more
efficient than the naïve method for large enough problem size. However, on the novel
high-density multi-GPU architectures, the efficiency of multiplying two matrices is
significantly improved but the efficiency of adding two matrices is still constrained
by the overhead of data transfer between the host and multiple accelerator devices.
This made processors as the optimal platform for additions and accelerators as the
optimal platform for multiplications. In this scenario, the naïve method could out-
perform the Strassen method. This indicates that the performance difference between
the multiplication and addition operations would finally determine which method
would be the best-practice solution. In this regard, the high-density multi-GPU
architecture is widely different from the homogenous multi-core systems and low-
density systems.

Fig. 12. Experimental investigation for Naïve and Strassen on 16-K80 (single precision)

Fig. 13. Best performances of MM on multi-GPU platforms (double/single precisions: left and
right plots)

28 P. Zhang and Y. Gao

7 Conclusion

In this work, we test the standard (Naïve) and Strassen tile-based MM methods on
novel high-density multi-GPU systems. Three generations of NVIDIA GPU cards,
K20Xm, K40m and K80 are benchmarked on the systems. Both 64-bit double and 32-
bit single precisions are tested. The results show that multi-GPU solutions can sig-
nificantly improve the performances, in comparison with CPU-only solutions. The
Strassen method is often beneficial on the multicore and the low-density GPU solu-
tions; however it is beaten by the Naïve method on the high-density multi-GPU
solutions. The reason is that the Strassen needs more additions than the Naïve method
but GPU is not efficient enough for these additions thanks to the host-device overhead.
The results in the work give a handy guide for the practitioners to use the methods for
multiplying matrices on heterogeneous systems.

With the birth of new technologies, it is undoubted that the intra-chip and the inter-
chip communication capability could and should be improved. By then, performance
comparisons between different MM methods should be re-evaluated to find out the
best-practice algorithm on novel architectures.

References

1. Robinson, S.: Toward an optimal algorithm for matrix multiplication. SIAM News 38, 1–3
(2005)

2. Lancaster, P., Tismenetsky, M.: The Theory of Matrices: with Applications. Academic
Press, Waltham (1985)

3. Dorn, F.: Dynamic programming and fast matrix multiplication. In: Azar, Y., Erlebach, T.
(eds.) ESA 2006. LNCS, vol. 4168, pp. 280–291. Springer, Heidelberg (2006)

4. Gunnels, J.A., Henry, G.M., Van De Geijn, R.A.: A Family of high-performance matrix
multiplication algorithms. In: Alexandrov, V.N., Dongarra, J.J., Juliano, B.A., Renner, R.S.,
Kenneth Tan, C.J. (eds.) ICCS 2001. LNCS, vol. 2073, pp. 51–60. Springer, Heidelberg
(2001)

5. Kurzak, J., Alvaro, W., Dongarra, J.: Optimizing matrix multiplication for a short-vector
SIMD architecture–CELL processor. Parallel Comput. 35, 138–150 (2009)

6. Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13, 354–356 (1969)
7. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. In:

Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp. 1–6
(2004)

8. Williams, V.V.: Multiplying matrices faster than Coppersmith-Winograd. In: Proceedings of
the Forty-Fourth Annual ACM Symposium on Theory of Computing, pp. 887–898 (2012)

9. Chou, C.C., Deng, Y.F., Li, G., Wang, Y.: Parallelizing strassens method for matrix
multiplication on distributed-memory mimd architectures. Comput. Math. Appl. 30, 49–69
(1995)

10. D’Alberto, P., Nicolau, A.: Using recursion to boost ATLAS’s performance. In: Labarta, J.,
Joe, K., Sato, T. (eds.) ISHPC 2006 and ALPS 2006. LNCS, vol. 4759, pp. 142–151.
Springer, Heidelberg (2008)

Matrix Multiplication on High-Density Multi-GPU Architectures 29

11. Ohshima, S., Kise, K., Katagiri, T., Yuba, T.: Parallel processing of matrix multiplication in
a CPU and GPU heterogeneous environment. In: Daydé, M., Palma, J.M.L.M., Coutinho, A.
L.G.A., Pacitti, E., Lopes, J.C. (eds.) VECPAR 2006. LNCS, vol. 4395, pp. 305–318.
Springer, Heidelberg (2007)

12. Irony, D., Toledo, S., Tiskin, A.: Communication lower bounds for distributed-memory
matrix multiplication. J. Parallel Distrib. Comput. 64, 1017–1026 (2004)

13. Fatahalian, K., Sugerman, J., Hanrahan, P.: Understanding the efficiency of GPU algorithms
for matrix-matrix multiplication. In: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
Conference on Graphics Hardware, pp. 133–137 (2004)

14. Beaumont, O., Boudet, V., Rastello, F., Robert, Y.: Matrix multiplication on heterogeneous
platforms. IEEE Trans. Parallel Distrib. Syst. 12, 1033–1051 (2001)

15. Thottethodi, M., Chatterjee, S., Lebeck, A.R.: Tuning Strassen’s matrix multiplication for
memory efficiency. In: Proceedings of the 1998 ACM/IEEE Conference on Supercomputing
(CDROM), pp. 1–14 (1998)

16. Luo, Q., Drake, J.B.: A scalable parallel Strassen’s matrix multiplication algorithm for
distributed-memory computers. In: Proceedings of the 1995 ACM Symposium on Applied
Computing, pp. 221–226 (1995)

17. Choi, J., Walker, D.W., Dongarra, J.J.: PUMMA: parallel universal matrix multiplication
algorithms on distributed memory concurrent computers. Concurrency: Pract. Experience 6,
543–570 (1994)

18. Zhang, P., Gao, Y., Fierson, J., Deng, Y.: Eigenanalysis-based task mapping on parallel
computers with cellular networks. Math. Comput. 83, 1727–1756 (2014)

19. Zhang, P., Powell, R., Deng, Y.: Interlacing bypass rings to torus networks for more efficient
networks. IEEE Trans. Parallel Distrib. Syst. 22, 287–295 (2011)

20. Zhang, P., Deng, Y., Feng, R., Luo, X., Wu, J.: Evaluation of various networks configurated
by adding bypass or torus links. IEEE Trans. Parallel Distrib. Syst. 26, 984–996 (2015)

21. Ballard, G., Demmel, J., Holtz, O., Lipshitz, B., Schwartz, O.: Communication-optimal
parallel algorithm for strassen’s matrix multiplication. In: Proceedings of the 24th ACM
Symposium on Parallelism in Algorithms and Architectures, pp. 193–204 (2012)

22. Goto, K., Geijn, R.A.: Anatomy of high-performance matrix multiplication. ACM Trans.
Math. Softw. (TOMS) 34, 12 (2008)

23. Barrachina, S., Castillo, M., Igual, F.D., Mayo, R., Quintana-Orti, E.S.: Evaluation and
tuning of the level 3 CUBLAS for graphics processors. In: IEEE International Symposium
on Parallel and Distributed Processing, IPDPS 2008, pp. 1–8 (2008)

24. Demmel, J.: LAPACK: a portable linear algebra library for supercomputers. In: IEEE
Control Systems Society Workshop on Computer-Aided Control System Design, pp. 1–7
(1989)

25. CS-Storm specification. (2014). http://www.cray.com/sites/default/files/CrayCS-Storm.pdf
26. Fang, Y.-C., Gao, Y., Stap, C.: Future enterprise computing looking into 2020. In: Park, J.J.,

Zomaya, A., Jeong, H.-Y., Obaidat, M. (eds.) Frontier and Innovation in Future Computing
and Communications. LNEE, vol. 301, pp. 127–134. Springer, Heidelberg (2014)

27. Skiena, S.S.: The Algorithm Design Manual, vol. 1. Springer, Heidelberg (1998)
28. Zhang, P., Ling, L., Deng, Y.: A data-driven paradigm for mapping problems. Parallel

Comput. (2015). doi: 10.1016/j.parco.2015.05.002 (In press)
29. Huss-Lederman, S., Jacobson, E.M., Johnson, J.R., Tsao, A., Turnbull, T.: Implementation

of Strassen’s algorithm for matrix multiplication. In: Proceedings of the 1996 ACM/IEEE
Conference on Supercomputing, pp. 32–32 (1996)

30 P. Zhang and Y. Gao

http://www.cray.com/sites/default/files/CrayCS-Storm.pdf
http://dx.doi.org/10.1016/j.parco.2015.05.002

http://www.springer.com/978-3-319-20118-4

	Matrix Multiplication on High-Density Multi-GPU Architectures: Theoretical and Experimental Investigations
	Abstract
	1 Introduction
	2 Matrix Multiplication Algorithms
	3 Theoretical Evaluation
	4 High-Density Multi-GPU Architecture
	4.1 Hardware
	4.2 Software

	5 Experimental Evaluation
	5.1 Performance Metrics
	5.2 Homogeneous Multicore Architectures
	5.3 Heterogeneous Multi-GPU Architectures
	5.3.1 Heterogeneity of Performances
	5.3.2 Strassen vs. Naïve on 8x K40&!#x00A0;m
	5.3.3 Strassen vs. Naïve on 4x K20Xm and 16x K80

	6 Discussions
	7 Conclusion
	References

