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Abstract. Many semantic models of rely-guarantee have been pro-
posed in the literature. This paper proposes a new classification of the
approaches into two groups based on their treatment of guarantee condi-
tions. To allow a meaningful comparison, it constructs an abstract model
for each group in a unified setting. The first model uses a weaker judge-
ment and supports more general rules for atomic commands and disjunc-
tion. However, the stronger judgement of the second model permits the
elegant separation of the rely from the guarantee due to Hayes et al. and
allows refinement-style reasoning. The generalisation to models that use
binary relations for postconditions is also investigated. An operational
semantics is derived and both models are shown to be sound with respect
to execution. All proofs have been checked with Isabelle/HOL and are
available online.
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1 Introduction

Rely-guarantee [8] is a well-established technique for reasoning about concur-
rent programs. It has been used to verify the correctness of tricky concurrent
algorithms and inspired recent program logics such as RGSep, SAGL and LRG.
It offers a compositional rule for concurrency by augmenting the usual pre- and
postcondition specifications of Hoare logic with summaries of the interference of
a program’s concurrent environment and also of the program itself. The program
can rely on its environment to behave according to the environment’s interfer-
ence specification, and must guarantee that it will adhere to its own interference
constraints. Concretely, interference is summarised by a binary relation on states
that over-approximates the effect of individual execution steps.

The judgements of rely-guarantee calculi are thus quintuples of the form:

Pre R {Prog} G Post

where Pre is the precondition (a set of states), R is the rely condition (a binary
relation on states), Prog is the program, G is the guarantee condition (a binary
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relation on states), and Post is the postcondition (either a set of states or a
binary relation on states, depending on the presentation).

Many semantic models of rely-guarantee have appeared in the literature. This
paper proposes a new classification of the approaches into two broad groups,
which essentially differ in their treatment of guarantee conditions. The main
goals of the paper are to capture these differences in a single abstract setting
and to investigate their consequences.

The first group stipulates that each step of the program must satisfy the
guarantee relation when the initial state satisfies the precondition and the envi-
ronment satisfies the rely condition. Most mainstream models of rely-guarantee
use this interpretation, for example [2,3,11,13,15,18].

The second group stipulates that each step of the program must satisfy the
guarantee relation, irrespective of the initial state and the environment. Recent
models of rely-guarantee that are based on refinement use this interpretation, for
example [1,5,6]. The proofs in these papers suggest that the decoupling of the
guarantee condition from the precondition and the rely enables refinement-style
reasoning that is much more algebraic in flavour.

The models in previous work often differ in detail (e.g. programming con-
structs, operational semantics, etc.) which make it hard to study their merits
and differences. To avoid this problem, the current paper uses a unified setting of
traces as a semantic foundation. It then constructs two models of rely-guarantee
that represent the two groups mentioned above.

In order to concentrate only on essential aspects, the semantic setting
abstracts from many details. The presentation might therefore seem a bit uncon-
ventional to some readers. For example, it makes no assumptions about the
(abstract) syntax of programs, it treats computational states abstractly, and it
assumes no operational semantics. The idea is that such constraints can be added
independently if and when needed. For example, we derive an operational calcu-
lus later in the paper to investigate whether the models are sound (i.e. correct)
with respect to familiar small-step execution.

The judgements of the two models also make minimal demands. For example,
the pre- and postconditions are not required to be ‘stable’ with respect to the rely
condition, and the rely and/or guarantee relations need not be reflexive and/or
transitive. Moreover, there is no fixed language for describing interference, and
the same holds for assertions.

The models contribute several insights about the two semantic approaches:

– The judgement of the first model is weaker than the one of the second model.
Despite this, the models validate mostly the same inference rules, but the
weaker judgement supports more general rules for atomic commands and dis-
junction.

– Only the second model allows for the elegant decomposition of the rely-
guarantee quintuple into rely and guar constructs due to Hayes et al. [5].
The separation of the rely from the guarantee permits refinement-style proofs
which humans might find easier to construct.
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– The models use postconditions that are single-state predicates, but they gen-
eralise nicely to models where postconditions are binary relations on states
as is often the case in the rely-guarantee literature [2,5,8]. Interestingly, the
attempt to generalise both models in a naive way fails because of their differ-
ences.

– Both models are sound with respect to big-step and small-step execution. The
soundness proofs are not ‘structural’, but can be viewed as a simplification
of the proof by Coleman and Jones [2]. The soundness results are decoupled
from many operational concerns, such as the particular choice of execution
rules, and the decision of which atomic operations are easy to implement in a
computer.

This paper tries to present rely-guarantee incrementally from first principles,
so it might be a good point to start learning about the main ideas. Working
in a minimalistic setting also means that many of the proofs are shorter than
their counterparts in other literature. All the proofs have been mechanised in
Isabelle/HOL and are available online [7] to encourage further exploration.

Outline. Section 2 describes the first model. Section 3 presents the second model
which decouples the guarantee from the precondition and the rely. Section 4
generalises the models to rely-guarantee calculi where postconditions are binary
relations and not sets of states. Section 5 derives operational calculi to show the
soundness of the models with respect to execution. Section 6 discusses related
work and Sect. 7 concludes.

2 The First Model

2.1 Formalising the Judgement

Many mainstream treatments of rely-guarantee (e.g. [11,13,17,18]) give the fol-
lowing informal meaning to the quintuple judgement S R {P} G S′:

Here, and in the rest of the paper, P will be a program, S and S′ are sets of
states, and R and G are binary relations on states.

Instead of treating programs as syntactic objects that are generated by a
particular (abstract) syntax, we model them generically as sets of traces. Each
trace is a sequence of state pairs, called steps, that describe the program’s ability
to transform states. We use σ to range over states and t to range over traces.
The empty trace is denoted by [] and the infix operator : prepends a step to a
trace.

Consider the trace t = (σ1, σ
′
1) : (σ2, σ

′
2) : · · · : (σn, σ′

n). Step i transforms
state σi into σ′

i before step i + 1 can be executed. However, step i + 1 does
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not have to be executed immediately after step i, because the model allows the
(concurrent) environment to interfere between steps. If σ′

i �= σi+1, for example,
then step i + 1 can only be executed when the environment interferes upon the
completion of step i to transform state σ′

i into σi+1. A program’s traces there-
fore describe its potential behaviour and allow for interference by concurrently
executing programs. A typical program will have many traces that can never be
observed in isolation. These “dormant” behaviours make concurrent program-
ming especially tricky, and it is important to record them in the semantic model.

To formalise the informal interpretation of the rely-guarantee quintuple, it is
helpful to consider how each trace of P must behave to satisfy the specification.
This is the purpose of the auxiliary judgement rg-trace:

Definition 1. rg-trace S R [] GS′ def
= R∗(S ) ⊆ S′

rg-trace SR ((σ, σ′) : t) GS′ def
= σ ∈ R∗(S ) ⇒ (σ, σ′) ∈ G ∧ rg-trace{

σ′
}

R t G S′.

The base case describes what should happen when the trace is empty. As the
trace then contains no steps, it holds vacuously that every step is contained
in G. Since the empty trace has no ability to alter the state, the environment
must, irrespective of how many steps it performs, transform states satisfying the
precondition into ones satisfying the postcondition. In formal terms, the image
of S under the relation R∗ must be contained in S′, where R∗ is the reflexive
transitive closure of R.

The inductive case describes the situation for a non-empty trace whose first
step is (σ, σ′). The first step can become enabled from precondition S and inter-
ference R whenever σ ∈ R∗(S). If this is possible, then the step should be in
G and the remainder of the trace must fulfill the specification where the new
precondition

{
σ′

}
is the result of the step.

The judgement for a program requires the corresponding auxiliary judgement
for all its traces:

Definition 2. S R {P} G S′ def
= ∀t ∈ P : rg-trace S R t G S′.

2.2 Inference Rules

The definition allows a formal investigation of how the judgement can help us
to reason about programs. Figures 1 and 2 show a collection of theorems in the
form of inference rules1. (The reason for separating the rules in two figures is
that only the ones of Fig. 1 will also hold as theorems in the second model of
Sect. 3.) Roughly speaking, there is one rule for reasoning about each program-
ming operator, and there are additional rules for adapting the specification parts
of a judgement.

The programming operators are the familiar ones from formal language the-
ory and are summarised here for reference:
1 The prefix ‘J’ in the names of inference rules stands for ‘Jones’ in tribute to [8].
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S R {skip} G (R∗(S))(Jskip)

S R {P} GS′ ∧ S′ R {Q} GS′′ ⇒ S R {P ;Q} GS′′(Jseq)

S1 R1 {P} G1 S
′
1 ∧ S2 R2 {Q} G2 S

′
2 ∧ G1 ⊆ R2 ∧ G2 ⊆ R1 ⇒(Jconc)

(S1 ∩ S2) (R1 ∩ R2) {P ‖ Q} (G1 ∪ G2) (S′
1 ∩ S′

2)

(∀P ∈ X : S R {P} GS′) ⇒ S R {
⋃

X} GS′(Jchoice)

S R {P} GS ∧ R(S) ⊆ S ⇒ S R {P ∗} GS(Jiter)

(∀P : S R {P} GS′ ⇒ S R {f(P )} GS′) ⇒ S R {lfp f} GS′(Jrec)

S1 R1 {P} G1 S
′
1 ∧ S2 ⊆ S1 ∧ R2 ⊆ R1 ∧ G1 ⊆ G2 ∧ S′

1 ⊆ S′
2 ⇒(Jweak)

S2 R2 {P} G2 S
′
2

S R {P} GS′ ⇒ (R∗(S))R∗ {P} (G∩steps(P )) (S′ ∩ (R∪G)∗(S))(Jstren)

S1 R1 {P} G1 S
′
1 ∧ S2 R2 {Q} G2 S

′
2 ⇒(Jconj)

(S1 ∩ S2) (R1 ∩ R2) {P ∩ Q} (G1 ∩ G2) (S′
1 ∩ S′

2)

Fig. 1. Common rely-guarantee inference rules

– skip is the language
{

[]
}

. It does nothing, because its only trace is empty and
cannot transform the state.

– a stands for an atom, i.e. a program whose traces all have length one. Every
such trace models a single step, so the atoms model (possibly nondeterministic)
atomic operations. Atoms are isomorphic to binary relations on states. The
binary relation that corresponds to atom a is given by rel(a).

– ; is language concatenation. It corresponds to sequential composition of pro-
grams.

– ‖ is language interleaving, also known as shuffle. It corresponds to concurrent
composition.

–
⋃

X is the union of all languages in X, i.e. the nondeterministic choice between
programs in X. Its binary variant is ∪.

– ∗ is the Kleene star, which iterates its operand zero or more times in sequence.
– lfp f is the least fixpoint of a monotone function f on languages. It is the

meaning of a program P that is defined by recursion as P = f(P ). For example,
P ∗ can be defined as the least fixpoint of the monotone function (λx . skip ∪
(P ;x)).

Most of the rules in Fig. 1 are self-explanatory, so a few observations should be
sufficient to see how they operate:

– (Jskip): Any guarantee, including the empty relation, is acceptable because
skip performs no steps. The postcondition takes into account that the envi-
ronment might still transform states that satisfy the precondition.

– (Jseq): The postcondition of the first program must be the precondition of the
second one.

– (Jconc): The guarantee of each program must be compatible with what its
concurrent partner relies on. In the consequent of the rule, the environment can
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Fig. 2. Rules that are specific to the first model

only do what both components have relied on, while the guarantee condition
accommodates steps of both components.

– (Jchoice): When every program in a collection satisfies a specification, then
the nondeterministic choice between them will also satisfy it.

– (Jiter): Interference from the environment should not invalidate S, which func-
tions as the loop invariant.

– (Jrec): To verify a recursive program, it suffices to check that unfolding the
definition once meets the specification when all recursive occurrences meet it.

– (Jweak): This rule can weaken the specification of a judgement and is some-
times known as the ‘rule of consequence’.

– (Jstren): This rule can stengthen a specification, i.e. enlarge the precondition
and rely, and shrink the guarantee and postcondition. This is not magic –
it simply exploits redundancy that exists in specifications. It is simplest to
understand this rule in a piecewise fashion as follows. If a judgement holds
with precondition S and rely condition R, then the precondition R∗(S) will
also work. Moreover, the environment can safely do steps described by R∗.
The program can at most perform the steps mentioned in its traces, so the
guarantee condition can always be restricted to them (steps(P ) relates a pair
of states iff the pair is a step in some trace of P ). And finally, since the
rely and guarantee conditions over-approximate what the environment and
program can respectively do, their combination cannot yield final states that
are outside (R ∪ G)∗(S).

– (Jconj): This rule conjoins the specifications of two judgements. It allows the
programs to be different and intersects them in the resulting judgement.

The rules in Fig. 2 should not present difficulties either:

– (J1atom) requires the guarantee to include the relation on states that is iso-
morphic to the atom, but allows restricting the domain of this relation to
those states that the environment can reach from the precondition in zero or
more steps. (Σ is the set of all states and × the Cartesian product opera-
tor.) The restriction captures the fact that the atom will never have to per-
form its step from any other state. Furthermore, the postcondition must at
least include those states that can be reached from the precondition under
R∗; rel(a);R∗, which describes the effect of interleaving the atomic operation
with environment steps from R. (When applied to binary relations, ; is the
familiar composition operator. Another common symbol for it is ◦.)

– (J1disj) says that if a program can meet a specification from each precondition
in a set, then it must also be able to meet the specification from their union.
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As in most calculi, there is some degree of flexibility in the presentation of the
rules. For example, instead of (Jskip) one can prefer the rule:

R∗(S) ⊆ S′ ⇒ S R {skip} G S′

and it is possible to collapse (J1atom) to:

S R {a} (rel(a) ∩ (R∗(S))×Σ) ((R∗; rel(a);R∗)(S))

In both cases one can justify the change and regain the original rule with the
weakening rule (Jweak), so nothing is really gained or lost. It is also easy to build
aspects of the strengthening rule (Jstren) into other rules, because (Jstren) and
(Jweak) imply equivalences such as:

S R {P} GS′ ⇔ (R∗(S)) R {P} GS′

S R {P} GS′ ⇔ S R∗ {P} GS′

S R {P} GS′ ⇔ S R {P} G (S′ ∩ (R∪G)∗(S))

These equivalences will of course hold in any model that validates (Jstren) and
(Jweak).

2.3 Proofs

The formal justification of the inference rules requires rigorous proofs. There are
two main reasons why such proofs can be instructive. Firstly, they describe in
detail why each rule must work. Secondly, the proofs can collectively communi-
cate the general style of reasoning that the model promotes. It will become clear
in Sect. 3 that both aspects can differ considerably between models.

The rely-guarantee judgement in the current model is defined in terms of
the auxiliary judgement rg-trace. Many rules will therefore directly follow from
similar ones about rg-trace. Induction on traces is the main mathematical tool
of this model, as rg-trace was defined by recursion on traces.

For example, the rule (Jconc) follows directly from the following lemma about
rg-trace, where t1 ⊗ t2 denotes the set of all interleavings of traces t1 and t2.
Unsurprisingly, the proof proceeds by induction on t:

Lemma 1. rg-trace S1 R1 t1 G1 S′
1 ∧ rg-trace S2 R2 t2 G2 S′

2 ∧ G1 ⊆ R2 ∧
G2 ⊆ R1 ∧ t ∈ t1 ⊗ t2 ⇒ rg-trace (S1 ∩ S2) (R1 ∩ R2) t (G1 ∪ G2) (S′

1 ∩ S′
2).

Proof. By induction on the structure of t:

– Base case. We must show that it holds for t = []. Since t ∈ t1 ⊗ t2, we know
t1 = [] and t2 = []. Expanding the two rg-trace assumptions gives R1

∗(S1) ⊆
S′
1 and R2

∗(S2) ⊆ S′
2, which in turn imply (R1 ∩ R2)

∗(S1 ∩ S2) ⊆ S′
1 ∩ S′

2

because the Kleene star and relational image operators are both monotone.
– Step case. Suppose the property holds for a trace t for all t1, t2, S1, S2. We

must show that it will also hold for (σ, σ′) : t. So assume the rule’s antecedents
rg-trace S1 R1 t1 G1 S′

1 and rg-trace S2 R2 t2 G2 S′
2 and G1 ⊆ R2 and
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G2 ⊆ R1 and (σ, σ′) : t ∈ t1 ⊗ t2. The last assumption implies ∃t′1 : t1 =
(σ, σ′) : t′1 ∧ t ∈ t′1 ⊗ t2 or ∃t′2 : t2 = (σ, σ′) : t′2 ∧ t ∈ t1 ⊗ t′2. The two cases
are symmetric, so we will only show the reasoning for the first one. The goal
is to show that σ ∈ (R1 ∩ R2)

∗(S1 ∩ S2) implies both (σ, σ′) ∈ G1 ∪ G2 and
rg-trace

{
σ′

}
(R1 ∩ R2) t (G1 ∪ G2) (S′

1 ∩ S′
2).

Suppose σ ∈ (R1 ∩ R2)
∗(S1 ∩ S2). Then σ ∈ R1

∗(S1) and σ ∈ R2
∗(S2).

Expanding the rg-trace assumption for t1 now gives rg-trace
{

σ′
}

R1 t′1 G1 S′
1

and (σ, σ′) ∈ G1. So clearly (σ, σ′) ∈ G1 ∪ G2. Moreover, (σ, σ′) ∈ G1 and
G1 ⊆ R2 and σ ∈ R2

∗(S2) imply that σ′ ∈ R2
∗(S2). So we can enlarge the

precondition in the rg-trace assumption for t2 to R2
∗(S2) and then shrink

the precondition of the result to
{

σ′
}
. Applying the induction hypothesis to

rg-trace
{

σ′
}

R1 t′1 G1 S′
1 and rg-trace

{
σ′

}
R2 t2 G2 S′

2 concludes the
proof.

This proof and proofs for all the other rules have been mechanised in
Isabelle/HOL. The proof script is available online [7]. The level of detail in
formal proofs is typically greater than in pen-and-paper ones, so they can help
to clarify gaps in the reasoning. They can also help to formulate different proofs
of existing results, or to explore variations on the rules showed here, or even to
establish the validity of entirely new ones.

Another use of the Isabelle/HOL formalisation is the discovery of counterex-
amples. It is straightforward to show, for example, that neither the precondition
nor the postcondition have to be ‘stable’ with respect to the rely condition in
this model. In other words, there are examples where S R {P} GS′ holds, yet
R(S) �⊆ S and R(S′) �⊆ S′. Similarly, the guarantee condition need not be reflex-
ive. Section 6 will discuss why such constraints can be useful in more concrete
settings, but there was no need to impose them here.

2.4 The Bigger Picture

The introduction mentioned that rely-guarantee is a generalisation of Hoare logic
that augments judgements with rely and guarantee conditions. This intuition
can be formalised in a theorem that relates the rely-guarantee quintuple to the
Hoare triple (an intuitive understanding of the Hoare triple suffices here; its
formal treatment is postponed to Sect. 5):

Theorem 1. (∃R G : S R {P}GS′) ⇔ S {P}S′.

The theorem says that one can establish the Hoare triple S {P}S′ by finding
some rely R and guarantee G and establishing the rely-guarantee judgement
S R {P} GS′ instead. Moreover, if the Hoare triple holds, then it will always be
possible to find appropriate rely and guarantee conditions.

One way to prove the theorem is to show that the Hoare triple corresponds
exactly to the ‘interference-free’ situation where the environment can do nothing
(the rely is empty) but the program can do anything (the guarantee is the
universal relation on states):
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Lemma 2. S ∅ {P} (Σ×Σ) S′ ⇔ S {P} S′.
Theorem 1 then follows immediately by (Jweak).

Lemma 2 says that the Hoare triple is a special case of the rely-guarantee
judgement. Alternatively, one can view it as characterising certain rely-guarantee
judgements (those with empty rely and universal guarantee conditions) in terms
of Hoare logic. Surprisingly, the next result shows that it is possible to extend
this characterisation to account for arbitrary rely conditions:
Lemma 3. S R {P} (Σ×Σ) S′ ⇔ S {P ‖ traces(R)} S′.
In formal language terminology, traces(R) is the set of all words over alphabet R.
Now traces(∅) = skip, and skip is the unit of ‖, so Lemma 2 is a straightforward
consequence.

One can prove Lemma 3 by first showing:

rg-trace S R t (Σ×Σ) S′ ⇔ S {
{

t
}

‖ traces(R)}S′

This lemma holds by induction on t and [7] contains the full proof.
Unfortunately, there appears to be no straightforward way to extend the

characterisation of Lemma 3 to cover arbitrary guarantee conditions. A guaran-
tee condition in this model is quite complicated: its fulfillment depends not only
on the program, but also on the precondition and the behaviour of the environ-
ment. This is also the case in most mainstream treatments of rely-guarantee.
In [2], for example, the auxiliary judgement {S,R} |= P within G makes the
dependency very clear.

3 The Second Model

The quintuple of the second model combines the insight of Lemma 3 with a
simple treatment of guarantee conditions:

Definition 3. S R {P} G S′ def
= S {P ‖ traces(R)}S′ ∧ P ⊆ traces(G).

It demands that all the steps2 of P must be in G, irrespective of the precondition
and the rely. The informal meaning of the quintuple is therefore:

It is easy to show that the new judgement is stronger than the previous one.

3.1 Inference Rules

The fact that the judgement is stronger means that we must again determine
which inference rules are theorems. Fortunately, it turns out that all the rules
in Fig. 1 remain valid in this model. The ones in Fig. 2 are now invalid, but one
can use the variants that appear in Fig. 3:
2 Note the Galois connection steps(P ) ⊆ G ⇔ P ⊆ traces(G).
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Fig. 3. Rules that are specific to the second model

– (J2atom): Note that rel(a) must now be fully included in G – there is no
possibility to restrict its domain to R∗(S) before checking the inclusion.

– (J2disj): The additional restriction that Y should not be empty reflects the
fact that ∅ R {P} G S′ is not a theorem in this model: the empty precondition
does not ensure that the steps of P are included in G.

The additional restriction in the rule of disjunction might be a cause for concern.
However, by and large the judgement is well-behaved. The next two subsections
show that it supports elegant proofs and an interesting decomposition of the
judgement.

3.2 Proofs

The seemingly minor act of decoupling the satisfaction of the guarantee con-
dition from the precondition and the rely has a significant impact on the style
of the proofs. It becomes possible to justify the inference rules with algebraic
reasoning that leverages program refinement. This is similar in spirit to more
recent formulations of rely-guarantee [1,5,6].

In our simple setting, we say that P refines P ′ if and only if P ⊆ P ′. Here is
a refinement-style proof of (Jconc), for example:

Lemma 4. S1 R1 {P} G1 S′
1 ∧ S2 R2 {Q} G2 S′

2 ∧ G1 ⊆ R2 ∧ G2 ⊆ R1 ⇒
(S1 ∩ S2) (R1 ∩ R2) {P ‖ Q} (G1 ∪ G2) (S′

1 ∩ S′
2).

Proof. Assume the antecedents. The first one gives S1 {P ‖ traces(R1)}S′
1 and

P ⊆ traces(G1). The second gives S2 {Q ‖ traces(R2)}S′
2 and Q ⊆ traces(G2).

Clearly P ‖ Q ⊆ traces(G1 ∪ G2), so it remains to show the validity of the
Hoare triple S1 ∩ S2 {P ‖ Q ‖ traces(R1∩R2)}S′

1 ∩ S′
2. Consider the refinement

development:



40 S. van Staden

Since Hoare triples remain valid for refined programs, S1 {P ‖ Q ‖ traces(R1∩R2)}S′
1

holds. By a symmetric argument, we obtain S2 {P ‖ Q ‖ traces(R1∩R2)}S′
2.

Applying the Hoare rule of conjunction to these triples completes the proof.

3.3 Decomposition of the Quintuple

Another interesting consequence of the judgement’s definition is that it can be
decomposed into ‘rely’ and ‘guar’ constructs along the lines of [5].

Let P−‖P ′ def=
⋃ {

P ′′ | P ′′ ‖ P ⊆ P ′
}

. Consider the following definitions:

Definition 4. rely R P
def
= traces(R)−‖P .

Definition 5. guar G P
def
= traces(G) ∩ P .

The Galois connection P ‖ P ′ ⊆ P ′′ ⇔ P ⊆ P ′−‖P ′′ and Definition 4 imply
that rely R P is the largest program (i.e. the least refined or the most nondeter-
ministic one) that, when placed in an environment R, will refine P :

Lemma 5. P ′ ‖ traces(R) ⊆ P ⇔ P ′ ⊆ rely R P .

Definition 5 is simpler: guar G P is the largest program that refines P whose
steps are all in G.

Let [S, S′] denote the ‘specification statement’ [10], i.e. the largest program
that satisfies the Hoare triple with precondition S and postcondition S′. For-
mally, [S, S′] can be defined as

⋃ {
P | S {P}S′

}
. Then S {P}S′ ⇔ P ⊆ [S, S′].

Lemma 5 implies S {P ‖ traces(R)}S′ ⇔ P ⊆ rely R [S, S′], so the rely and
guar constructs elegantly factor the judgement into smaller parts:

Lemma 6. S R {P} G S′ ⇔ P ⊆ guar G (rely R [S, S′]).

Instead of using the inference rules in Figs. 1 and 3, one can use refinement and
the algebraic properties of rely and guar to the same effect. This alternative way
to reason about programs allows for a more general presentation, as there is no
obligation to restrict attention to constructs of the form guar G (rely R [S, S′]).
The work by Hayes et al. [5] offers an excellent example of this approach.

3.4 Bigger Picture

It is not hard to see that Theorem 1 and Lemmas 2 and 3 remain valid in this
model. So once again the quintuple represents a conservative extension of the
Hoare triple. However, the two models provide different extensions! This raises
the exciting possibility that new extensions with pleasant properties might still
await future discovery.

From a practical point of view, one might prefer the rules of the first model,
because (J1atom) and (J1disj) are more powerful than (J2atom) and (J2disj).
The second model will generally use larger guarantee conditions, so in order
to apply the concurrency rule (Jconc), the rely conditions must also be larger.
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Whether this will create problems during the verification of concrete programs
remains to be seen. The examples in [5], which uses rely and guar constructs,
and [1], which uses a quintuple judgement, suggest that this is perhaps not a
serious drawback.

4 Using Binary Relations for Postconditions

Many treatments of rely-guarantee (e.g. [2,5,8]) do not use postconditions that
are sets of states. Instead, they use predicates that relate the pre and the post
state, i.e. binary relations on states. Some treatments of Hoare logic also follow
this convention. The Hoare triple with a relation T in the postcondition can be
defined in terms of the usual one as follows3:

Definition 6. S {P}T
def
= ∀σ ∈ S :

{
σ
}

{P}T (
{

σ
}

).

This suggests a similar definition for the rely-guarantee quintuple where post-
conditions are relations:

Definition 7. S R {P} G T
def
= ∀σ ∈ S :

{
σ
}

R {P} G (T (
{

σ
}

)).

Fig. 4. Rely-guarantee rules with relations for postconditions

It is now possible to explore the conditions under which this definition validates
familiar inference rules. For example, the rule4 (Rweak) in Fig. 4 follows directly
from (Jweak). Similarly, (Rconc) holds by (Jconc), (Jweak) and (Jstren). One can
also show that (Rseq) follows from (Jseq), (Jweak) and (J1disj). But (J1disj) is
not valid in the second model! Indeed, (Rseq) is not a theorem when Definition 7
3 Because of the equivalence S {P}S′ ⇔ S {P}S×S′, it is also possible to go in the

opposite direction, i.e., one can define the usual triple in terms of the triple where
postconditions are relations.

4 The prefix ‘R’ in the names of inference rules stands for ‘relation’.
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is applied to its quintuple. So although the naive approach of Definition 7 success-
fully generalises the first model to the setting where postconditions are relations,
it fails to generalise the second model whose quintuple behaves slightly differently.

Nevertheless, it is possible to mirror Definition 3 using the Hoare triple of
Definition 6:

Definition 8. S R {P} GT
def
= S {P ‖ traces(R)}T ∧ P ⊆ traces(G).

This definition facilitates algebraic proofs of the inference rules in Fig. 4, so it
successfully generalises the second model. It is also straightforward to see that
the rely and guar constructs of Sect. 3.3 need no adaptation: if [S, T ] denotes
the specification statement with relation T as postcondition, i.e. [S, T ] def=⋃ {

P | S {P}T
}

, then the judgement of Definition 8 satisfies S R {P} GT ⇔
P ⊆ guar G (rely R [S, T ]).

Definition 8 validates the following equivalence where the second model’s
quintuple appears in the right-hand side:

S R {P} GT ⇔ (∀σ ∈ S :
{

σ
}

R {P} G (T (
{

σ
}

))) ∧ ∅R {P} G ∅

This equivalence shows that Definition 8 strengthens Definition 7 with an addi-
tional conjunct that caters specifically for the case where the precondition is
false.

The apparent differences between Definitions 7 and 8 can now be resolved
by noticing their underlying unity – the generalised judgements of both models
satisfy:

Lemma 7. S R {P} GT ⇔ ∀S′ ⊆ S : S′ R {P} G (T (S′)).

Of course this does not imply that the two generalised models will support the
same rules. Figure 4 contains some common rules5, while Figs. 5 and 6 show
rules that are specific to each generalisation. Notice that Figs. 5 and 6 mirror
the differences that were present in Figs. 2 and 3.

In retrospect, one can see that since S {P}T ⇔ ∀S′ ⊆ S : S′ {P}T (S′) is
also valid, it would have been easier to start the generalisation from this char-
acterisation instead of the one in Definition 6. In general, defining judgements

Fig. 5. Rules specific to the generalisation of the first model

5 When postconditions are sets of states, one can always change a precondition S into
R∗(S) where R is the rely condition. This is invalid when postconditions are relations
between input and output states, so (Rstren) does not change the precondition.
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Fig. 6. Rules specific to the generalisation of the second model

in terms of others is a powerful technique to construct sophisticated notions
and inference rules in a stepwise fashion, but a little experimentation is often
necessary to find suitable definitions for derived judgements.

5 Soundness

This paper presents the two models of rely-guarantee independently of oper-
ational calculi. The presentation is fairly self-contained – only the reference to
Hoare logic involves another judgement. In fact the Hoare triple also has a direct
definition that does not presuppose an operational judgement or calculus:

Definition 9. S {P}S′ def
= IF -traces-ending-in(S) ;P ⊆ IF -traces-ending-

in(S′) ∪ WithInterference.

Here, IF -traces-ending-in(S) denotes the set of all traces that are interference-
free and end in a state that is also in S. A trace is interference-free when, for each
step in the trace, the second state of the step is the same as the first state of the
next step if such a step exists. The set of all traces that are not interference-free
is denoted by WithInterference. Definition 9 says that all the interference-free
traces of P that start in a state in S must end in a state in S′. Moreover, if P
contains the empty trace (which is trivially interference-free), then it must be
the case that S ⊆ S′.

Despite the independence from operational calculi, the expected soundness
relationships nonetheless hold. To show this, we first give direct definitions of
familiar operational judgements and then prove that the soundness relationships
are theorems. The same technique was used in [14] to demonstrate the soundness
of the Views program logic.

The big-step operational judgement is defined as follows:

Definition 10. 〈P, σ〉 −→ σ′ def
= ∃t ∈ IF -traces-ending-in(σ) : ∃t′ ∈

IF -traces-ending-in(σ′) :
{

t
}

;P ⊇
{

t′
}
.

It says that P has an interference-free trace that can transform the initial state
σ into the final state σ′. The familiar soundness relationship holds between the
Hoare triple and the big-step judgement ([7] contains a short and simple formal
proof):

Lemma 8. S {P}S′ ⇔ (∀σ ∈ S : ∀σ′ : 〈P, σ〉 −→ σ′ ⇒ σ′ ∈ S′).

This result and Theorem 1 imply that both models of rely-guarantee are sound
with respect to big-step rules:
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Theorem 2. (∃R G : S R {P} GS′) ⇔ (∀σ ∈ S : ∀σ′ : 〈P, σ〉 −→ σ′ ⇒
σ′ ∈ S′).

However, it is much more common to establish the soundness of rely-guarantee
with respect to a small-step judgement in the style of Plotkin [12]. The reason
is that operational judgements are conventionally defined in terms of syntax-
directed rules, and the fine-grained interleaving of concurrent composition cannot
be expressed by considering only the big steps of each operand.

Although such considerations are not problematic in this more semantic
treatment where judgements are not defined by sets of inference rules, it is
quite easy to accommodate small-step calculi. The small-step judgement can be
defined in terms of a set Actions that contains the ‘small’ operations or actions
that are easy to implement in a computer:

Definition 11. 〈P, σ〉 −→ 〈P ′, σ′〉 def
= ∃Q ∈ Actions : P ⊇ Q ;P ′ ∧

〈Q, σ〉 −→ σ′.

It says that one way of executing P is to execute some action followed by P ′. The
action itself is hidden – only its effect on the state is explicit in the judgement.

There is a simple relationship between the reflexive transitive closure of the
small-step judgement and the big-step one:

Lemma 9. 〈P, σ〉 −→∗ 〈skip, σ′〉 ⇒ 〈P, σ〉 −→ σ′.

Whether or not the converse holds depends on the choice of Actions, but
Lemma 9 is sufficient to prove the soundness of both rely-guarantee models
with respect to small-step execution:

Theorem 3. (∃R G : S R {P} GS′) ⇒ (∀σ ∈ S : 〈P, σ〉 −→∗ 〈skip, σ′〉 ⇒
σ′ ∈ S′).

It is remarkable that this result is independent of the choice of machine-
executable actions. The soundness also remains valid regardless of the choice
of operational rules: any rule that is a theorem can be used to discover execu-
tions. For example, when Actions includes skip, then the familiar operational
rules in Fig. 7 are all acceptable6, and one can also (or alternatively) adopt the
following rule for nondeterministic choice:

P ∈ X ∧ 〈P, σ〉 −→ 〈P ′, σ′〉 ⇒ 〈
⋃

X, σ〉 −→ 〈P ′, σ′〉

None of these decisions or changes can jeopardise the validity of Theorem 3. The
formalisation effectively decouples deductive (i.e. program logic) and operational
concerns, yet it enforces soundness at the same time.

6 Related Work

Basic Setup and Definitions of the Judgement. Compared to this paper,
the formalisations in most conventional presentations of rely-guarantee (e.g.
6 The prefix ‘P’ in the names of inference rules stands for ‘Plotkin’ in tribute to [12].
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Fig. 7. Small-step operational rules

[2,3,5,11,15,18]) proceed in a rather different way. They start by giving a gram-
mar that fixes the abstract syntax of programs. Next, they usually give a rep-
resentation for states (e.g. a state is a function from identifiers to integers).
Programs are then equipped with a small-step operational semantics by choos-
ing a set of inference rules similar to the ones in Fig. 7. However, the rules are
postulated (i.e. not derived as theorems) and serve to define the small-step judge-
ment. Next, a new small-step judgement is introduced to allow interference by
the environment. It uses explicit labels to track whether the program or the envi-
ronment is responsible for a transition. A popular form of the new judgement is
defined by the two inference rules:

〈P, σ〉 e−→ 〈P, σ′〉
〈P, σ〉 −→ 〈P ′, σ′〉 ⇒ 〈P, σ〉 p−→ 〈P ′, σ′〉

A program P is then associated with its execution traces, which are finite or
infinite sequences of the form:

〈P0, σ0〉 l0−→ 〈P1, σ1〉 l1−→ 〈P2, σ2〉 . . .

where P0 = P , each li ∈
{

e, p
}

, and each transition in the sequence must be a
valid labelled judgement. The rely-guarantee quintuple is then defined in terms
of these execution traces of a program. The traces are sometimes summarised
by so-called Aczel traces, which discard the program components. For example,
the Aczel trace of the above execution trace would begin as follows:

[(σ0, l0, σ1), (σ1, l1, σ2), . . .

Notice that environment steps are incorporated into Aczel traces, and that the
labelling helps to determine whether the rely and the guarantee conditions are
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fulfilled. Alternatively, execution traces can be summarised by so-called transi-
tion traces. These traces are obtained by dropping all environment transitions
from Aczel traces and removing the (now redundant) p-labels. Transition traces
look very similar to our traces, but they can be finite or infinite as a result of
the operational rules.

This paper proposes a classification of rely-guarantee models into two main
groups, but there also exist minor variations in the formal definition of the rely-
guarantee judgement within each group. For example:

– Many formalisations place restrictions on rely and guarantee relations such
as reflexivity and/or transitivity [2,8,11,18]. Jones originally argued in [8,
Chap. 4] that interference should be reflexive and transitive. Subsequent
works [11,18] discussed the difficulty of finding transitive conditions in
practical examples, and require only reflexivity so that the evaluation of
Boolean conditions will automatically satisfy guarantee conditions. Other
treatments [3,15] use sets of single-state predicates for rely and guarantee
conditions. Dingel [3] showed that such an interference condition corresponds
to a binary relation that is both reflexive and transitive.

– Some treatments [2,4,5] require that the pre- and postcondition must be ‘sta-
ble’ with respect to the rely condition in all judgements. An assertion S is
stable with respect to interference R iff R(S) ⊆ S. The utility of the idea is
that it implies R∗(S) = S. This means, for example, that a precondition S will
still hold when the program takes its first step. If this step does not change
the state (e.g. it evaluates a Boolean condition), then S will still hold after
the test. One can also assume the test condition if it is stable under the rely.
Likewise, stability can ensure that the environment will preserve the assertion
that was established by the last step of the program, thereby turning it into
a valid postcondition despite interference.

In contrast to the work discussed before, references [1,6] propose general def-
initions of the rely-guarantee judgement in algebraic terms. The development
in [6] augments a Concurrent Kleene Algebra (CKA) with a set of elements
called invariants to obtain a rely/guarantee-CKA. It is well known that the set
of formal languages with interleaving is a model of CKA (the Isabelle formal-
isation of this paper also contains a proof). It is hence also the case for trace
sets under interleaving. Moreover, by considering each trace set of the form
traces(R) for some R to be an invariant, our second model can be viewed as
an instance of the abstract model in [6]. It is also an instance of the abstract
model in [1], because the sets of traces and invariants also satisfy the laws of
rely-guarantee algebra proposed there. Equipping rely-guarantee algebra with
residuals is briefly considered in [1], and their result (6) can be viewed as an
abstract version of our Lemma 6. The trace model that is used to verify exam-
ples in [1] is similar to ours, but in order to use laws for Boolean tests such as
test(P ); test(Q) = test(P ∩ Q), it additionally demands that trace sets must be
closed under stuttering and mumbling.

Inference Rules, their Proofs and Soundness. Figures 1, 2, 3, 4, 5 and 6
include inference rules such as Conjunction and Disjunction that seldom appear
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in other presentations of rely-guarantee, but which turn out to be useful here for
validating other rules (Conjunction helps to strengthen guarantee conditions in
the strengthening rules, and Disjunction is used in Sect. 4 to generalise the rule
for sequential composition). Most presentations include weakening rules such as
(Jweak) or (Rweak), but they almost never include explicit strengthening rules
like (Jstren) or (Rstren). A notable exception is the rule RG-AdjustPost in [16,
p. 20], which strengthens the postcondition. This strengthening is often built into
the rule for concurrent composition, for example in the rule Par-I in [2] and the
rule ‖-I of [9]. In Sect. 4, the rule (Rconc) strengthens the postcondition of the
resulting judgement in a similar way.

As mentioned before, models that are based on operational semantics define
the rely-guarantee judgement in terms of execution traces. The proof of the valid-
ity of an inference rule such as (Jconc) then directly or indirectly involves the
operational rules for concurrent composition such as (Pconc1) through (Pconc4).
The resulting proofs can become quite lengthy and involved (see e.g. [2]), but
because the definition of the judgement already captures the intended sound-
ness relationship with the operational semantics, there is no need for a separate
soundness proof.

Treatments that propose general algebraic definitions for the rely-guarantee
judgement prove that inference rules are valid by assuming certain algebraic
laws. All models of e.g. a rely/guarantee-CKA must satisfy these laws, and by
doing so they automatically gain the rules. The laws thus factor the proofs of
the rules into two parts. The proofs that the rules follow from the laws can be
surprisingly elegant. Moreover, the laws can have many concrete models (they
can also rule out potentially useful models, such as our first one). Each model
should explain why the abstract definition of the judgement is meaningful or
appropriate in its context. Although [1,6] do not investigate soundness with
repect to operational calculi, each model could also consider it independently.
The soundness result in Sect. 5 demonstrates this for a model (our second one)
of both rely/guarantee-CKA and rely-guarantee algebra.

Formalisation in Proof Assistants. Previous formalisations of rely-
guarantee in Isabelle/HOL include one by Nieto [11] and one by Armstrong et
al. [1]. Nieto’s treatment uses a while-language with non-nested concurrent com-
position and deterministic atomic commands. The language is equipped with an
operational semantics, and the rely-guarantee judgement is defined such that the
satisfaction of the guarantee condition depends on the precondition and the rely
(similar to our first model). Armstrong et al. focus on deriving rely-guarantee
rules from algebraic laws. They use an abstract definition of the judgement where
the guarantee condition is independent of the precondition and the rely (similar
to our second model), and they demonstrate that the algebraic principles can be
used to verify while-programs with concurrency.

7 Conclusion

This paper proposes a new classification of semantic models for rely-guarantee
into two groups that differ in their treatment of guarantee conditions. To compare



48 S. van Staden

them, it constructs an abstract model for each group in a unified setting. The first
model supports more powerful inference rules. However, by decoupling the sat-
isfaction of the guarantee from the precondition and the rely, the second model
allows algebraic reasoning and an elegant decomposition of the judgement. Both
models successfully generalise to the setting where postconditions are binary rela-
tions. Both are also sound with respect to operational calculi. Perhaps our classi-
fication will have to be extended in the future, but efforts to unify rely-guarantee
techniques should at least be flexible enough to accommodate models from both
groups described here.

Acknowledgements. This work was supported by the SNSF. Comments by Tony
Hoare, Georg Struth and the anonymous referees helped to improve the presentation
significantly.
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6. Hoare, C.A.R., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene Algebra. In:
Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 399–414.
Springer, Heidelberg (2009)

7. Isabelle/HOL proofs (2014). http://www0.cs.ucl.ac.uk/staff/s.vanstaden/proofs/
RG.tgz

8. Jones, C.B.: Development Methods for Computer Programs including a Notion of
Interference. Ph.D. thesis, Oxford University, June 1981. printed as: Programming
Research Group, Technical Monograph 25

9. Jones, C.B., Hayes, I.J., Colvin, Rj: Balancing expressiveness in formal approaches
to concurrency. Formal Aspects Comput. 27(3), 475–497 (2015)

10. Morgan, C.: The specification statement. ACM Trans. Program. Lang. Syst. 10,
403–419 (1988)

11. Prensa Nieto, L.: The rely-guarantee method in Isabelle/HOL. In: Degano, P. (ed.)
ESOP 2003. LNCS, vol. 2618, pp. 348–362. Springer, Heidelberg (2003)

12. Plotkin, G.D.: A structural approach to operational semantics. Technical report
DAIMI FN-19, Computer Science Department, Aarhus University, Aarhus,
Denmark, September 1981

http://www0.cs.ucl.ac.uk/staff/s.vanstaden/proofs/RG.tgz
http://www0.cs.ucl.ac.uk/staff/s.vanstaden/proofs/RG.tgz


On Rely-Guarantee Reasoning 49

13. de Roever, W.P., de Boer, F.S., Hannemann, U., Hooman, J., Lakhnech, Y., Poel,
M., Zwiers, J.: Concurrency Verification: Introduction to Compositional and Non-
compositional Methods. Cambridge Tracts in Theoretical Computer Science, vol.
54. Cambridge University Press, Cambridge (2001)

14. van Staden, S.: Constructing the views framework. In: Naumann, D. (ed.) UTP
2014. LNCS, vol. 8963, pp. 62–83. Springer, Heidelberg (2015)

15. Stirling, C.: A generalization of Owicki-Gries’s Hoare logic for a concurrent while
language. Theor. Comput. Sci. 58, 347–359 (1988)

16. Vafeiadis, V.: Modular fine-grained concurrency verification. Technical report
UCAM-CL-TR-726, University of Cambridge, Computer Laboratory, July 2008

17. Wickerson, J., Dodds, M., Parkinson, M.: Explicit stabilisation for modular rely-
guarantee reasoning. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp.
610–629. Springer, Heidelberg (2010)

18. Xu, Q., de Roever, W.P., He, J.: The rely-guarantee method for verifying shared
variable concurrent programs. Formal Asp. Comput. 9(2), 149–174 (1997)



http://www.springer.com/978-3-319-19796-8


	On Rely-Guarantee Reasoning
	1 Introduction
	2 The First Model
	2.1 Formalising the Judgement
	2.2 Inference Rules
	2.3 Proofs
	2.4 The Bigger Picture

	3 The Second Model
	3.1 Inference Rules
	3.2 Proofs
	3.3 Decomposition of the Quintuple
	3.4 Bigger Picture

	4 Using Binary Relations for Postconditions
	5 Soundness
	6 Related Work
	7 Conclusion
	References


