
Soft Subdivision Search in Motion
Planning, II: Axiomatics

Chee K. Yap(B)

Department of Computer Science, Courant Institute of Mathematical Sciences,
New York University, New York, NY 10012, USA

yap@cs.nyu.edu

Abstract. We propose to design motion planning algorithms with a
strong form of resolution completeness, called resolution-exactness.
Such planners can be implemented using soft predicates within the
subdivision paradigm. The advantage of softness is that we avoid the
Zero problem and other issues of exact computation. Soft Subdivision
Search (SSS) is an algorithmic framework for such planners. There are
many parallels between our framework and the well-known Probabilistic
Road Map (PRM) framework. Both frameworks lead to algorithms that
are practical, flexible, extensible, with adaptive and local complexity. Our
several recent papers have demonstrated these favorable properties on
various non-trivial motion planning problems. In this paper, we provide
a general axiomatic theory underlying these results. We also address the
issue of subdivision in non-Euclidean configuration spaces, and how exact
algorithms can be recovered using soft methods.

1 Introduction

Motion planning has been studied for over 30 years, and remains a central prob-
lem in robotics. Path planning is the most basic form of motion planning in which
we only consider kinematics, ignoring issues of timing, dynamics, non-holonomic
constraints, sensing and mapping. In the algorithmic study of path planning, the
problem is reduced to connectivity or reachability in some configuration space.
There are three main approaches here: Exact, Sampling and Subdivision. Diver-
gent paths have been taken: theoreticians favor the Exact Approach [2], but
practical roboticists prefer the Sampling and Subdivision Approaches [9,11].
For two decades, the Sampling Approach has dominated the field. According
to Choset et al. [9, p. 201], “PRM, EST, RRT, SRT, and their variants have
changed the way path planning is performed for high-dimensional robots. They
have also paved the way for the development of planners for problems beyond
basic path planning.” The premise of this paper is that subdivision has many
merits over sampling, and this power has not been fully exploited. But to open

C.K. Yap—Plenary Talk at the 9th Int’l. Frontiers of Algorithmics Workshop (FAW
2015) in Guilin, China, July 3–5. This work is supported by NSF Grants CCF-
0917093 and CCF-1423228.

c© Springer International Publishing Switzerland 2015
J. Wang and C. Yap (Eds.): FAW 2015, LNCS 9130, pp. 7–22, 2015.
DOI: 10.1007/978-3-319-19647-3 2

8 C.K. Yap

up this exploitation, we need to give it a sound foundation. This paper will pro-
vide one such foundation. We formulate the Soft Subdivision Search or SSS to
unify and generalize our several recent papers [12,13,20,21] in which we designed
and implemented subdivision planners for several classes of robots. These SSS
planners are relatively easy to design and implement. In our experiments, they
outperform random sampling methods.

To introduce our approach, we compare the notion of correctness according
to the three approaches. In the path planning problem, the robot R0 is fixed,
and each input instance is (Ω,α, β) where Ω ⊆ R

k (k = 2, 3) is a description of
the obstacles, and α, β ∈ Cspace(R0) are the start and goal configurations. In
exact algorithms, the planner must return a path if one exists, and must return
NO-PATH otherwise. In sampling, the input has an extra parameter N that bounds
the maximum number of samples; the planner is said to be “sampling complete”
if the planner returns a path with high probability when one exists and N is
sufficiently large. In subdivision, the input has an extra resolution parameter
ε > 0, and the planner is “resolution complete” if the planner returns a path
when the ε is small enough. Thus sampling and (current) subdivision planners are
similar in that their behaviors are only prescribed when there is a path. If there
is no path, nothing is prescribed. In computability, such one-sided prescription
of algorithmic behavior is well-known and is called “partial completeness”. To
make the completeness “total”, we [20] introduce the concept of resolution-
exact planners. Such a planner has an accuracy constant K > 1 (independent
of input) such that:

(P) If there is a path of clearance Kε, it returns a path.
(N) If there is no path of clearance ε/K, it returns NO-PATH.

Thus the NO-PATH output guarantees that there is no path of clearance Kε.
But the true innovation is the gap between the clearance bounds Kε and ε/K:
our planner could either return a path or NO-PATH when the optimal clearance
lies in this gap. This “indeterminacy”, unavoidable in some sense [20], has a
big payoff — resolution-exact planners can be implemented with purely numer-
ical approximations. As all the standard fundamental constants1 of Physics are
known to no more than 8 digits of accuracy, and no robot dimension, actuator
control, sensors or environment is known to nearly such accuracy, we should not
see this indeterminacy as a limitation.

Our paper [25] is a companion to the present paper, providing background
and other motivations. It presents SSS alongside PRM [10] as two general algo-
rithmic “frameworks” based on a small number of subroutines and data struc-
tures. We get specific algorithms by instantiating these subroutines and data
structures. As framework, “PRM” can cover many of its known variants. These
two frameworks share many favorable properties, all lacking in exact algorithms.
But we claim one advantage of SSS over PRM: PRM has a halting problem which
SSS does not have. We clarify this remark: under the usual idea that NO-PATH

1 Except speed of light which is exactly known, by definition.

Soft Subdivision Search in Motion Planning, II: Axiomatics 9

means “non-existence of paths”, PRM cannot halt when there is no path. But
suppose PRM adopts our viewpoint that NO-PATH means “no path of sufficient
clearance”. Now, PRM could halt2 but this amounts to exhaustive (exponential)
search. In effect, exponential search amounts to non-halting. But our subdivi-
sion approach need not suffer from exponential behavior because we are able to
eliminate large regions of the configuration space with a single test. Conceivably,
there are adaptive search strategies that guarantee polynomial size search trees.
For example, such results are known in our subdivision work on root isolation
[6,18,19]: here, the worst-case subdivision tree sizes is provably linear (resp.,
quadratic) in terms of tree depth for real (resp., complex) root isolation.

1. Overview: In Sect. 2, we describe the SSS Framework. In Sect. 3, we provide
the abstract elements of SSS: configuration spaces are replaced by metric spaces
and Non-Euclidean spaces are subdivided via charts and atlases. Section 4 proves
properties of SSS planners that satisfy some general axioms. Section 5 shows that
exact algorithms can be recovered with SSS planners. We conclude in Sect. 6.
For reasons of space, some proofs are deferred to the full paper. Figures 1 and 2
are in color.

2 The SSS Framework

What sets Subdivision Search apart from sampling or grid methods is that its
predicates are not point-based but region-based. Suppose each γ ∈ Cspace has
a classification as FREE, STUCK, or MIXED. Write C(γ) for the classification of γ.
We extend the classification to a set (or region) B ⊆ Cspace as follows: define
C(B) = FREE (resp., = STUCK) iff each γ ∈ B is FREE (resp., STUCK); otherwise
C(B) = MIXED. A classification function ˜C is a soft predicate (relative to C)
if it is conservative (i.e., ˜C(B) �= MIXED implies C(B) = ˜C(B)) and convergent
(i.e., if limi→∞ Bi → γ ∈ Cspace then ˜C(Bi) = C(γ) for i large enough). Here
we write limi→∞ Bi → γ to mean that {Bi : i ≥ 0} is a monotone decreasing
sequence of sets that converge to γ.

Let us now use soft predicates for path planning. Fixed robot R0. The motion
planning input is (Ω,α, β, ε) as above. It is standard (and without much loss) to
also specify an initial box B0 ⊆ Cspace to confine our sought-for path. Our main
data structure is a subdivision tree, T . It is useful to initially imagine Cspace ⊆
R

d, and T as the standard multidimensional version of quadtrees, rooted at B0.
But bear in mind our goal of extending Cspace to non-Euclidean spaces, and B
to non-box geometries. The SSS planner amounts to a loop that “grows” T in
each iteration by expanding some leaf until we find a path or conclude NO-PATH.
There are two supporting data structures and three key routines:

– (Priority Queue) Q is a priority queue comprising those MIXED-leaves with
length �(B) (defined below) is at least ε.

2 To do this, it would have to detect (probabilistically) that the sampling is dense
enough, a non-trivial extension of the current PRM formulations.

10 C.K. Yap

– (Union-Find) D is a union-find data structure to maintain the connected
components of the FREE boxes. As soon as we find a new FREE box, we form
its union with the other adjacent FREE boxes. Boxes B,B′ are adjacent if
B ∩ B′ is a d − 1 dimensional set.

– (Classifier) The routine ˜C is a soft predicate that classifies each node in T as
FREE/STUCK/MIXED.

– (Search Strategy) This is represented by the queue’s Q.getNext() that returns
a box in Q of highest priority.

– (Expander) The subroutine Expand(B) subdivides B into two or more sub-
boxes. These subboxes become the children of B in T . In general, Expand(B)
represents a splitting strategy because it may have to choose from one or more
alternative expansions.

– For γ ∈ Cspace, let Box(γ) denote any leaf in T that contains γ. Also, Find(γ)
denote the box returned by the find operation of D when it is given Box(γ).
Thus, a path is found as soon as we discover Find(α) = Find(β).

Putting them together, we get our SSS framework:

This framework has been used successfully to implement our disc and triangle
planners [20], and our 2-link planner [12] including an interesting variant where
self-crossing is not allowed [13]. Illustrating the power of subdivision and soft-
ness, we can easily generalize all these examples by fattening the robots and/or
the polygonal obstacles. Notice that such extensions would be difficult for exact
methods (to our knowledge, exact algorithms are unknown for such extensions).
Of course many variants of this framework has appeared in the subdivision litera-
ture; conversely, some of these algorithms can be recaptured within SSS. E.g., the
hierarchical search of Zhu and Latombe [28], Barbehenn and Hutchinson [1], or
Zhang, Kim and Manocha (2008) [27]. One major difference is that these papers
expand along a “mixed channels” (i.e., path comprising FREE or MIXED boxes). We
could modify our getNext to achieve similar behavior; one advantage of this app-
roach is that NO-PATH could be detected before emptying the queue. This abstract
description hides an important feature of our technique: our computation of ˜C is

Soft Subdivision Search in Motion Planning, II: Axiomatics 11

deeply intertwined with the expansion of T (see [8]). Steve LaValle (insightfully)
described this as “opening up the blackbox” of collision testing.

3 Generalized Setting for SSS

Once the SSS framework has been instantiated with specific routines, we have
an SSS planner. How do we know that the planner is resolution-exact? Our
goal is to prove this under general “axiomatic” conditions. Designing a short
list of such axioms is very useful: first, it gives us a uniform way to check that
any proposed SSS algorithm is resolution-exact, just by checking the axioms.
We could for instance apply this to our previous planners [12,13,20]. Second,
because planning is a complex task, and we expect that SSS will suffer many
variants, we must know the boundaries of the variations. The axioms serve as
boundary markers.

The starting point is to replace Cspace by a metric space X, and replace
Cfree by an open set Y ⊆ X. Points in the boundary ∂Y of Y are said to
be semi-free. Let CY : X → {+1, 0,−1} denote the (exact) classifier for Y :
CY (γ):= + 1/0/ − 1 iff γ belongs to Y/∂(Y)/X \ Y where Y is the closure
of Y . Note that we have performed a simple (non-essential) translation in our
classification values: FREE → +1, MIXED → 0, and STUCK → −1.

We extend the classification of points to classification of sets. There are two
general ways to extend any function to a function on sets: let f : S → T be a
function. The set extension of f (still denoted f) is the function f : 2S → 2T

such that for B ⊆ S, f(B) = {f(b) : b ∈ B}. Here 2S denotes the power set
of S. Another general method applies to any geometric3 predicate g : S →
{+1, 0,−1}. The set extension of g (still denoted g) is the geometric predicate
g : 2S → {+1, 0,−1} such that for any definite value v ∈ {+1,−1}, g(B) = v iff
g(b) = v for all v ∈ B; otherwise g(B) = 0.

Although the set extension of the classifier CY : X → {+1, 0,−1} is applica-
ble to any subset B ⊆ X, in practice, we need B is be “nice” in order to carry out
our algorithm: B must be able to support subdivision, CY (B) must be (softly)
computable, and we should be able to discuss the limits of such sets, limi→∞ Bi.
We next capture these properties using “test cells”.

2. Test Cells and Subdivision Trees: Consider an Euclidean set B ⊆ R
d. It

is called a test cell if it is a full-dimensional, compact and convex polytope. For
d = 1 (d = 2), test cells are intervals (convex polygons). Our subdivision of the
metric space X will be carried out using such test cells.

Let the width w(B) (resp., length �(B)) refer to the minimum (resp., max-
imum) length of an edge of B. The unique smallest ball containing B is called
the circumball of B; its center and radius are denoted c(B) and r(B). Note
that c(B) need not lie in the interior of B. The inner radius r0(B) of B is the
3 A geometric predicate is a 3-valued function, with a distinguished value 0 called

the indefinite value. The others are called definite values. This is in contrast to
a logical predicate which is 2-valued.

12 C.K. Yap

largest radius of a ball contained in B. Let ic(B) comprises the centers of balls
of radius r0(B) that are contained in B. E.g., if B is a rectangle, then ic(B) is a
line segment. Clearly, ic(B) is convex. Then c(ic(B)) is called the inner center
of B, denoted c0(B). Unlike c(B), we now have c0(B) in the interior of B. We
use c0(B) as follows: for any α > 0, αB will mean scaling B by a factor α relative
to the center c0(B). If α > 1 (< 1) this amounts to growing (shrinking) B. The
inverse operation is denoted B/α. Thus (αB)/α = B. The aspect ratio of B is
ρ(B):=r(B)/r0(B) > 1.

By a subdivision of a test cell B, we mean any finite set of test cells
{B1, . . . , Bm} such that B =

⋃m
i=1 Bi and dim(Bi ∩ Bj) < d for all i �= j.

We denote the subdivision relationship as B = B1 � B2 � · · · � Bm.
Let R

d denote some set of test cells. For instance, R
d may the set of all

boxes, or the set of all simplices. Let the function Expand : R
d → 2 R

d

return a
subdivision Expand(B) of B. In general, Expand is a non-deterministic function4

and we may call it an “expansion scheme”. Using an expansion scheme, we can
grow subdivision trees rooted in any B ∈ R

d, by repeated expansion at any
chosen leaf. We note some concrete schemes:

– Longest Edge Bisection: let R
d be simplices and Expand(B) returns a

subdivision of B into two simplices by bisecting the longest edge in B (see
[17]).

– Box Subdivision Scheme: let R
d be the set of all (axes-parallel) boxes and

Expand(B) return a set of 2i congruent boxes (for some i = 1, . . . , d). This set
is defined by introducing i axes-parallel hyperplanes through the center of B.
There are

(

d
i

)

ways to choose these hyperplanes. So there are 2d − 1 possible
expansions.

– Dyadic Schemes: We call a scheme is dyadic if, for any test cell B, each
vertex of a subcell B′ ∈ Expand(B) is either a vertex of B or the midpoint of an
edge of B. The previous two examples are dyadic schemes. The significance of
such schemes is that they can be exactly and efficiently computed: recall that a
dyadic number (or BigFloat) is a rational number of the form m2n (m,n ∈ Z).
The operations +,−,× on dyadic numbers are very efficient and division by 2 is
exact. Vertices of test cells in a dyadic subdivision tree have the form

∑k
i=1 civi

where ci are dyadic numbers and v1, . . . , vk are the vertices of the root. The bit
size of the ci’s grows linearly with the depth, not exponentially.

3. Subdivision Atlases for Non − euclidean Spaces: Note that if we have
a point or ball robot in Euclidean space, then the resolution-exactness of SSS
algorithms is indeed trivial. But configuration spaces are rarely Euclidean. Sub-
division in non-Euclidean spaces is a nontrivial problem. Likewise, sampling in
such spaces is also a research issue (Yershova et al. [26]). Our approach is to
borrow the language of charts and atlases from differential geometry. Suppose
4 We use the notation in, e.g., [3]. This means there is a set, denoted set−Expand(B),

of subdivisions of B, and Expand(B) denotes (non-deterministically) any element
of this set. We assume set−Expand(B) is non-empty so that Expand(B) is a total
function.

Soft Subdivision Search in Motion Planning, II: Axiomatics 13

the metric space X has the property X = X1 ∪ X2 ∪ · · · ∪ Xm such that for
each Xt, we have an onto homeomorphism μt : Bt → Xt where Bt is a test cell,
and dim(μ−1

t (Xt ∩ Xs)) < d for all t �= s. We call each μt a chart and the set
{μt : t = 1, . . . ,m} is called an subdivision atlas for X.

The subdivision of X is thus reduced to subdivision in each Xt, car-
ried out vicariously, via the chart μt. More precisely, let Expandt : Bt →
2 Bt be an expansion scheme where Bt ⊆ 2Bt is a set of test cells. Call
μt(B):= {μt(γ) : γ ∈ B} (B ∈ Bt) a test cell induced by μt. Let X denote the
set of induced test cells. Finally, let X denote the disjoint union of the Xt’s (for
all t = 1, . . . , m) and let ExpandX : X → 2 X denote the induced expansion
defined by ExpandX(μt(B)) = μt(Expandt(B)). We have thus achieved subdi-
vision in X. In the following, we might say “B/α” (scaling), “c(B)” (center),
etc. But it should be understood that we mean μ(B′/α), μ(c(B′)), etc., where
B = μ(B′) for some test cell B′.

Call the intersection Xt ∩ Xs (s �= t = 1, . . . ,m) an atlas transition if
dim(Xt ∩ Xs) = d − 1. For motion planning, recall that two cells are adjacent
if they share a face of codimension 1. Thus atlas transitions yield adjacencies
between cells in Xs and in Xt. Thus we have two kinds of adjacencies: those
that arise from the subdivision of test cells, and from atlas transitions.

4. Subdivision Atlases for S2 and SO(3): We now give consider two non-
Euclidean metric spaces, S2 and SO(3). We will identify SO(3) with the unit
quaternions, q = (a, b, c, d) = a+ib+jc+kd with a2+b2+c2+d2 = 1. Then SO(3)
is a metric space with a metric d(·, ·) given by the angle d(q, q′):= cos−1(|q · q′|)
between two unit quaternions q, q′ (see [26]). Likewise, we can treat S2 as a
metric space with the great circle distance.

We are interested in the 2-sphere S2 because the configuration spaces of
several simple rigid robots living in R

3 is given by R
3 × S2: a rod (1D), a

cone or bullet (3D), a disc (2D) and a ring (1D). See Fig. 1(a). The ring is
interesting because it is the simplest rigid robot that is not simply-connected.
Despite the simplicity of their configuration spaces (being 5-DOF), it seems that
no complete exact planners have been designed for them. The reason seems to
be related to the difficulties of exact algorithms for the “Voronoi Quest” [22].
We are currently designing and implementing a resolution-exact planner for a
rod [21]. It would test the practicality of our theory. We can make the rod, ring
and disc into thick robots by taking their Minkowski sum with a 3D-ball. But
we expect that any SSS planner for thin robots will extend relatively easily to
thick analogues (similar to the situation in the plane [12]).

Note that S2 is not a subgroup, but a quotient group of SO(3) (this is clear
from the Hopf fibration of SO(3) [26]). To create a subdivision atlas for S2,
let I3 = I × I × I be the 3-cube where I = [−1, 1]. Its boundary ∂I3 can
be subdivided into 6 squares denoted S±δ where δ ∈ {x, y, z}. See Fig. 1(b).
For instance, S+z = {(x, y, 1) : x, y ∈ I} and S−z = {(x, y,−1) : x, y ∈ I}. We
obtain a subdivision chart of S2 by using 6 charts: μ±δ : S±δ → S2 where
μ±δ(q) = q/‖q‖ where ‖q‖ is the Euclidean norm. Note that μ±δ does not depend

14 C.K. Yap

S−z

Rod Cone Disc Ring

Y

Z

S+x

S−y

S+y

S+z

S−x
Model

of S2:

(a)

(b)
X

O

Fig. 1. 3D rigid robots with 5-DOF (Color figure online)

on ±δ and so there is really only one function μ(q) for all the charts. The
inverse map μ−1 : S2 → ∂I3 is also easy: μ−1(γ) = γ/‖γ‖∞ where ‖q‖∞ is the
infinity norm.

Call this construction the cubic atlas for S2. We now construct a similar
cubic atlas for SO(3) (it was mentioned in Nowakiewicz [14]).

Begin with the 4-cube I4: it has eight 3-dimensional cubes as faces. After
identifying the opposite faces, we have four faces denoted C3

w, C3
x, C3

y , C3
z (see

Fig. 2). We define the chart: μt : C3
t → SO(3) given by μt(q) = q/‖q‖ (where

t = w, x, y, z). As noted above, we must keep track of the adjacencies that arise
from our atlas. In our case, this arise from the identification of antipodal points,
q ∼ −q in S3. In our cubic model, this information is transferred to identification
of 2-dimensional faces among of C3

t .
A chart μ : Bt → Xt is good if there exists a chart constant C0 > 0 such

that for all q, q′ ∈ Bt, 1/C0 ≤ dX(μ(q),μ(q′))
‖q−q′‖ ≤ C0 where dX(·, ·) is the metric

in Xt. The subdivision atlas is good if there is an atlas constant C0 that is
common to its charts. Note that good atlases can be used to produce nice sam-
pling sequences: since our test cells are Euclidean sets, we can exploit sampling
of Euclidean sets. Alternatively, we can produce a “uniform” subdivision into
sufficiently test cells, and pick the center of each test cell as sample point. The
following is immediate:

Lemma 1. The cubic subdivision atlases for S2 and SO(3) are good.

5. Soft Predicates: We define soft predicates in the space X. Let Y ⊆ X. We
call ˜C : X → {+1, 0,−1} a soft classifier of Y if it satisfies two properties:

– (conservative) for all B ∈ X, ˜C(B) �= 0 implies ˜C(B) = CY (μ(B)).

Soft Subdivision Search in Motion Planning, II: Axiomatics 15

Z

O

Y

Z

X

W

O

Y

X

W

O

Y

Z

X O

Y

Z

W

X

(c) Cz (d) Cy

(b) Cx(a) Cw

W

O

Y

Z

X

W

Fig. 2. The Cubic Atlas for SO(3) (Color figure online)

– (convergent) if q = limi→∞ Bi then ˜C(Bi) = CY (μ(q)) for i large enough.

For resolution-exactness, we need another property: a soft classifier ˜C is effec-
tive if there is an effectivity factor σ > 1 such that if ˜C(B) = +1 then
˜C(B/σ) = +1. For instance, we see that effectivity of ˜C implies it is convergent.
Note we do not require CY (B) = −1 to imply CY (B/σ) = −1.

Given α, β ∈ X and Y ⊆ X, the exact planning problem is finding a
path from α to β in Y if they belong to the same connected component of Y ,
and NO-PATH otherwise. The resolution-exact version will require a connection
between the metric in configuration space X and the metric in physical space Rk.
For this purpose, recall the concepts of footprint and separation of Euclidean sets
(see [20,25]): Our robot R0 lives in physical space R

k (k = 2 or k = 3) amidst
an obstacle set Ω ⊆ R

k. The footprint map is Fprint : Cspace → 2R
k

where
Cspace = Cspace(R0) is the configuration space. Intuitively, Fprint(γ) ⊆ R

k

is the physical space occupied by robot R0 in configuration γ. The clearance
function, C� : Cspace → R≥0 is given by C�(γ):=Sep(Fprint(γ), Ω), where
Sep(A,B):= inf {‖a − b‖ : a ∈ A, b ∈ B} is the separation between two Euclid-
ean sets in R

k. We say γ is free if C�(γ) > 0. A motion is a continuous function
π : [0, 1] → Cspace; its clearance is inf {C�(π(t)) : t ∈ [0, 1]}. Call π a path if
it has positive clearance.

In our abstract formulation, we postulate the existence of a continuous func-
tion C� : X → R without reference to the underlying footprint or Ω. Moreover,
this is called a generalized clearance function because we now allow negative
clearance, interpreted as “penetration depth” (e.g., [8,27]). Call C� a clearance

16 C.K. Yap

function for Y if Y = {γ ∈ X : C�(γ) > 0)}. We then consider interval functions
of the form

C� : X → R.

(Recall that R is a set of intervals.) We call C� a conservative approxi-
mation of C� if C�(B) �= 0 implies C�(B) = C�(B) for all B ∈ X. We say

C� converges to C� if whenever γ = limi→∞ Bi, then C�(Bi) = C�(γ) for i
large enough. Finally, C� is called a box function for C� if it is conservative
and convergent relative to C�.

Note that C� defines a classification function ˜C : X → {+1, 0,−1} where
˜C(B) = 0 iff 0 ∈ C�(B); otherwise, ˜C(B) = sign(C�(B)) (either +1 or −1).
The following is immediate:

Lemma 2. Let C� : X → R be a clearance function for Y ⊆ X, and suppose
C� : X → R is a box function for C�.

Then the classification function ˜C : X → {+1, 0,−1} defined by C� is a soft
classifier of Y .

6. Soft Predicates for Complex Robots: An example of a robot with com-
plex geometry is the gear robot of Zhang et al. [27]. Such robots pose difficulties
for exact algorithms. We show that soft predicates for complex robots can be
decomposed. Let G0 ⊆ R

2 be the gear robot. We write it as a union G0 = ∪m
j=1Tj

of triangles Tj . The free space of G0 can be written as the intersections of the
freespaces of Tj , provided the Tj ’s are expressed in a common coordinate system.
This proviso requires a slight generalization of the soft predicate for triangles in
[8]. The next theorem shows how to obtain a soft predicate for G0 from those of
the Tj ’s:

Theorem 1 (Decomposability of Soft Predicates). Suppose Y = Y1∩· · ·∩
Ym. If ˜Ci : X → {+1, 0,−1} is a soft classifier for Yi, then the following is a
soft classifier for Y :

˜C(B):=

⎧

⎨

⎩

+1 if (∀j)[˜Cj(B) = +1]
−1 if (∃i)[˜Ci(B) = −1],
0 else.

If each ˜Cj’s has effectivity factor σ, then ˜C(B) has effectivity factor σ.

Proof. We easily check that ˜C(B) is safe. To show convergence, suppose that
Bi → p. If p ∈ Y , then p ∈ Yj for each j. That means ˜Cj(Bi) = 1 for i

large enough. I.e., ˜C(Bi) = 1 for i large enough. This proves limi≥0
˜C(Bi) =

+1 = C(p). If p ∈ X \ Y , then p ∈ X \ Yj for some Yj . This means ˜Cj(Bi) =
−1 for i large enough, and therefore ˜C(Bi) = −1 for i large enough. Again,
limi≥0

˜C(Bi) = −1 = C(p). Suppose p ∈ ∂Y . Then p ∈ ∂Yj for some j and for
all k �= j, p ∈ Yk. That implies that ˜Cj(Bi) ∈ {+1, 0} and Again, limi≥0

˜C(Bi) =
0 = C(p). This proves the softness of the predicate ˜C(B).

Soft Subdivision Search in Motion Planning, II: Axiomatics 17

Assume each ˜Cj has an effectivity factor σ > 1. Let Cj(B) be the exact
box predicate for Yj . Suppose C(B) is free. This means each Cj(B) is free. By
definition of effectivity, each ˜Cj(B/σ) is free. Hence ˜C(B/σ) is free. Q.E.D.

4 Axiomatic Properties of SSS

We prove general properties of SSS planners using basic assumptions which we
call axioms. The proofs are instructive because they reveal how these axioms
and properties of SSS are used. We introduce 5 axioms, beginning with these
four:

– (A0: Softness)
˜C is a soft classifier for Cfree = {γ ∈ X : C�(γ) > 0}.

– (A1: Bounded dyadic expansion)
The expansion scheme is dyadic, and there is a constant D0 > 2 such that
Expand(B) splits B into at most D0 subcells, each with at most D0 vertices,
with the ratio �(B)/w(B) at most D0.

– (A2: Clearance is Lipschitz)
There is a constant L0 > 0 such that for all γ, γ′ ∈ Cfree, |C�(γ)−C�(γ′)| <
L0 · dX(γ, γ′) where dX(·, ·) is the metric on X.

– (A3: Good Atlas)
The subdivision atlas has a atlas constant C0 ≥ 1.

Note that these axioms concern about the clearance C� : X → R, classification
˜C : X → R and the Expand scheme. We have no axioms about getNext
because the needed properties are embedded in the SSS framework, namely
getNext returns a MIXED-leaf with length �(B) ≥ ε if any exist. Recall that in
general, B ∈ X is induced via our charts μt, and so the metrics such as �(B)
and w(B) are induced from the Euclidean sets B′ where μt(B′) = B, i.e., �(B)
refers to �(μ−1

t (B)) = �(B′), etc. Note that (A1) does not bound the aspect
ratio r(B)/r0(B) and these may be unbounded (slivers can arise). (A2) relates
clearance to the metric on X: this is a non-trivial axiom in non-Euclidean spaces.
(A3) is necessary since subdivision of X is done via charts {μt : t = 1, . . . , m}.

Theorem 2 (Halting). Every SSS planner halts. When a path is output, it is
valid.

Proof. In any infinite path {Bi : i ≥ 0}, (A1) implies limi �(Bi) → 0. Since we do
not subdivide a box if “�(B) < ε”, halting is assured. At termination, we either
report a path or output NO-PATH. If we report a path, it meant we found a “free
channel” from B(α) to B(β). We check that SSS ensures that the channel is truly
free: the dyadic scheme (A1) ensures that test cells are computed exactly, and
thus adjacencies are computed without error. Each cell in the channel is classified
as FREE, and this truly free because (A0) ensures a conservative classifier ˜C.
Finally, output paths are valid as they are contained in free channels. Q.E.D.

18 C.K. Yap

This theorem depends only on (A0) and (A1). Although our goal in (A0)
is soft classifiers, it is a useful preliminary to consider the case where ˜C is the
exact classifier. In this case, we say our planner is exact. This preliminary step
is captured in the next result:

Theorem 3 (Exact SSS). Assuming an exact SSS planner:
(a) If there is no path, the planner outputs NO-PATH.
(b) If there is a path with clearance ≥ 2C0D0εL0, the planner outputs a path.

Proof. Part(a) is essentially the contrapositive of the above Halting theorem. For
part(b), let T be the subdivision tree at termination. The nodes of T are induced
cells of X. Each B ∈ X comes from an Euclidean test cell μ−1(B) ∈ R

d for
some chart μ. Euclidean distance ‖ · ‖2 in μ−1(B) and the metric dX(·, ·) of X
are related via the chart constant C0. Let π : [0, 1] → X be a path from α
to β with clearance 2C0D0εL0. By way of contradiction, suppose SSS outputs
NO-PATH. This implies that every mixed leaf satisfies �(B) < ε. Consider the
set A of leaves of T that intersect π[0, 1] (the range of π). If B ∈ A, there
exists t ∈ [0, 1] such that π(t) ∈ B. This implies B is either free or mixed. We
claim that B is free. If B is mixed, then �(μ−1(B)) < ε and there is a point
p′ ∈ B that is semi-free. Thus ‖p − q‖2 < D0ε for any two Euclidean points
p, q in μ−1(B). Using the chart μ, we conclude that dX(μ(p), μ(q)) < C0D0ε.
Therefore dX(π(t), p′) ≤ dX(π(t), c(B)) + dX(c(B), p′) < 2C0D0ε. By (A2),
|C�(π(t)) − C�(p′)| < 2C0D0εL0. Thus C�(p′) > C�(π(t)) − 2C0L0εL0 ≥ 0, i.e.,
p′ is free. This contradicts the assumption that p′ is semi-free; so B must be free.
Thus we obtain a channel of free cells from α to β using cells in A. The existence
of such a channel implies that our union-find data structure in SSS would surely
detect a path. Q.E.D.

Our goal is not to produce the sharpest constants but to reveal their roles in
our framework. Notice that this theorem has a gap: if the optimal clearance lies
in (0, 2C0D0εL0), the exact Planner may output either a path or NO-PATH.

7. Three Desiderata: The literature invariably assumes exactness in its analy-
sis, such as in Theorem 3. But there are three desiderata beyond such a result.
The first is to remove the exactness assumption. Second, we would like to
strength the hypothesis of Theorem 3(a) to “if there is no path with clearance
ε/K” for some input-independent K > 1. In other words, NO-PATH ought to
mean no path of “sufficient clearance”, a reasonable idea in view of the inherent
uncertainty of physical devices. Third, we may want to strengthen the conclusion
of Theorem 3(b) so that the output path has clearance ≥ ε/K.

The first desiderata calls for soft predicates. We say that the SSS planner
is effective if the soft predicate ˜C has an effectivity constant σ > 1. In appli-
cations, it is useful to assume that ˜C is isotone5 i.e., ˜C(B) �= 0 and B′ ⊆ B

implies ˜C(B′) �= 0. The proof of part(b) in the previous theorem can be extended
to show:
5 This term is from the interval literature. Though not strictly necessary, but it sim-

plifies some arguments.

Soft Subdivision Search in Motion Planning, II: Axiomatics 19

Theorem 4 (Effective SSS). Assume an SSS planner with effectivity σ > 1.
(a) If there is no path, the planner outputs NO-PATH.
(b) If there is a path with clearance ≥ C0D0ε(1 + σ)L0, the planner outputs a
path.

The indeterminacy gap is slightly widened to (0, C0D0ε(1 + σ)L0) by the soft
predicate.

The second desiderata amounts to asking for a resolution-exact planner. As
defined in the Introduction, such planners has an accuracy constant K > 1. So
we seek to narrow indeterminacy gap by raising the gap lower bound from 0 to
ε/K. The fundamental issue is to infer a lower bound on the clearance of a path
inside a free channel. This requires a new axiom:

– (A4: Translational Cells)
There is a constant K0 > 0 such that if B ∈ X is free, then its inner center
c0 = c0(B) has clearance C�(c0) ≥ K0 · r0(B). Such cells are said to be
translational.

Like (A2), axiom (A4) relates the clearance to the metric space (via the chart
μ). The “translational” terminology is based on the analogy that if X is purely
translational, then (A4) is true. But in fact, it will be true in all the common
motion planning scenarios.

Theorem 5 (Resolution-Exact SSS). Assuming (A0–A4), SSS planners are
resolution-exact.

This proof is more involved and will appear in the full paper. The third desiderata
requires that we strengthen condition (P) in the definition of resolution-exactness
as follows:

(P’) If there is a path of clearance Kε, then return a path of clearance ε/K.

See [20,25] where (P’) is used. The combination of (P) and (N) implies that
whenever a path is output, we are assured that there exists a path of clearance
ε/K. So (P’) attempts to turn this existential guarantee into a constructive
guarantee. Unfortunately, this requires additional effort as in [20,25]. We will
not attempt an axiomatic treatment to achieve (P’) here.

5 What About Exactness?

Can the SSS framework produce6 exact algorithms? The answer is yes, but
as always, only in the algebraic case. First, here is a non-solution: using an
exact SSS planner with the resolution parameter ε = 0. Using an exact SSS re-
introduces the need for algebraic computation. By setting ε = 0, indeterminacy

6 We are indebted to Steve LaValle for asking this question at the IROS 2011 Workshop
in San Francisco.

20 C.K. Yap

is removed, but at a high price: if there is no path, then SSS will not halt. Even
if there is a path, SSS may not halt; but this could be fixed by imposing a “gen-
eralized BFS” property on getNext. For these reasons, our normal formulation
of SSS requires ε > 0 and K > 1. We now present a solution within the SSS
framework using an effective soft predicate. The idea is to exploit the theory of
constructive zero bounds [24].

Proposition 3. If R0, Ω are semi-algebraic sets, and the parameters α, β are
algebraic, then there is an effectively computable number δ = δ(R0, Ω, α, β) > 0
such that: if there is a path from α to β, then there is one with clearance δ.

One way to derive such a δ is to use the general retraction theory in [15,16,23]:
there is a “retract” V ⊆ Cfree = Cfree(R0, Ω) and a retraction map Im :
Cfree → V with this property: for all α, β ∈ Cfree, we have that α, β are
path-connected in Cfree iff Im(α), Im(β) are path-connected in V . Here V is a
Voronoi diagram and we can subdivide V into semi-algebraic Voronoi cells. The
minimum clearance on V serves as δ, and this can be lower bounded using the
degree and height of the semi-algebraic sets [5]. The upshot is this:

Theorem 6. Suppose we have a resolution-exact planner with accuracy constant
K > 1. If we choose ε to be δ(R0, Ω, α, β)/K, then our SSS planner is exact: it
outputs NO-PATH iff there is no path.

6 Conclusion

In this paper, we described the SSS framework for designing resolution-exact
algorithms. We argued [25] that it shares many of the attractive properties of
the successful PRM framework. Subdivision algorithms are as old as the history
of path planning [4]. But to our knowledge, the simple properties of soft classifiers
have never been isolated, nor have concepts of resolution-limited computation
been carefully scrutinized. We believe focus on these “simple ideas” will open
up new classes of algorithms that are practical and theoretically sound. This has
implications beyond motion planning. Our work in SSS is not just abstract, as
we have validated these ideas in several non-trivial planners [12,13,20].

There are many open questions concerning SSS framework. Perhaps the
biggest challenge for SSS is the conventional wisdom that PRM can provide prac-
tical solutions for problems with high degrees-of-freedom, while resolution meth-
ods can only reach medium DOF, generally regarded as 5–8 DOF (Choset et al.
[9, p. 202]). Likewise, in Nowakiewicz [14], “[subdivision methods] are not suitable
for 6-DOF rigid body motion planning due to the large expected number of cells ...
We believe that in high-dimensional spaces it has little practical value.”

The other major challenge is a theoretical one: how to do complexity analysis
of adaptive subdivision in Motion Planning (cf. [18]). Here are some other topics:

– The current SSS framework detects NO-PATH by exhaustion. It is a challenge
to design efficient techniques (related to maintaining homology) to allow fast
detection of NO-PATH. A promising new work by Kerber and Cabello [7] shows
how to do this when Cspace = R

2.

Soft Subdivision Search in Motion Planning, II: Axiomatics 21

– Beyond kinematic spaces, subdivision in state spaces for kinodynamic plan-
ning seems quite challenging.

– Design and analysis of good adaptive search strategies, including the Voronoi
heuristic [23], or randomized or hybrid ones. E.g., efficient updates for dynamic
A-star search [1] seems open.

Acknowledgments. I am indebted to Yi-Jen Chiang, Danny Halperin, Steve LaValle,
and Vikram Sharma for many helpful discussions.

References

1. Barbehenn, M., Hutchinson, S.: Toward an exact incremental geometric robot
motion planner. In: Proceedings of Intelligent Robots and Systems 1995, vol. 3,
pp. 39–44 (1995). 1995 IEEE, RSJ International Conference, Pittsburgh. PA, USA,
pp. 5–9, August 1995

2. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Algo-
rithms and Computation in Mathematics, vol. 10, 2nd edn. Springer, Heidelberg
(2006)

3. Beyersdorff, O., Köbler, J., Messner, J.: Nondeterministic functions and the exis-
tence of optimal proof systems. Theor. Comput. Sci. 410(38–40), 3839–3855 (2009)

4. Brooks, R.A., Lozano-Perez, T.: A subdivision algorithm in configuration space
for findpath with rotation. In: Proceedings of the 8th IJCAI, San Francisco, CA,
USA, vol. 2, pp. 799–806. Morgan Kaufmann Publishers Inc. (1983)

5. Brownawell, W.D., Yap, C.K.: Lower bounds for zero-dimensional projections.
In: 2009 34th International Symposium on Symbolic and Algebraic Computation
(ISSAC 2009), pp. 79–86. KIAS, Seoul, Korea, 28–31 July 2009

6. Burr, M., Krahmer, F.: SqFreeEVAL: an (almost) optimal real-root isolation algo-
rithm. J. Symb. Comput. 47(2), 153–166 (2012)

7. Cabello, S., Kerber, M.: Semi-dynamic connectivity in the plane. In: Algorithms
and Data Structure Symposium (WADS 2015) (to appear, 2015). arXiv:1502.03690

8. Chiang, Y.-J., Yap, C.: Numerical subdivision methods in motion planning. 2011
Poster, IROS Workshop on Progress and Open Problems in Motion Planning, San
Francisco, 30 September 2011

9. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E.,
Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations.
MIT Press, Boston (2005)

10. Kavraki, L., Švestka, P., Latombe, C., Overmars, M.: Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. IEEE Trans. Robot.
Autom. 12(4), 566–580 (1996)

11. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge
(2006)

12. Luo, Z., Chiang, Y.-J., Lien, J.-M., Yap, C.: Resolution exact algorithms for link
robots. In: 2014 Proceedings of the 11th WAFR, Boǧaziçi University, Istanbul,
Turkey, 3–5 August 2014. (to appear in a Springer Tracts in Advanced Robotics
(STAR))

13. Luo, Z., Yap, C.: Resolution exact planner for non-crossing 2-link robot (2015,
Submitted)

http://arxiv.org/abs/1502.03690

22 C.K. Yap

14. Nowakiewicz, M.: MST-based method for 6DOF rigid body motion planning in
narrow passages. In: 2010 Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems, Taipei, Taiwan, pp. 5380–5385, 18–22 October
2010

15. Ó’Dúnlaing, C., Sharir, M., Yap, C.K.: Retraction: a new approach to motion-
planning. ACM Symp. Theor. Comput. 15, 207–220 (1983)

16. Ó’Dúnlaing, C., Yap, C.K.: A “retraction” method for planning the motion of a
disc. J. Algorithms 6, 104–111 (1985)

17. Rivara, M.-C.: Lepp-bisection algorithms, applications and mathematical proper-
ties. Appl. Numer. Math. 59(9), 2218–2235 (2009)

18. Sagraloff, M., Yap, C.K.: A simple but exact and efficient algorithm for complex
root isolation. In: Emiris, I.Z. (ed.) 36th International Symposium on Symbolic
and Algebraic Computation, San Jose, California, pp. 353–360, 8–11 June 2011

19. Sharma, V., Yap, C.: Near optimal tree size bounds on a simple real root isola-
tion algorithm. In: 2012 37th International Symposium on Symbolic and Algebraic
Computation (ISSAC 2012), Grenoble, France, pp. 319–326, 22–25 July 2012

20. Wang, C., Chiang, Y.-J., Yap, C.: On soft predicates in subdivision motion plan-
ning. In: 2014 Computational Geometry: Theory and Applications, Special Issue
for SoCG, Rio de Janeiro, Brazil, 17–20 June 2013

21. Wei, Z., Yap, C.: Soft subdivision planner for a rod (2015. in preparation)
22. Yap, C., Sharma, V., Lien, J.-M.: Towards exact numerical voronoi diagrams. In:

2012 9th Proceedings of the International Symposium of Voronoi Diagrams in
Science and Engineering (ISVD), Rutgers University, NJ, pp. 2–16. IEEE, 27–29
June 2012. Invited Talk

23. Yap, C.K.: Algorithmic motion planning. In: Schwartz, J., Yap, C. (eds.) Advances
in Robotics. Algorithmic and Geometric Issues, vol. 1, pp. 95–143. Lawrence
Erlbaum Associates, Hillsdale (1987)

24. Yap, C.K.: Robust geometric computation. In: Goodman, J.E., O’Rourke, J.
(eds.) Handbook of Discrete and Computational Geometry, 2nd edn, pp. 927–952.
Chapman & Hall/CRC, Boca Raton (2004)

25. Yap, C.K.: Soft subdivision search in motion planning. In: Aladren, A., et al. (eds.)
In: Proceedings of 1st Workshop on Robotics Challenge and Vision (RCV 2013),
A Computing Community Consortium (CCC) Best Paper Award, Robotics Science
and Systems Conference (RSS 2013), Berlin (2013). arXiv:1402.3213

26. Yershova, A., Jain, S., LaValle, S.M., Mitchell, J.C.: Generating uniform incremen-
tal grids on SO(3) using the Hopf fibration. IJRR 29(7), 801–812 (2010)

27. Zhang, L., Kim, Y.J., Manocha, D.: Efficient cell labeling and path non-existence
computation using C-obstacle query. Int. J. Robot. Res. 27(11–12), 1325–1349
(2008)

28. Zhu, D., Latombe, J.-C.: New heuristic algorithms for efficient hierarchical path
planning. IEEE Trans. Robot. Autom. 7, 9–20 (1991)

http://arxiv.org/abs/1402.3213

http://www.springer.com/978-3-319-19646-6

	Soft Subdivision Search in Motion Planning, II: Axiomatics
	1 Introduction
	2 The SSS Framework
	3 Generalized Setting for SSS
	4 Axiomatic Properties of SSS
	5 What About Exactness?
	6 Conclusion
	References

