
Semantic Engine and Cloud Agency for Vendor
Agnostic Retrieval, Discovery, and Brokering

of Cloud Services

Alba Amato, Giuseppina Cretella, Beniamino Di Martino(B), Luca Tasquier,
and Salvatore Venticinque

Department of Industrial and Information Engineering, Second University of Naples,
Aversa, Italy

bemiamino.dimartino@unina.it,

{alba.amato,giuseppina.cretella,luca.tasquier,
salvatore.venticinque}@unina2.it

Abstract. Cloud computing is moving from being a testing ground for
isolated projects to being a strategic approach of the entire business orga-
nization. So the choice among the possible cloud offers, with a strong
focus on the choice of services that enable better processes and projects
of the business lines, is gaining importance. Nevertheless the heterogene-
ity of the Cloud services, resources, technology and service levels offered
by the several providers make difficult to decide. Besides the inconve-
niences caused by the “lock-in”, give rise to the need for developers to
be able to develop an application regardless of where it is released, struc-
turing and building it in a vendor agnostic way so that it is possible to
deploy on the provider that best fits them at the moment. The mOSAIC
project aims at designing and developing an innovative open-source API
and platform that enables applications to be Cloud providers’ neutral
and to negotiate Cloud services as requested by their users, allowing
automatic discovery, matchmaking, and thus supporting selection, bro-
kering, interoperability end even composition of Cloud Services among
multiple Clouds. In this paper, we illustrate the interoperation of the
two components, the Semantic Engine and the Cloud Agency for the
agnostic retrieval, discovery and brokering of cloud services. The focus
will be put on the way to support the Cloud Application Developer to
express the requirements and services/resources in vendor agnostic way
and to translate automatically these requirements into a neutral format
in order to compare it with the different offers of providers and to broker
the best one according to defined policies.

Keywords: Cloud brokering · Multi-agents systems · Cloud ontology ·
Semantic discovery · Cloud interoperability

1 Introduction

Cloud computing is moving from being a testing ground for isolated projects
to being a strategic approach of the entire business organization. So the choice
c© Springer International Publishing Switzerland 2015
A. Al-Saidi et al. (Eds.): ICC 2014, LNCS 8993, pp. 8–25, 2015.
DOI: 10.1007/978-3-319-19848-4 2



Semantic Engine and Cloud Agency 9

among the possible cloud offers, with a strong focus on the choice of services that
enable better processes and projects of the business lines, is gaining importance.
Nevertheless the heterogeneity of the Cloud services, resources, technology and
service levels offered by the several providers make it difficult to decide [1,2]. In
fact different vendors have introduced different paradigms and services so leading
to clouds that are diverse and vendor-locked, as happened during the early days
of the computer hardware industry, when each vendor made and marketed its
own version of incompatible computer equipment. Besides the inconveniences
caused by the “lock-in”, give rise to the need for developers, to be able to develop
an application regardless of where it is released structuring and building it in a
vendor agnostic way so that it is possible to deploy on the provider that best
fits them at the moment. Even if several efforts have been made to standardize
clouds’ important technical aspects, for example from the US National Institute
of Standards and Technology (NIST), standardization is still far from reality.

In this scenario, it would be useful to have a way to express the user’s require-
ments closer to the user logic, translate automatically these requirements into a
neutral format in order to compare it with offers of providers and for choosing
the best one according to defined policies. A common ontology can help to bridge
the gap between application requirements and technical requirements declared
by resource providers. In fact semantic can help address clouds key interoperabil-
ity and portability issues. For example semantic technologies are useful to define
an agnostic, machine readable, description of resources to be compared with
the vendor offers using a brokering system, that acquire autonomically resources
from providers on the basis of SLA evaluation rules.

The mOSAIC project [3] aims at designing and developing an innovative
open-source API and platform that enables applications to be Cloud providers’
neutral and to negotiate Cloud services as requested by their users, allowing
automatic discovery, matchmaking [4], and thus supporting selection, brokering,
interoperability end even composition of Cloud Services among multiple Clouds.

In order to support this selection and requirements specification has been
developed:

– a Knowledge Base, representing resources and domain concepts and rules by
means of Semantic Web Ontologies and inference rules;

– a support tool, the Semantic Engine, that helps the user to abstract the
requirements in vendor independent way starting from application require-
ments or from specific vendor resources;

– a Cloud Agency, that compares the different offers of providers with the user
proposal and retrieves the best offer. The user can also delegate to the Agency
the monitoring of resource utilization, the necessary checks of the agreement
fulfillment and eventually re-negotiations.

In this paper, we illustrate the interoperation of the two components, the Seman-
tic Engine and the Cloud Agency for the agnostic retrieval, discovery and bro-
kering of cloud services. The focus will be put on the way to support the Cloud
Application Developer to express the requirements and services/resources in



10 A. Amato et al.

vendor agnostic way and to translate automatically these requirements into a
neutral format in order to compare it with the different offers of providers and
to broker the best one according to defined policies.

The user can choose the known concepts that describe his application or the
required resources, utilizing a knowledge base and inference rules managed by the
Semantic Engine, which supports him/her to produce a vendor agnostic template
of a Service Level Agreement, to be used for negotiating a concrete offer from
the available Cloud vendors. The Cloud Agency interacts with the supported
providers for retrieving the available offers and brokers the best one(s). The
Semantic Engine can further be useful for filtering many proposals, which are
optimal according to different criteria, when the user’s knowledge is not helpful.

The paper is organized as follows. In Sect. 2 we present the design architec-
ture, in Sects. 3 and 4 we present an ontology supporting the semantic repre-
sentation of resources and the engine based on it. In Sect. 5 a description of the
Cloud Agency and of the utilization of Broker Agents is provided; In Sect. 6 an
example is shown. In Sect. 7 we present an overview of works related to semantic
representation of cloud resources and multi-cloud resource brokering and nego-
tiation. Conclusions are drawn in Sect. 8.

2 Approach and Architecture

A Cloud Application Developer, who intends to develop a cloud based applica-
tion, would like to express his or her requirements according to the application
logic, to make a choice based on what he or she knows and based on high level
requirements. In order to support this selection and requirements specification,
we have developed:

– a Knowledge Base, representing resources and domain concepts and rules by
means of Semantic Web Ontologies and inference rules;

– a support tool, the Semantic Engine, that helps the user to abstract the
requirements in vendor independent way starting from application require-
ments or from specific vendor resources;

– a Cloud Agency, that compares the different offers of providers with the user
proposal and retrieves the best offer.

In Fig. 1 the integration and interaction of such components is shown.
The Semantic Engine, based on the ontologies and inference rules represent-

ing the Knowledge Base, enables the user in defining his or her requirements in
a format suitable for comparison among offers and produces an SLA template
that is passed to the Cloud Agency. The Cloud Agency adds the brokering rules
so composing the Call for Proposal (CFP) [5] that describes the list of resources,
which are necessary to run cloud applications. It includes also the negotiation
rules to select the best offer among those proposed by providers. After that the
Cloud Agency compares each proposal with the user’s template and retrieves
the best offer.



Semantic Engine and Cloud Agency 11

Fig. 1. Integrated view of knowledge base, Semantic Engine and Cloud Agency

3 An Ontology for the Development of Cloud
Based Application

The knowledge base developed in order to support the search and discovery of
suitable Cloud resources and component is structured into four sub-ontologies
and is developed using OWL language [6].

The sub-ontologies have the following purpose.

– The ApplicationDomain ontology represents the application and its patterns
expressed in the domain terminology of the end user. This level of abstrac-
tion contains concepts related to the application domain of applications, as
instance data mining, big data application related concepts.

– The FunctionalDomain ontology represents functional concepts of both cloud
and non cloud domain, such as Cloud functionalities and services but also tra-
ditional design and execution patterns for distributed and concurrent appli-
cation.

– The InfrastructureResourceDomain ontology provides concepts and relation
useful to describe information related to the resource such as Virtual Machines,
storage and network and their composite configurations.

– The ImplementationDomain ontology models information related to the con-
crete APIs of Cloud platforms. In particular this level contains the grounding
elements of effective cloud services, that means the elements useful to invoke
the implemented functionalities.

The four ontologies are linked together with relationships, for example, the
ApplicationDomain ontology imports the FunctionalDomain in order to relate



12 A. Amato et al.

application-domain concepts to functional patterns. The FunctionalDomain
ontology imports the ImplementationDomain and the InfrastructureResource-
Domain ontologies in order to establish semantic relationships for each function
needed by the Cloud application with grounding elements as specified above. In
such a way, the necessary grounding elements for the Cloud application can be
retrieved through selection of domain specific and functional concepts at higher
level of abstraction.

It’s worthwhile to have a look inside the ontology of the lowest level, which
represents the concepts that are actually returned as outputs of the semantic
module and are passed to the Cloud Agency. This “Infrastructure Resource
Domain ontology” contains the semantic structure to describe the basic resources
described by OCCI (Compute, Storage, Network) and an additional concept
that is the configuration, that means a composition of single resources. For the
representation of this ontology we started from OCCI description of resource
interface and we provide a uniform way to represent these information through
an ontology. For this reason our ontology is compliant with the OCCI resource
description [7].

The class hierarchy of this sub-ontology is shown in Fig. 2. This ontology
classifies the resources of type compute, storage and network in vendor resources
and agnostic resources. In the vendor resources we collect a series of offers by
cloud provider like IBM and Amazon, while in agnostic resources we collect
resources and their characteristic not linked with the offers of cloud provider.
The link between a configuration element and the resources that compose it are
represented through owl object property, while the characteristic of the single
resource are defined through owl data property according to the attribute defined
in OCCI [8] (Fig. 4). To the standard OCCI attributes we added two parameters
for the description, gpu and price. The vendors’ offers of several IAAS cloud
provider are represented in this ontology through individuals and their charac-
teristics. Figure 3 reports the list of individuals representing resources from the
IBM and Amazon Cloud provider offers already represented in the ontology. Of
course this list can be easily enriched. A cloud user accustomed to a particular
cloud provider may start from the specific customized solution (for instance the
IBM Silver Compute) and translate this solution in vendor independent’ terms
through the Semantic Engine, then pass this neutral representation to the Cloud
Agency to find an equivalent solution that fulfill additional requirements.

If instead the user don’t know which are the technical requirement of his/her
application, he/she can start specifying high level requirements as the complexity
of the algorithms used or functional/design requirements. These requirements
may be expressed using concepts contained in the knowledge base and then can
be translated in infrastructural requirements by the application of heuristic rules.
By following the generic structure of an ApplicationPattern that is based on a
design pattern or a composition of design pattern, it is possible to semantically
describe a whole range of engineering applications. This engineering application
can be semantically described by instantiating an ApplicationPattern class and
all the composing concepts including the AlgorithmicConcept and the Patterns
concepts with specific instances. All these concepts are semantically represented
in the Application and Functional Domain Ontologies.



Semantic Engine and Cloud Agency 13

Fig. 2. Infrastructure resource ontology class hierarchy

An important feature of the Semantic Engine is its capability to deduce an
appropriate parameterized configuration of the Cloud application and a generic
description of needed IaaS resources based on high level requirements. This fea-
ture is made possible by the execution of inference rules that extensively use the
semantic description of the application, particularly its design pattern and the
description of the critical aspects of the application that need elasticity, such
as the computational or data complexity of the algorithm. Listing 1.1 shows an
example of a rule that provides information on the needed properties of a Virtual
Machine that hosts a Web server in a Cloud application. This rule, based on the
design logic of the application, in this case a three-tier architectural pattern, and
on information about the expected visitors peak, aims to provide information
to the developer about the properties of the Virtual Machine that has to be
acquired from an IaaS provider.

Listing 1.1. Inference Rules

@prefix AP:ApplicationPattern.owl#

@prefix IRD:ResourceDomain.owl#

@prefix FP:FunctionalDomain .owl#

[WebAppRule:

(?x rdf:type AP:WebApplication),

(?x AP:hasDesignLogic ?dl),

(?dl rdf:type FP:Three -tier),

(?x AP:hasPeakVisitors ?y),

swrlb:divide (?k, 100, ?y),

swrlb:add (?k4, 4, ?k)

(?z rdf:type IRD:Compute),

(?z IRD:cores ?k ),

greaterThan (?r, ?k),lessThan (?r, ?k4),

-> (?x AD:PatternUseInfrastructure ?z) ]



14 A. Amato et al.

Fig. 3. Amazon and IBM resources list

The execution of inference rules on the knowledge base results in a list of
the needed IaaS resources for the application. Listing 1.2 presents a part of such
description.

Listing 1.2. Description of a resource necessary for the Cloud application

<ws:ServiceDescriptionTerm ws:Name ="Compute" >

<Compute >

<cpuSpeed >1.25</cpuSpeed >

<cpuCores >16</cpuCores >

<architecture >x86</architecture >

<memory >16</memory >

</ Compute >

</ws:ServiceDescriptionTerm >

The list of needed resources provided by the Semantic Engine can be used
by the Cloud Agency to automatically negotiate resources with a variety of IaaS
providers. Once the needed resources are negotiated with the Cloud provider,
the application can be deployed by using the list of needed software components
and the mOSAIC’s deployment tool.

4 Semantic Engine

The Semantic Engine [9] is a prototype tool that supports the user in Cloud
Applications’ development by discovering cloud APIs functionalities and
resources based on semantic technologies. It handles, maintains and exposes
to the user in a graphical way the semantic descriptions of application domain



Semantic Engine and Cloud Agency 15

Fig. 4. List of object property to define resources compliant with OCCI

concepts, application related concepts, general design patterns and program-
ming functionalities, specific API implementations and Cloud resources. In other
words it exposes graphically the knowledge base presented in Sect. 3. In order to
achieve its mission, the Semantic Engine (based on the ontology levels already
described) introduces a high level of abstraction over a range of domain concepts
from the engineering discipline [10], generic application patterns as well as details
on existing Cloud APIs and IaaS providers. By implementing an additional layer
of abstraction, this tool overcomes syntactical differences of existing Cloud APIs,
so that it is possible to explore application design patterns independently from
the target API. The Semantic Engine fully exploits the expressivity of the OWL
DL language specie to relate entities with properties and constraints.

It allows for reuse of the semantic description of the application to be devel-
oped, performed by the user during the query phase, by allowing for the defini-
tion of application patterns, stored in the knowledge base, and reused in future
searches.

In this section we describe how the user can create an agnostic description of
resources guided by the Semantic Engine. To produce the CFP part related to
resource list the user can use three different options. The first one (the simplest)
is to fill the fields suggested by the tool for the particular resource selected.
The second one is to select a cloud vendor customized resource configuration
and from this obtain an agnostic description. The third one is to specify the
user requirements referring to the application he or she intends to develop like
information related to the workload or design and functional pattern.

In particular for this third usage mode, the developer, who is a domain spe-
cialist may use the Semantic Engine to:



16 A. Amato et al.

– search for domain concepts related to the application domain, for example the
information retrieval, e.g. KWIC (Key Word In Context) index and find the
concept of an application for KWIC system based on a specific model;

– investigate the key requirements of the application, e.g. find out that a critical
computationally intensive part of the application;

– analyse the Cloud application pattern and eventually associate algorithms or
functional patterns to the ApplicationPattern;

– identify key software components, such as message queues and storage com-
ponents, necessary for the Cloud application, as represented in terminology
of the appropriate programming model and the associated software platform;

– identify the workflow between the components;
– draw a detailed design of the necessary software components of the application

and the information and data flow among them;
– query the Semantic Engine to retrieve the number of needed software compo-

nents for the task at hand;
– use the Semantic Engine to prepare a list of required resources (i.e. Virtual

Machines) for the application, which can be used by the mOSAIC’s Cloud
Agency for negotiation of optimal offers;

– analyse a list of proposed IaaS providers suitable for the application;
– finally, provide a descriptor of the Cloud application, which can be used by

the software platform to start the execution of all the necessary software
components i.e. to launch the Cloud application.

In addition to the list of resources and their characteristic, the Semantic engine
provides also a way to support the definition of some constraints. The definition
of these constraints can be driven by heuristic rules that define the parameters
to take into account while developing a certain kind of application and by user
constrains. For example the user can express constraints like the maximum price,
or the need to have at least a certain value for a resource’s parameter.

5 Cloud Agency

Cloud Agency (CA) [11] is a Multi Agent System conceived for provisioning
by negotiation, monitoring and reconfiguration of acquired resources (Fig. 5).
Using Cloud Agency, the user can negotiate the needed resources in order to
run his applications. The user can also delegate to the Agency the monitoring
of resource utilization, the necessary checks of the agreement fulfillment and
eventually re-negotiations. Cloud Agency will supplement the common manage-
ment functionalities which are currently provided by IaaS Private and Public
infrastructure with new advanced services, by implementing transparent layer
to IaaS Private and Public Cloud services. Cloud Agency will support the Cloud
user in two different scenarios. In the Deployment scenario Cloud Agency sup-
ports the discovering and provisioning of the available resources needed to run
Cloud applications. In this case the user is negotiating, by the Cloud Agency,
the resources it needs to run his/her applications. In order to propose to the user



Semantic Engine and Cloud Agency 17

Fig. 5. Cloud Agency architecture

the best offer of resources, that fits his requirements at best, the Cloud Agency
will use a Brokering Module that chooses among the available offers the best
one. Furthermore for configuration and start of resources it will provide man-
agement facilities. In the Execution scenario it allows to monitor and eventually
to reconfigure Cloud resources according the changed requirements of the Cloud
Application. More specifically, during the execution Cloud Agency allows the
user for the Monitoring of the infrastructure in terms of resource utilization and
for the definition of some strategy of autonomic reconfiguration. Reconfigura-
tion can use management facilities by stopping, starting, moving instances, but
it could ask for provisioning of additional resources. By going more in details,
Cloud Agency exposes four main services:

– The Provisioning Service allows the user to discover, acquire and set up
resources for deployment of his/her applications. The result of provisioning is
a set of Cloud resources that are described, together with the offered service
levels, in a Service Level Agreement (SLA).

– The Management Service is used both for deployment and for execution. In
fact it is needed to configure and start resources before starting the applica-
tion, and it is necessary to start/stop/migrate and reconfigure in general the
resource dynamically during its utilization.

– The Monitoring Service is used to take under control Cloud resources in terms
of performance indexes and QoS parameters. This service is implemented by
the using of dedicated agents that act as probes on the selected resources.

– The Reconfiguration Service is in charge of reconfiguring the Cloud infrastruc-
ture when some critical events occur, such as saturation or under-utilization
of a resource, SLA violation and so on.

Cloud Agency provides asynchronous APIs in order to access the Cloud Agency
services. To address this issue Use Cases are designed in terms of Service



18 A. Amato et al.

Requests, Events and Callbacks. Access to Cloud Agency services will be enabled
by HTTP RESTful interface. Asynchronous requests are used to ask the Cloud
Agency for something to be executed. For example to start a Negotiation, to
accept or to refuse an SLA, to change a Policy, etc. They are not-blocking invo-
cations. Execution is started remotely, but the client can continue to run. Com-
pletion or failures of requests are notified at client side. Clients are in charge to
handle incoming events. Synchronous requests are available to get information.
For example clients can ask for reading an SLA, the status of a negotiation, to get
the list of vendors, or the list of resources. Queries are synchronous, they return
immediately the response if it is available, an exception otherwise. An OCCI
compliant Message Transfer Protocol (OCCI-MTP) allows the communication
between the client and the Cloud Agency [12,13]. By using this interface, clients
can start new provisioning transactions in order to broker the Cloud resources.

The configuration of the resources that are necessary to execute the user’s
application produced by Semantic Engine and expressed in terms of SLA tem-
plate may be complemented by the user with other information. In particular
the SLA template can include desired service levels and other terms of ser-
vice like contract duration, data location and billing frequency. In listing 1.3 an
example of SLA template is shown. It contains service description terms and
guarantee terms in WS-Agreement. The requested resource is a Virtual Machine
configuration with an architecture x86, 2 Cores, 2 Gb of available memory and
a price not greater than 0.8 $.

Listing 1.3. Service Description Term and Guarantee Term

<ws:ServiceDescriptionTerm ws:Name=’’Compute ’’ >

<Compute >

<cpuCores >2</cpuCores >

<architecture >x86</architecture >

<memory > 2GB </memory >

</Compute >

</ws:ServiceDescriptionTerm >

[..]

<wsag:GuaranteeTerm wsag:Name=‘‘Availability ’’>

<wsag:Variables >

<wsag:Variable wsag:Name="Price"

wsag:Metric="price/hour" />

<wsag:ServiceLevelObjective > 0.8 </

wsag:ServiceLevelObjective >

</wasg:Variables >

[..]

</wsag:GuaranteeTerm >

The SLA template is part of the Call for Proposal (CfP). The last part of the
CfP is a set of brokering rules. Examples of brokering rules are the best price, the
greatest number of cores, the best accredited provider or the minimum accepted
availability. The provisioning service provided by Cloud Agency implements an
extension of the Contract Net Interaction Protocol [14]. The CfP is submitted



Semantic Engine and Cloud Agency 19

to Cloud Agency that returns one or a number of different solutions, which can
be optimal according to different criteria. The sequence diagram that describes
the interaction among agents for resource provisioning is shown in Fig. 6.

Fig. 6. Interaction among agents for resource provisioning

For each received CFP Cloud Agency creates a broker that searches for
vendors that can offer resources with the required QoS (Quality of services).
Cloud Vendors neither implement negotiation services, nor provide descriptions
of their SLA in machine-readable language. We address these issues by Vendor
Agents, which wrap the services of each Cloud provider and return, for each SLA
template received from the broker, the available proposal that accomplishes at
the best the claimed requirements. The broker collects a number of proposals
described in a uniform way and chooses the best one(s) according to the broker-
ing rules. If the user accepts one among the received proposals an SLA is agreed
and the offered resources are allocated.

6 A Concrete Use Case

In order to show how the brokering process takes place and the two compo-
nents (Semantic Engine and Cloud Agency) interact, we present in this section
a simple example involving real cloud providers. Please consider that, even if the
proposals reported in this example are real, the final result of evaluation may
have completely different results with little changes in offerings, that continu-
ously happen in the cloud environment. Let us assume a user (Cloud Applica-
tion Developer) looking for a Virtual Machine with (i) specific CPU architecture
and a fixed amount of memory, (ii) the maximum number of cores, (iii) bro-
kering the best price among the proposals which satisfy (i) and (ii). The user
can identify and express in agnostic way her/his requirements with the help of
Semantic Engine, by means of the graphical facility shown in Fig. 7, to express
the resources’ requirements and then to automatically translate them into the
SLA template.



20 A. Amato et al.

Table 1. Available Instance Types And Prices

Offer Amazon EC2 Windows Azure

xsmall N/A CPU Cores: Shared, Memory: 768
MB, Disk Space Web: 20 GB,
Disk Space VM Role: 20 GB,
Bandwidth: 5, Cost/Hour: $ 0.04

small CPU: 1 EC2 Compute Unit (1
virtual core with 1 EC2 Compute
Unit), Memory: 1.7 GB, Disk: 160
GB, Platform:32-bit or 64-bit,
I/O Performance: Moderate,
Cost/Hour Linux/UNIX Usage:
$ 0.09, Cost/Hour Windows
Usage $ 0.115

CPU Cores: 1, Memory: 1.75 GB,
Disk Space Web: 230 GB, Disk
Space VM Role: 165 GB,
Bandwidth: 100, Cost/Hour:
$ 0.12

medium CPU: 2 EC2 Compute Unit (1
virtual core with 2 EC2 Compute
Unit), Memory: 3.75 GB, Disk:
410 GB, Platform:32-bit or 64-bit,
I/O Performance: Moderate
Cost/Hour Linux/UNIX Usage:
$ 0.180, Cost/Hour Windows
Usage $ 0.230

CPU Cores: 2, Memory: 3.5 GB,
Disk Space Web: 500 GB, Disk
Space VM Role: 340 GB,
Bandwidth: 200, Cost/Hour:
$ 0.24

large CPU: 4 EC2 Compute Unit (2
virtual core with 2 EC2 Compute
Unit), Memory: 7.5 GB, Disk: 850
GB, Platform: 64-bit, I/O
Performance: High Cost/Hour
Linux/UNIX Usage: $ 0.360,
Cost/Hour Windows Usage
$ 0.460

CPU Cores: 4, Memory: 7 GB, Disk
Space Web: 1 TB, Disk Space
VM Role: 850 GB, Bandwidth:
400, Cost/Hour: $ 0.48

xlarge CPU: 8 EC2 Compute Unit (4
virtual core with 2 EC2 Compute
Unit), Memory: 15 GB, Disk:
1690 GB, Platform: 64-bit, I/O
Performance: High Cost/Hour
Linux/UNIX Usage: $ 0.720,
Cost/Hour Windows Usage
$ 0.920

CPU Cores: 8, Memory: 14 GB, Disk
Space Web: 2 TB, Disk Space
VM Role: 1890 GB, Bandwidth:
800, Cost/Hour: $ 0.96

In the example we assume that the user requests a VM with at least 2 GB
memory, CPU Intel architecture, the maximum number of cores and that she/he
wants to broker a best offer that does not exceed 0.8 $ per hour. The Cloud
Agency adds the brokering rules to the SLA template produced by Semantic
Engine, asks to vendors for available offers, brokers the best one and allows
to close the transaction. Table 1 summarizes some of the available offers of the
Amazon EC2 and Microsoft Azure cloud providers. Each cloud provider has an



Semantic Engine and Cloud Agency 21

Fig. 7. SLA template graphical composition

offer consisting of several Virtual Machine configurations, which are different in
cpu cores, available memory and price.

Vendor Agents of Amazon and Azure have to answer to the broker with
their proposal that best fits the user’s requirements. In this case Amazon VA
will exclude the small offer because of its memory. Three offers remain, but
the most powerful machine, compliant with the fixed price is the xlarge. Azure
VA will exclude xsmall and small offers because of the memory requirement.
Furthermore its xlarge offer is too much expensive. The selected offer eventually
is the large one. Finally the broker will select the best price, i.e. Azure’s offer.
The presented example represents a basic application of a methodology, which
is currently been developed, and in which we are considering not only price
constraints but also factors like the capacity for each provider, the service levels
that providers ensure and the trustworthiness of the provided measured using
user’s feedback and benchmarking report.

7 Related Works

Semantic and agent technology are being applied to the task of automated
resource brokering in many areas, including cloud computing. In this field, the
solutions provided are commonly oriented towards standardization.

The cloud service landscape is growing up very rapidly and there are dif-
ferent aspects of this evolution that need to be systematized in a formal way.
A good means that can allow overcoming the limits related to heterogeneity of
terms used by Cloud vendors are surely ontologies. Indeed for this reason a lot
of ontologies related to cloud computing emerged. Darko et al. in [15] try to
provide an overview of Cloud Computing ontologies, their types, applications



22 A. Amato et al.

and focuses. They identified four main categories of cloud computing ontologies
according to their scopes: Cloud resources and services description, Cloud secu-
rity, Cloud interoperability and Cloud services discovery and selection. Among
the classified ontologies, relevant to our work are ontologies used to discover and
select the best Cloud service alternative. In [16] is presented a notable example
of Cloud service discovery system based on matchmaking. In the presented sys-
tem the users can identify the Cloud services required by means of three kinds
of requirements: functional requirement (like programming language for PaaS
service type), technical requirement (like CPU clock or RAM for IaaS service
type) and cost requirement (like max price) as input parameters. In addition to
this work, our ontology takes into account additional kind of requirements, such
as the application category which is not considered in any other works present
in the literature. In particular our approach promotes the Cloud agnostic prin-
ciples of application development and covers both the design and application
deployment part.

SLA@SOI [17] is the main project which aims at offering an open source based
SLA management framework that will provide benefits of predictability, trans-
parency and automation in an arbitrary service-oriented infrastructure, being
compliant with the OCCI standard. SLA@SOI results are extremely interesting
and offer a clear starting basis for the SLA provisioning and management in
complex architectures.

In [18] an architecture is presented for a federated Cloud computing environ-
ment named InterCloud to support the scaling of applications across multiple
vendor Clouds using a Cloud Broker for mediating between service consumers
and Cloud coordinators for an allocation of resources that meets QoS needs of
users.

Sim [19] proposes an extension of the alternate offers protocol that sup-
ports multiple complex negotiation activities in interrelated markets between
user agents and broker agents, and between broker agents and provider agents.

In [20] is presented an architectural design of a framework capable of power-
ing the brokerage based cloud services that is currently being developed in the
scope of OPTIMIS, an EU FP7 project. In this model a broker is used to serve
the needs of several different models. In particular it is used to ensure data confi-
dentiality and integrity to service customers, to match the requirements of cloud
consumer with the service provided by the provider, to negotiate with service
consumers over SLAs, to maintain performance check on these SLA’s and take
actions against SLA violation, to effectively deploy services provided by the cloud
provider to the customer, to manage the API so that provider does not learn any-
thing about the identity of the service consumer, to securely transfer customer’s
data to the cloud, to enforce access control decisions uniformly across multiple
clouds, to scale resources during load and provide effective staging and pooling
services, to securely map identity and access management systems of the cloud
provider and consumer, to analyze and take appropriate actions against risks, to
handle cloud burst situations effectively. OPTIMIS introduces the problem and
the architectural design, but we have not knowledge about an implementation
or algorithms to achieve the brokering.



Semantic Engine and Cloud Agency 23

Tordsson [21] explores the heterogeneity of cloud providers, each one with a
different infrastructure offer and pricing policy, in a cloud brokering approach
that optimizes placement of virtual infrastructures across multiple clouds and
also abstracts the deployment and management of infrastructure components in
these clouds. Besides he presents a scheduling algorithm for cross-site deploy-
ment of applications. However he presents a fine grained interoperability of cloud
services by way of a cloud API that do not takes into account the different imple-
mentation models for the virtual machine manager (VMM) that are at the base
of each of the cloud providers infrastructure.

8 Conclusion

The support for brokering of service level agreement is a weakness in cloud
market nowadays. The increasing number of Cloud providers, the lack of inter-
operability and the heterogeneity in current public Cloud platforms, leads to
the need of innovative mechanisms to find the most appropriate Cloud resource
configuration as easy and automated as possible. In this paper, which includes
results of the mOSAIC project, we have shown how it is possible to build a
complex brokering system, that is independent from the cloud provider tech-
nologies and allows the user to broker the best cloud service, that is compliant
with his requirements. The proposed solution adopts two collaborative modules.
The Semantic Engine, whose aim is to create an agnostic description of resource
based on users’ service requirements and a brokering system, the Cloud Agency,
whose aim is to acquire autonomically resources from providers on the basis
of SLA evaluation rules finding the most suitable Cloud provider that satisfy
users’ requirements. Recently we have investigated the chance of using a scal-
able broker as a service solution. We presented a prototype implementation and
provided preliminary performance figures [22]. In future work we aim at improv-
ing the proposed solution, investigating mechanisms for dynamic filtering of the
proposals.

Acknowledgments. The research leading to these results has received funding from
the European Community’s Seventh Framework Programme (FP7/2007–2013) under
grant agreement n 256910 (mOSAIC Project).

References

1. Amato, A., Venticinque, S.: Multi-objective decision support for brokering of cloud
SLA. In: 27th International Conference on Advanced Information Networking and
Applications Workshops, WAINA 2013, pp. 1241–1246 (2013)

2. Amato, A., Di Martino, B., Venticinque, S.: Evaluation and brokering of service
level agreements for negotiation of cloud infrastructures. In: 7th International Con-
ference for Internet Technology and Secured Transactions, ICITST 2012, London,
United Kingdom, pp. 144–149 (2012)

3. mOSAIC. The mOSAIC Project. http://www.mosaic-cloud.eu/

http://www.mosaic-cloud.eu/


24 A. Amato et al.

4. Cretella, G., Di Martino, B.: Semantic and matchmaking technologies for discov-
ering, mapping and aligning cloud providerss services. In: Proceedings of the 15th
International Conference on Information Integration and Web-based Applications
and Services (iiWAS 2013), pp. 380–384 (2013)

5. Venticinque, S.: European research activities in cloud computing. In: Agent Based
Services for Negotiation, Monitoring and Reconfiguration of Cloud Resources, pp.
178–202. Cambridge Scholars, January 2012

6. McGuinness, D.L., van Harmelen, F.: Owl web ontology language overview (2004).
http://www.w3.org/TR/2004/REC-owl-features-20040210/

7. Open Grid Forum: Open Cloud Computing Interface (OCCI). http://forge.ogf.
org/sf/projects/occi-wg

8. Metsch, T., Edmonds, A.: Open Cloud Computing Interface - Infrastructure, GFD-
P-R.184, April 2011. http://ogf.org/documents/GFD.184.pdf

9. Di Martino, B., Cretella, G.: Towards a semantic engine for cloud applications
development support. In: Proceedings of CISIS-2012: The Sixth International Con-
ference on Complex, Intelligent, and Software Intensive Systems, July 4–6th 2012,
Palermo, Italy. IEEE CS Press (2012)

10. Cretella, G., Di Martino, B., Stankovski, V.: Using the mosaics semantic engine
to design and develop civil engineering cloud applications. In: Proceedings of 14th
International Conference on Information Integration and Web-based Applications
and Services (iiWAS 2012), p. 9. ACM (2012)

11. Venticinque, S., Tasquier, L., Di Martino, B.: Agents based cloud computing inter-
face for resource provisioning and management. In: 2012 Sixth International Con-
ference on Complex, Intelligent and Software Intensive Systems (CISIS), pp. 249–
256, 4–6 July 2012

12. Amato, A., Tasquier, L., Copie, A.: Vendor agents for iaas cloud interoperability.
In: Fortino, G., Badica, C., Malgeri, M., Unland, R. (eds.) IDC 2012. SCI, vol. 446,
pp. 271–280. Springer, Heidelberg (2012)

13. Venticinque, S., Amato, A., Di Martino, B.: An OCCI compliant interface for
IAAS provisioning and monitoring. In: CLOSER 2012 - Proceedings of the 2nd
International Conference on Cloud Computing and Services Science, pp. 163–166
(2012)

14. Fipa, TC Communication. Fipa contract net interaction protocol (2002). http://
www.fipa.org

15. Androcec, D., Vrcek, N., Seva, J.: Cloud computing ontologies: a systematic review.
In: MOPAS 2012, The Third International Conference on Models and Ontology-
based Design of Protocols, Architectures and Services, pp. 9–14 (2012)

16. Han, T., Sim, K.M.: An ontology-enhanced cloud service discovery system. In:
Proceedings of the International MultiConference of Engineers and Computer Sci-
entists, vol. 1, pp. 17–19 (2010)

17. SLA@SOI, sla-at-soi.eu
18. Buyya, Rajkumar, Ranjan, Rajiv, Calheiros, Rodrigo N.: InterCloud: utility-

oriented federation of cloud computing environments for scaling of application
services. In: Hsu, Ching-Hsien, Yang, Laurence T., Park, Jong Hyuk, Yeo, Sang-
Soo (eds.) ICA3PP 2010, Part I. LNCS, vol. 6081, pp. 13–31. Springer, Heidelberg
(2010)

19. Sim, K.M.: Towards complex negotiation for cloud economy. In: Bellavista, P.,
Chang, R.-S., Chao, H.-C., Lin, S.-F., Sloot, P.M.A. (eds.) GPC 2010. LNCS, vol.
6104, pp. 395–406. Springer, Heidelberg (2010)

http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://forge.ogf.org/sf/projects/occi-wg
http://forge.ogf.org/sf/projects/occi-wg
http://ogf.org/documents/GFD.184.pdf
http://www.fipa.org
http://www.fipa.org


Semantic Engine and Cloud Agency 25

20. Nair, S.K., Porwal, S., Dimitrakos, T., Ferrer, A.J., Tordsson, J., Sharif, T., Sheri-
dan, C., Rajarajan, M., Khan, A.U.: Towards secure cloud bursting, brokerage
and aggregation. In: Proceedings of the 2010 Eighth IEEE European Conference
on Web Services, pp. 189–196 (2010)

21. Tordsson, J., Montero, R.S., Moreno-Vozmediano, R., Llorente, I.M.: Cloud bro-
kering mechanisms for optimized placement of virtual machines across multiple
providers. Future Gener. Comput. Syst. 28(2), 358–367 (2012). ISSN: 0167–739X

22. Amato, A., Di Martino, B., Venticinque, S.: Cloud Brokering as a Service. In:
3PGCIC 2013, pp. 9–16 (2013)



http://www.springer.com/978-3-319-19847-7


	Semantic Engine and Cloud Agency for Vendor Agnostic Retrieval, Discovery, and Brokering of Cloud Services
	1 Introduction
	2 Approach and Architecture
	3 An Ontology for the Development of Cloud Based Application
	4 Semantic Engine
	5 Cloud Agency
	6 A Concrete Use Case
	7 Related Works
	8 Conclusion
	References


