
2 INTRODUCTION TO TENSOR CALCULUS 
 
 
   In the first part we have considered one-dimensional models to describe material 
behavior. The application of such models, however, is rather limited, since in the 
general , both the stress and the strain state are three-dimensional. For the 
generalization of such concepts to higher dimensions than one, an appropriate 
mathematical instrumentarium is needed. In mechanics, the appropriate objects for 
the mathematical description are vectors and tensors. For readers not familiar with 
such objects, we will next give a brief introduction into tensor algebra and 
analysis.   
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2.1 Vector and Tensor Algebra 
 

2.1.1   Summation Convention 
 

Let us consider the following sum 

  s  =  a1 b1 + a2 b2 +  + aN bN   =  
N

i 1
 ai bi . 

We could also have written 

  s  =  
N

k 1
 ak bk ,    

i.e., the choice of the summation index (i  or  k) does not influence the result and is 
therefore called a dummy index. Since we often need sums, we introduce the 
following abbreviation: 

Summation convention  
If an index appears twice in a product term, one has to sum over this index from  1  
to  N . 

Or: one has to sum over dummy indices. 

The number  N  results from the context. In what follows, it is usually  3 , equal to 
the dimension of the geometrical space. 

Consequently, we can write for the previous example 

  s  =  ai bi  =  ak bk     etc. 

   We will need the component representation of a vector  v  with respect to some 
vector basis  {gi} 

  v  =  v 1 g1 + v 2 g2 + v 3 g3  =  v i gi . 

If  aij  are the elements of a 3  3–matrix, the sum of the diagonal elements  

  aii  =  a11 + a22 + a33  

is called the trace of the matrix. The product of such matrices with elements  aij  
and  bij  is 
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  aij bjk  =  ail blk  =  ai1 b1k + ai2 b2k + ai3 b3k . 

Note that only  j  and  l  are dummy indices, while  i  and  k  are not.  i  and  k  are 
called free indices,  taking arbitrary values between 1 and N. Free indices stand on 
both sides of the equation only once in each term.  

The trace of the resulting matrix  aik bki  is the double sum over both  i  and  k , and 
the order of the summation does not matter 

    
N N

i 1 k 1 
  aik bki    =     

 

N

1k

N

1i
aik bki  =  aik bki . 

It is always important to distinguish between dummy and free indices. We will 
show this for another example. One can present the three equations 

  y1  =  a11 x1 + a12 x2 + a13 x3 

  y2  =  a21 x1 + a22 x2 + a23 x3 

  y3  =  a31 x1 + a32 x2 + a33 x3 

more briefly as 

  yi  =  aik xk 

or equivalently as 

  yp  =  apm xm .      

Here  k  and  m  are dummy, while  i  and  p  are free indices. 

 

   Very often a situation occurs where some term equals  1  if two indices coincide, 
or  0 otherwise, like in the following example 

  a1 b1  =  1  a1 b2  =  0  a1 b3  =  0 

  a2 b1  =  0  a2 b2  =  1  a2 b3  =  0 

  a3 b1 =  0  a3 b2  =  0  a3 b3  =  1 . 

In order to abbreviate this notation, one introduces the KRONECKER23 symbol  
 

ij   as the components of the unity matrix 

  

           

              

           

11 12 13

21 22 23

31 32 33

1 0 0

0 1 0

0 0 1

  
  
  

   
      
     

, 

i.e. 

(2.1.1)   
ij  =  

   for   
  

   for   

1 i j

0 i j

 
  

=  
ji  =   ji  =   

i 
j. 

                                                           
23 Leopold Kronecker (1828-1891) 
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It shall not matter here whether the indices are notated in the upper or in the lower 
position. For the above 9 equations we can briefly write 

  ai bj  =   
ij . 

In reverse, one can use the extensions 

  aik xk  =  ail  
lk xk 

and  

  ai bi  =  ai bk  
ik 

as well as 

  aik xk  –  xi  =  aik  xk  –    
ik xk  =  (aik –   

ik) xk . 

In addition, we will introduce in three dimensions the permutation symbol or 
LEVI-CIVITA24 symbol  ijk    with three indices as 

(2.1.2)  ijk  =  

      if  is an even permutation of 

    if  is an odd permutation of  

      if  is no permutation von  

1 ijk 1, 2, 3

1 ijk  1, 2, 3

0 ijk 1, 2, 3






 

such as 

  231  =  + 1  132  =  – 1  122  =  0  

Consequently 

  ijk  =  kij  =  – ikj  =  – kji 

etc. 

 

 

2.1.2   Vectors 
 

Definition. A vector space or linear space is a set  V  (of “vectors“), in which 
addition and multiplication with scalars or real numbers are defined in accordance 
with the following rules 

  a + b  =  b + a     (commutative) 

  (a + b) + c  =  a + (b + c)  (associative) 

  a + o  =  a     (zero vector)  

  a + (–a)  =  o   (negative element) 

 

  (  ) a  =   ( a)   (associative) 

                                                           
24 Tullio Levi-Civita (1873-1941) 
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  1 a  =  a     (unit element)   

   (a + b)  =   a +  b  (distributive) 

  ( +  ) a  =   a +  a  (distributive) 

 a , b , c  V ,   ,   R . 

A maximal system of linear independent vectors  {gi} : = {g1 , g2 , ..., gN}  forms a 
vector basis in  V . With respect to such a basis one can represent each vector as a 
linear combination 

  a  =  ai g 
i . 

The scalars  ai  are the components of the vector with respect to this basis. The 
following rules hold for the addition of two vectors  

(2.1.3)  a + b  =  ai g 
i + b j g 

j  =  (ai + bi) g 
i 

and the scalar multiplication 

(2.1.4)   a  =   (ai g 
i)  =  ( ai) g 

i . 

   Some vector spaces have in addition an inner product or a scalar product  

    :  V    V    R        (a , b)    a  b 

with the following rules 

  a  b  =  b  a      (commutative) 

  ( a)  b  =   (a  b)    (associative) 

  (a + b)  c  =  (a  c) + (b  c)  (distributive) 

  a  a  >  0    for  a    o    (positive–definite) 

 a , b , c  V ,    R . 

With such a scalar product we obtain 

(2.1.5)  a  b  =  (ai gi)  (bk gk)  =  ai  bk gi  gk . 

A scalar product induces a norm a: =  a a   (length) of a vector. One can 

also define an angle    between two vectors as a solution of the equation 

  a  b  =  ab cos  . 

If the vectors  a  and  b  are mutually orthogonal we have 

  a  b  =  0 . 

Definition. Two vector bases  {gi}  and  {gk}  are called dual if 

(2.1.6)  g 
i  g k  =  i

k 

Consequently, all base vectors of  {g 
i}  are orthogonal to those of  {g k}  for  k  i. 

For a given basis  {g 
i} , (2.1.6) is an inhomogeneous system of linear equations 
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for the components of the dual basis  {gk} , whose coefficient determinant cannot 
be singular, so that it always possesses a unique solution.  

Theorem. For every vector basis  {g 
i}  a unique dual basis  {g j}  exists. 

The use of dual bases is always possible, and in many cases rather convenient. For 
example, for the inner product we have 

  a  b  =  (ai g 
i)  (bk g

 k)  =  ai bk g
 
i  g k 

(2.1.7)             =  ai bk i
k  =  ai bi  =  ak bk . 

Here we posed the dummy indices in counterpositions in order to indicate to 
which basis they are referred. We also have  

  a  b  =  (ai g
 i )  (bk g 

k)  =  ai b
i , 

but 

  a  b  =  (ai g
 i )  (bk g

 k )  =  ai bk (g
 i  g k ) . 

If a basis  {ei}  coincides with its dual  {e j}  

  ei    ei      for   i = 1, 2, 3, 

there is no need to distinguish between upper and lower indices anymore.  

Definition. A vector basis  {ei}  is called an orthonormal basis (ONB) if 

(2.1.8)  ei  ek  =   
ik . 

In each vector space with inner product there are infinitely many vector bases or 
ONBs. If one uses simultaneously more than one basis, it becomes necessary to 
indicate to which basis the components are referred, like 

  a  =  ai ei  =   i ia e  

with 

  ai  =  a  ei     and      i ia  a e . 

With respect to an ONB we have simply 

(2.1.9)  ek  ei  =   
ki 

(2.1.10)  a  b  =  ai bi 

(2.1.11)  a =          2 2 2
i i 1 2 3a a a a a   . 

In three dimensions one can further introduce the vector product or cross-
product with respect to a positively-oriented ONB with the aid of the permutation 
symbol by 

(2.1.12)  a  b  =  ai ei  bj ej  =  ai bj ijk ek 

and the triple product between three vectors as 

(2.1.13)  [a , b , c]  =  [ai ei , bk ek , cl el]  =  ai bk cl ikl . 
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2.1.3   Dyads and Tensors 
 

Definition. A mapping between vectors 

  F : V     V    x    F(x)   

is called linear if 

(2.1.14)  F(x1 +  x2)  =  F(x1) +  F(x2) 

holds for all vectors  x1 ,  x2  V   and all scalars    R . 
 

Problem 1. Linearity  
Check the real function  

  y  =  f (x) : =  m x + n 

for linearity.  m  and  n  are real constants. 

Solution 

The above-introduced definition of linearity can be written for a real 
function  f   as 

(P1.1)  f (α a + b)  =  α f (a) + f (b)  α , a , b  R 

The condition P1.1 gives  

  α n  =  0 . 

In general, this holds only for n  0. The concept of linearity used in 
algebra is stronger than the one used in real analysis or calculus. In the 
latter context such functions are sometimes called affine or quasilinear, 
whereas the present linearity is called proportionality in the context of 
calculus. 

 

   Let  a  and  b  be arbitrarily chosen, but fixed vectors. With their aid, one can 
construct a special linear mapping that assigns to each vector  x  another vector  y  
after 

  y  =  a (b  x)  =  (x  b) a  =  (b  x) a . 

Thus, the resulting vector  y  is always parallel to  a .  
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Definition. The dyadic product (tensor product) between two vectors  a  and  b  
or the simple or collinear dyad  a  b  is the mapping 

  a  b :  V   V    x    a (b  x)  

so that  

(2.1.15)  a  b (x)  : =  a (b  x)  

This mapping is linear since 

a  b (x1 +  x2)  =  a [b  (x1 +  x2)] 

           =  a [b  x1 +  b  x2] 

      =  a  b (x1) +  [a  b (x2)]  

holds for all vectors  x1 ,  x2  V   and all scalars    R . 

The dyadic product is in general not commutative since  a  b  b  a  as long as 
both vectors do not happen to be collinear (parallel). 

   One can define the sum of two dyads as that particular linear mapping that gives 
for all vectors  x  

(2.1.16)  (a  b + c  d) (x)  : =  a  b (x) + c  d (x) 

          =  a (b  x) + c (d  x) 

and a multiplication of a dyad  a  b  with a scalar   R  as  

(2.1.17)  ( a  b) (x)  : =   [(a  b) (x)] =   a (b  x) . 

These operations fulfil the axioms of the addition and multiplication with a scalar 
of vectorspaces. Moreover, the following rules hold for all vectors  a , b , c  V   
and all scalars    R  

(2.1.18)  (a + b)  c  =  a  c + b  c   

(2.1.19)  a  (b + c)  =  a  b + a  c 

(2.1.20)   (a  b)  =  ( a)  b  =  a  ( b)  

Accordingly, we can drop the brackets in the last line. The dyadic product is thus 
linear in both involved vectors. It follows that 

(2.1.21)         (a +  b)  (c +  d)  =  a  c +  a  d +  b  c +   b  d . 

If we represent  a  and  b  with respect to a basis  {gi} , we obtain 

  a  b  =  (ai g 
i)  (bk g 

k)    

(2.1.22)              =  ai bk g 
i  g 

k 

and  

(2.1.23)  (a +  b)  c  =  (ai +  bi ) c k g 
i  g 

k 

and 
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(2.1.24)  a  (b +  c)  =  ai (bk +  c k ) g 
i  g 

k . 

For an ONB, these expressions do not become shorter. Only if we are evaluating 
scalar products, is the use of an ONB or the use of dual bases recommended. 
Because of the linearity we have with respect to an ONB  {ei} 

 a  b (x)  =  [(ai ei)  (bk ek)] (xl el) 

 =  xl ai bk (ei  ek) (el) 

(2.1.25) =  ai bk xl ei (ek  el) 

 =  ai bk xl ei  
kl 

 =  ai bk xk ei . 

   Since the simple dyad  a  b  maps all vectors  x  in the direction of  a , it is a 
special linear mapping, called a collinear dyad. 

   The sum of two dyads  (a  b) + (c  d)  maps all vectors  x  into a linear com-
bination of  a  and  c , i.e., into a plane spanned by  a  and  c . Therefore, one calls 
such a mapping a planar dyad.  

Definition. The general linear mapping of a vector into a vector is called a tensor 
or a (complete) dyad.  

If  T  is such a tensor, we have 

(2.1.26)  y  =  T(x)  =  T(xi ei)  =  xi T(ei) . 

A tensor is therefore completely determined if its action on every base vector is 
given. Since the brackets are not needed, we will no longer use them in what 
follows and instead use a dot which stands for the scalar product in the definition 
of the dyad 

(2.1.27)  y  =  T  x . 

Since  T  ei  is a vector, we can represent it with respect to an ONB  {ek}  as 

  T  ei  =  Tki ek  

with the components 

  Tki  : =  ek  (T  ei)
 . 

In this expression the brackets are not needed since there is no danger of 
confusion. Thus 

  T  x  =  T  (xi ei)  =  xi T  ei  =  xi Tki ek   

=  xi Tkm ek  em  ei   

=  (Tkm ek  em)  x . 

By comparison one obtains 
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Theorem. Each tensor T  can be uniquely represented with respect to an ONB  
{ei}  as 

(2.1.28)  T  =  Tki ek  ei 

with the nine (base) dyads 

 e1  e1 e1  e2 e1  e3 

 e2  e1 e2  e2 e2  e3 

 e3  e1 e3  e2 e3  e3 

and nine tensor components 

(2.1.29)  Tki  : =  ek  T  ei    for  i, k = 1, 2, 3 . 

{ek  ei}  forms a tensor basis. The nine tensor components with respect to this 
basis can be assembled in the matrix of components 

  [Tij]  : =   
11 12 13

21 22 23

31 32 33

T     T     T

T     T    T

T     T    T

 
 
 
  

 . 

As a special case, a simple dyad gives 

a  b  =  ai bk ei  ek  

and therefore for the matrix of components 

  

             

            

            

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

a b a b a b

a b a b a b

a b a b a b

 
 
 
  

 . 

The dyadic product between two vectors can be performed by a matrix product in 
the FALK´s scheme 

           b1       b2     b3
 

  a1    a1 b1  a1 b2  a1 b3
 

  a2    a2 b1  a2 b2  a2 b3
 

  a3    a3 b1  a3 b2  a3 b3
 

This is the matrix product between the column vectors of  a  and the row vectors 
of  b .  

   Note that the components of a tensor depend on the choice of the basis, the same 
as vector components. In fact, if  {ei}  and  {ei}  are two bases, then 

  T  =  Tik ei  ek  =  Tik ei  ek 

with 

  Tik  =  ei  T  ek 

  Tik  =  ei  T  ek , 
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so that Tik  and  Tik  are in general not equal. However, the tensor  T  itself is 
independent of the basis with respect to which it is represented.    

   If one wants to determine the value  y  of a vector  x  under the mapping of a 
tensor, one represents the tensor as before and also  x  =  xn en  and obtains 

   y   =  T  x   

        =  yk ek   =  (Tki ek  ei)  (xn en)    

        =  Tki xn ek (ei  en) 

(2.1.30)         =  Tki xn ek in              

  =  Tki xi ek            

which gives the equation for the components 

   yk  =  Tki xi    for   k = 1, 2, 3. 

In matrix form this is 

  

        

           

        

11 12 131 1

2 21 22 23 2

3 331 32 33

T T Ty x

y T T T x

y xT T T

    
         
        

 .       

Accordingly, one can reduce the tensor operation to matrix operations after 
choosing a basis. This holds also for the sum of two tensors   

  S  =  Ski ek  ei 

T  =  Tki ek  ei 

as 

                 S + T =  Ski ek  ei + Tki ek  ei 

(2.1.31)  =  (Ski + Tki) ek  ei 

and the multiplication of a tensor  T  with a scalar   

   T  =   (Tki ek  ei)  =  ( Tki) ek  ei  

which are defined in analogy to the same products between dyads after (2.1.16) 
and (2.1.17). 

   If  S  and  T  are two tensors and  x  a vector, then  S  x  is a vector, upon which 
we can apply  T   

  T  (S  x) . 

   Since the composition of linear mappings is again linear, T  S  stands for 
another tensor after 

T  (S  x)  : =  (T  S)  x .  

Its components can be obtained by the following calculation 

T  (S  x)  =  (Tpi ep  ei)  [(Skl ek  el)  (xm em)] 
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                =  (Tpi ep  ei)  [(Skl xm ek) (el  em)] 

   =  (Tpi ep  ei)  [Skl xm ek lm] 

   =  (Tpi ep  ei)  [Skm xm ek] 

   =  Tpi Skm xm ep (ei  ek) 

   =  Tpi Skm xm ep ik 

   =  Tpi Sim xm ep  

   =  Tpi Siq qm xm ep  

   =  (Tpi Siq ep  eq)  (xm em) . 

Here all brackets are unnecessary and are only used to emphasise the connections. 
By comparison we obtain the representation of the composed tensor 

(2.1.32)  T  S  =  (Tpi ep  ei)  (Skl ek  el)  =  Tpi Skl ik ep  el   

=  Tpi Sil ep  el  

i.e., one contracts the neighbouring base vectors by a scalar product, and the 
remaining ones by a dyadic product. Its component matrix is the result of a matrix 
product between the two component matrices. This operation is called a simple 
contraction.   

   It is important to note that this product between two tensors is in general not 
commutative, i.e.,  T  S  does not equal  S  T. It is associative 

(2.1.33)  (T  S)  R  = T  (S  R)  

so that we can drop the brackets. And it is linear in both factors 

(T +  S)  R  =  T  R +  S  R  

R  (T +  S)  =  R  T +  R  S . 

   The particular tensor that maps every vector into itself is the unit or identity 
tensor. With respect to any ONB  {ei}  this tensor has the unity matrix 
representing the coefficients after (2.1.1) 

(2.1.34)  I  =  ik ei  ek  =  ei  ei  

since we have for every vector  x =  xm em    

I  x     =  (ik ei  ek)  (xm em) 

 =  ik xm ei (ek  em) 

 =  xm ek km  =  xm em  =  x . 

If  T  =  Tki ek  ei  is an arbitrary tensor and  I  the identity tensor, then we have 

  T  I   =  (Tki ek  ei)  (lm el  em) 

            =  (Tki ek  ei)  (el  el) 

 =  Tki ek  el (ei  el) 
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 =  Tki ek  el  il 

                              =  Tkl ek  el 

 =  T  

the same as the other way round 

(2.1.35)  I  T  =  T 

for all tensors  T. 

   Scalar multiples   I  of  I  are called spherical tensors (or isotropic tensors). 
They multiply each vector 

(2.1.36)   I v  =   v  

keeping its direction constant. In particular,  0 : = 0 I  is the zero tensor, which 
maps every vector into the zero vector. Its coefficients are all zero with respect to 
whatever basis. For all tensors  T  we obtain 

(2.1.37)  0  T  =  T  0  =  0 .  
 
 

2.1.4   The Inverse of a Tensor 
 

   One may ask the question of whether a tensor possesses an inversion, i.e., if 
there exists for a tensor  T  an inverse tensor  T –1  such that 

  T –1  (T  x)  =  x  

holds for all vectors  x . If such a mapping exists, then it must also be linear (and 
therefore also a tensor, notated as  T –1 ). This is equivalent to 

(2.1.38)  T –1  T  =  I . 

In components with respect to an ONB this gives 

  (T  –1
kl ek  el)  (Tmn em  en)  =  kn ek  en 

 =  T  –1
kl el  em Tmn ek  en 

 =  T  –1
km Tmn ek  en 

(2.1.39)       T  –1
km Tmn  =  kn . 

Accordingly, the matrix of components  [T –1
ik]  of the inverse tensor  T –1  is the 

inverse matrix of  [Tmn]  in the sense of matrix algebra if for both tensors the same 
ONB is used.  

   We know from matrices that only the non-singular matrices are invertible. 
These are characterized by the property that their determinant is non-zero 

    det[Tin]    0 . 

A tensor is in fact invertible if and only if the determinant of its matrix of 
components is non-zero with respect to an arbitrary basis (and hence for all bases).  
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Otherwise it is called singular. We will later define the determinant of a tensor, 
which will lead to an invertibility rule which is independent of the used basis. 

A collinear or complanar dyad is always singular. 

A spherical tensor  I  is invertible if and only if    0 . Its inverse is then  –1 I .  

If  S  and  T  are both invertible tensors, then the composition  S  T  is also 
invertible, and vice versa, and we obtain 

(2.1.40)  (S  T) –1  =  T –1  S–1  

since 

  (S  T) –1  (S  T)  =  T –1  S–1  S  T  =  T –1  T  =  I . 

 

2.1.5   The Transpose of a Tensor 
 

   For every tensor  T  the transposed tensor  TT  is defined through the bilinear 
form 

(2.1.41)   a  (TT  b)  =  b  (T  a) 

for arbitrary vectors  a  and  b . It is sufficient to postulate this for two arbitrary 
base vectors 

ek  (T  ei)  =  ei  (TT  ek) 

or 

(2.1.42)            Tki  =  (T T )ik       i, k = 1, 2, 3 

which means that with respect to an ONB the matrix of the components of the 
transposed tensor equals the transposed matrix of the original tensor 

  T  =  Tik ei  ek     TT  =  Tik ek  ei 

      =  Tki ek  ei                      =  Tki ei  ek . 

The following rules hold for all tensors  T  and  S , all vectors  a  and  b , and all 
scalars   : 

(2.1.43)  (a  b)T  =  (b  a) 

(2.1.44) (T  S)T  =  ST  TT 

(2.1.45) (T + S)T  =  TT + ST 

(2.1.46)   ( T)T  =   (TT)   

(2.1.47)   (TT )T  =  T 

(2.1.48)   (TT ) –1  =  (T –1)T  = :  T –T    for invertible tensors  T 

IT  =  I   

            0T  =  0 
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One can also define a left-product between a vector and  tensor 

  v  T  : =  TT  v   

(2.1.49)  =  (Tkm em  ek)  (vi ei)  =  Tkm vi em (ek  ei)  =  Tkm vi em ki   

=  vi Tim em   =  (vi ei)  (Tmk em  ek)  =  vi Tmk (ei  em) ek   

=  vi Tmk im ek  =  vi Tik ek . 

For all vectors  v  and  w  we have then 

(2.1.50)   v  (T  w)  =  (v  T)  w  

so that the brackets are not needed. Since we can express the left-product through 
the usual product from the right, it does not show any new properties.  

   If a tensor equals its transposed tensor we call it symmetric. As an example, 
every spherical tensor is symmetric. The definition of the symmetry coincides 
with the symmetry of the matrix of components with respect to an ONB. 

   If a tensor equals its negative transposed tensor 

(2.1.51)  T  =  – TT 

it is called anti(sym)metric or skew. Consequently, its components with respect 
to an ONB obey 

(2.1.52)  Tik  =  – Tki 

and in particular (no summation)  

  Tii  =  – Tii  =  0 . 

While a symmetric tensor possesses six independent components 

  

        

        

        

11 12 13

12 22 23

13 23 33

T T T

T T T

T T T

 
 
 
  

  

a skew tensor has only three 

  

                

              

         

12 13

12 23

13 23

0 T T

T 0 T

T T 0

 
  
   

 . 

So a skew tensor has the same DOFs as the underlying vector space. This gives 
rise to the supposition that its effect on some arbitrary vector  x  can also be 
obtained by an appropriate operation of some vector with  x . And in fact we find 
for every skew tensor  T  a unique axial vector  tA  such that for all vectors  x   

(2.1.53)  T  x  =  tA  x  

holds. For determining  tA  we choose an ONB  {ei}  and obtain 

(Tik ei  ek)  (xl el)  =  t A
m em  xl el 
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=  Til xl ei          =  t A
m

  xl mli ei 

so that 

(2.1.54)  Til  =  t A
m mli 

or 

T12  =  t A
1 121 + t A

2 221 + t A
3 321  =  – t A

3 

T23  =  t A
1 132 + t A

2 232 + t A
 3 332  =  – t A

1 

T31  =  t A
1 113 + t A

2 213 + t A
3 313  =  – t A

2 . 

Therefore 

  tA  =  – T23 e1  –  T31 e2  –  T12 e3 

       =  + T32 e1 + T13 e2 + T21 e3  

and 
(2.1.55)  t A

m  =  ½ Til mli . 

 

   We obtain the following rules which can be easily proven. 

 Any linear combination of (anti)symmetric tensors is again (anti)symmetric.  

The composition of (anti)symmetric tensors, however, may lose this property.  

 The inverse of symmetric invertible tensors is also symmetric.  

 Skew tensors are singular.  

   One can uniquely decompose any tensor  T  into its symmetric part 

(2.1.56)  sym(T)  : =  ½ (T + TT)     

and its skew part 

(2.1.57)  skw (T)  : =  ½ (T – TT )     

so that 

  T  =  sym(T) + skw (T) . 

In particular, we obtain for collinear dyads the symmetric part 

sym(a  b)  =  ½ (a  b + b  a)   

and the skew part 

  skw(a  b)  =  ½ (a  b – b  a) 

with the corresponding axial vector 

tA  =  ½ b  a . 
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2.1.6   Square Forms and Tensor Surfaces 
 

   If  x  is a vector and  T  a tensor, then  x  T  x  is a scalar. Such an expression is 
called a square form. Obviously, in such a form only the symmetric part of  T  is 
relevant.  

   A tensor  T  is called 

 positive definite if   x  T  x  >  0    

 positive semidefinite if   x  T  x    0     

 negative definite if   x  T  x  <  0     

 negative semidefinite if   x  T  x    0     

holds for all vectors   x   o , and indefinite otherwise.  

   If some tensor  T  is positive (semi)definite, then  –T  is negative (semi)definite. 
An example for a positive definite tensor is the identity tensor or a spherical tensor  
  I  with some positive scalar   .  

   A geometrical characterization of tensors can be obtained by their tensor  
surfaces which are defined in the following way: We consider all vectors  x  that 
fulfil the quadratic equation 

  x  T  x  =  1 . 

If we interpret the solution vectors as position vectors, then they describe a two- 
dimensional subset of the three-dimensional space, which is a surface. For a 
spherical tensor  T , this surface forms a sphere. If  T  is positive definite, then this 
surface is an ellipsoid. Other tensor surfaces will be considered after the treatment 
of eigenvalue problems.  

 

 

2.1.7   Cross-Product between Vectors and Tensors 
 

   For some applications one needs the cross-product between a vector (from the 
left) and a tensor (from the right)  

  v  T  

which is defined by its action on an arbitrary vector  w  as 

(2.1.58)  (v  T)  w  : =  v  (T  w)  

so that the brackets are not needed. With respect to an ONB this gives 

  v  T  w  =  vi ei  (Tkl ek  el)  (wm em) 

                                        =  vi ei  Tkm wm ek 
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                                        =  vi Tkm wm ei  ek 

                                        =  vi Tkm wm ikp ep  

           =  vi Tkl (ei  ek)  el  (wm em) . 

Accordingly 

  v  T  =  (vi ei)  (Tkl ek  el) 

           =  (vi ei  Tkl ek)  el 

           =  vi Tkl (ei  ek)  el 

or for linear dyads 

   v  (a  b)  =  (v  a)  b . 

The resulting tensor is linear in the three involved vectors. The brackets are not 
needed.  

Its transpose is  

  (v  a  b)T  =  b  (v  a) 

          =  – b  (a  v) 

              = :  – (b  a)  v 

          =  – (a  b)T  v  

or, in general, for all tensors  T 

(2.1.59)  v  T  : =  – (TT  v)T . 

In this way we have introduced the cross-product between a dyad (from the left) 
and a vector (from the right) as 

  (a  b)  v  : =  a  (b  v)  =  – a  (v  b)  

=  – (v  b  a)T  =   – [v  (a  b)T]T  

and, more generally, between a tensor (from the left) and a vector (from the right) 

(2.1.60)  T  v  : =  – (v  TT )T  

which is again linear in all factors. For the components with respect to an ONB we 
obtain 

  T  v   =  (Tik ei  ek)  (vm em) 

=  Tik vm ei  (ek  em) 

=  Tik vm kmp ei  ep  

where all brackets are again unnecessary. 

   The following rules hold for all scalars   , vectors  v , w  and tensors  S , T . 
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(2.1.61) (v  T)  w  = v  (T  w)  = :  v  T  w 

(2.1.62)  v  (T  w)  =  (v  T)  w  = :  v  T  w 

(2.1.63)           (T + S)  v  =  T  v + S  v 

(2.1.64)          v  (T + S)  =  v  T + v  S  

(2.1.65)  (T  v)  =  ( T)  v  =  T  ( v)  = :   T  v 

(2.1.66)              (v  T)  =  ( v)  T  =  v  ( T)  = :  v  T  

(2.1.67)             T  (v + w)  =  T  v + T  w 

 (2.1.68)             (v + w)  T  =  v  T + w  T  

As a consequence of the rules for the triple product, we have additionally 

(2.1.69)  T  (a  b)  =  (T  a)  b  

or  for the product from the left 

(2.1.70)   (a  b)  T  =  a  (b  T) . 

Here again all brackets are unnecessary since the operations only make sense in 
the given order.  

   If we choose in particular for  T  the identity  I , then we obtain for arbitrary 
vectors  w 

  (v  I)  w  =  v  (I  w)  =  v  w 

  =  I  (v  w)  =  (I  v)  w  =  (I  v)  w 

and therefore 

(2.1.71)  v  I  =  I  v . 

On the other hand, we obtain with (2.1.60) 

(2.1.72)  I  v  =  – (v  I)T  =  – (I  v)T  

so that  I  v = v  I  must be antisymmetric. By comparison we conclude that  v  
is the axial vector of the skew tensor  v  I . 

   We obtain with respect to an ONB 

    I  v  =  ei  ei  vj ej 

            =  vj ijk ei  ek      

(2.1.73)             =  v  I  =  vj ej  ei  ei    

                                       =  vj jik ek  ei . 

If this tensor is applied to a vector  w  we obtain 

  v  I  w  =  vj jik ek (ei  wm em) 

                                           =  vj wi jik ek . 
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2.1.8   Orthogonal Tensors 
 

are those tensors which are compatible with the inner product such that 

  a  b  =  (Q  a)  (Q  b)  =  a  QT  Q  b 

holds for arbitrary vectors  a  and  b . This leads to 

  QT  Q  =  I   Qmi  Qmj  =  ij   

with respect to some ONB, or 

(2.1.74)  Q–1  =  QT. 

So for orthogonal tensors, the inverse equals the transpose. All orthogonal tensors 
are therefore invertible. We also have 

  Q  QT  =  I   Qim  Qjm  =  ij   

with respect to some ONB. 

Accordingly, the transpose/ inverse of some orthogonal tensors is again 
orthogonal. If we represent an orthogonal tensor with respect to some ONB by its 
matrix of components, then this is an orthogonal matrix 

  

        

        

        

11 12 13

21 22 23

31 32 33

Q Q Q

Q Q Q

Q Q Q

 
 
 
  

 .                                                             
                                         

Such orthogonal matrices have the property that both the row vectors and the 
column vectors are normalized and mutually orthogonal. 

   Orthogonal tensors describe rotations and reflections of vectors. If  {ej}  is an 
ONB, then {Q  ei}  is also an ONB for every orthogonal tensor  Q . Occasionally  
Q  may change the orientation of the basis.  

Examples for orthogonal tensors are 

  e1  e1  e2  e2  e3  e3 

  e1  e2  e2  e3  e3  e1 

  e1  e1  e2  e3  e3  e2 

for any ONB {ej}. 

   If  v  is a vector and  Q  an orthogonal tensor, then  Q  v  is the rotated and 
occasionally reflected vector. With respect to some ONB  {ej}  we obtain 

  Q  v  =  Q  vi ei  =  vi Q  ei  

so that the mapped vector has the same components with respect to the ONB  
{Q  ei}  as the original one with respect to {ej} .  
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   The same can be done with a tensor  T . If we rotate the tensorbasis  {ei  ej}  
into  {(Q  ei)  (Q  ej)} = {(Q  ei)  (ej  QT)} , then we obtain the rotated tensor 

(2.1.75)   Q  T  QT  =  Q  Tij ei  ej  QT  =  Tij (Q  ei)  (Q  ej)  

again with the same components with respect to the ONB {(Q  ei)  (Q  ej)} as 
the original tensor with respect to an ONB  {ei  ej} . 

   For representing an orthogonal tensor  Q  we choose a particular ONB, the  
e1 direction of which coincides with the rotational axis of  Q , so that the matrix 
of components of  Q  is 

  

                     

           

    +        

1 0 0

0 cos sin

0 sin cos

 
 

 
  
  

 

with some angle   . For  +1  the tensor describes a pure rotation. In this case the 
tensor is called a versor25 or proper-orthogonal, while for  –1  an additional 
reflection at the e2e3plane takes place. One sees easily that also in this case the 
rows and columns of the matrix are mutually orthogonal.  

   For the rotation we obtain the following representation  

 Q  =  e1  e1 + (e2  e2 + e3  e3) cos  + (e3  e2  –  e2  e3) sin   

(2.1.76)  =  cos  I + (1 – cos ) e1  e1 + I  e1 sin  . 

For small rotations one linearises this expression in     

 sin        
  cos     1          

and obtains the more simple representation 

Q  v 

                                  v 

v 
 
(2.1.77)  Q    I + I    =  I +   I                          

with the skew tensor  I   , the axial vector of which is   =  e1 . Then 

   Q  v    v +   v . 

Note that this linearised tensor is not orthogonal anymore.  

 

 

 

                                                           
25 from lat. vertere = to turn 
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2.1.9   Transformations under Change of Basis 
 

   We introduced vectors and tensors without a basis. All operations and properties 
of tensors can also be written without referring to a basis (direct or symbolic 
notation). 

   On the other hand, we could see that after choosing a basis, all operations and 
properties of tensors could be related to analogous ones on the matrices of the 
components. This representation of tensor operations is general because this is 
always possible, but also special because one could have chosen any other basis as 
well.  

   Therefore the question arises of how the components of an arbitrary vector  v  or 
tensor  T  transform under changes of the basis. We will exclusively consider 
ONB, as we also did before. So letting  {ei}  and  {ei}  be such ONBs, we obtain 
the representations 

  v  =  vi ei  =  vi ei 

  T  =  Tik ei  ek  =  Tik ei  ek .  

It is always possible to transform one ONB into another ONB by rotations and 
occasionally reflections. This can be described by an orthogonal tensor Q . If we 
take 

  Q  =  ei  ei  

then this tensor maps 

(2.1.78)  Q  ek  =  ek 

and vice versa 

  QT  ek  =  ek .  

This representation of  Q  is, however, trivial and not helpful for our purpose to 
derive the transformations of the components. For this purpose, we choose another 
representation 

  Q  =  Qrs er  es 

with 

Qrs  =  er  Q  es  =  er  (ei  ei)  es 

       =  (er  ei) (ei  es)  =  er  es  =  cos (er , es) . 

The component  Qrs  is the directional cosine, i.e., the cosine of the angle between 
the base vectors  er  and  es . With this representation of  Q  we obtain 

  v  =  vr er  =  vi ei  =  vi Q  ei 

  =  vi (Qrs er  es)  ei  =  vi Qrs er si 

                            =   vi Qri er 
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and by comparing the components 

(2.1.79)  vr  =  Qri vi . 

In the reverse direction one would obtain 

     vi  =  vr Qri . 

Analogously one obtains for the components of a tensor 

 T =  Tik ei  ek  =  Tlm el  em 

     =  Tlm (Q  el)  (Q  em) 

                            =  Qil Qkm  Tlm ei  ek 

the tranformations 

(2.1.80)  Tik  =  Qil Tlm Qkm  and  Tlm  =  Qil Tik Qkm  

or, if written in matrix form,  

[Tik]  =  [Qil] [Tlm] [Qkm]T     and [Tlm]  =  [Qil]
T [Tik] [Qkm] . 

 

 

2.1.10 Eigenvalues and Eigenvectors 
 

  In mechanics we are often confronted with the following problem: Find for a 
given tensor  T  vectors that  T  maps into their own direction, i.e., 

(2.1.81)  T  a  =   a  

for some real   . Such a vector is called the eigenvector  of  T  and    the  
corresponding eigenvalue of  T . 

   First of all one states that the eigenvalue equation is trivially fulfilled for the 
zero vector for arbitrary   . We will therefore only look for non-zero eigenvectors  
a  o .  

If we take the –multiple of some eigenvectors  a , then 

  T  ( a)  =   (T  a)  =    a  =   ( a) . 

So every scalar multiple of some eigenvector is also an eigenvector with the same 
corresponding eigenvalue. This gives rise to a normalisation 

(2.1.82)  a  =  1  =  a  a  =  ai ai  

where the sense of the direction of  a  still remains arbitrary. It would be more 
reasonable to talk about eigendirections instead of eigenvectors.  

   We can reformulate the above eigenvalue equation as 

(2.1.83)  (T –  I)  a  =  o  

or in component form with respect to some ONB  {ei}  as 
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(2.1.84) (Tik –  ik) ak  =  0  for  i = 1, 2, 3. 

This gives the equations 

(T11  –  ) a1 + T12 a2 + T13 a3  =  0 

  T21 a1 + (T22  –  ) a2 + T23 a3  =  0 

  T31 a1 + T32 a2 + (T33  –  ) a3  =  0 . 

   These are the well-known eigenvalue equations from matrix algebra. It is a  
system of three linear and homogeneous equations for the components  ai  of the 
eigenvectors  a , which allows for a non-zero solution if and only if the 
determinant of the matrix of coefficients is zero 

(2.1.85)  det [Tik –  ik]  =  det 

              

              

                    

11 12 13

21 22 23

31 32 33

T T T

T T T

T T T






 
  
  

=  0 . 

This leads to a cubic polynomial in   

  (T11 – ) [(T22 – )(T33 – ) – T32 T23]  

  – T12 [T21(T33 – ) – T31 T23] 

+ T13 [T21 T32 – T31(T22 – )]  =  0  

called the characteristic equation of the matrix  [Tin] . It can always be brought 
into the form 

(2.1.86)  3 – IT 2 + IIT  – IIIT  =  0  

with the three scalar coefficients  IT , IIT , IIIT , called the  principal invariants of  
T. Since the eigenvalue equations (2.1.83) do not depend on a basis, this should 
also hold for the characteristic polynomial and, therefore, for the principal 
invariants. 

   The first of these is the trace of the tensor 

(2.1.87)  IT  =  tr T  =  Tii  =  T11 + T22 + T33 .    

The second one is the sum of the minors of the main diagonal 

  IIT  = 
      

    
      

22 23 11 1311 12

21 22 32 33 31 33

T T T TT T
det det det

T T T T T T

    
     

     
 

(2.1.88)  =  T11 T22 – T12 T21 + T22 T33 – T23 T32 + T11 T33 – T13  T31 

=  ½ (Tii Tkk  –  Tik Tki)  

=  1/2 {tr2(T) – tr(T2 )} . 

The third is the determinant of the tensor 
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  IIIT  =  det(T)  =  det

      

      

      

11 12 13

21 22 23

31 32 33

T T T

T T T

T T T

 
 
 
  

  

(2.1.89)  =  ikm  T1i T2k T3m 

  =  T11 T22 T33 – T11 T23 T32 – T12 T21 T33   

  + T12 T23 T31 + T13 T21 T32  – T13 T22 T31 

=  1/6 tr
3(T) – 1/2 tr(T) tr(T2 ) + 1/3 tr(T3 ) . 

All of these representations with components hold only if referred to some ONB.  

   If we rotate the tensor by some versor, then the characteristic polynomial 
remains the same 

 det (Q  A  QT –  I)  =  det [Q  (A –  I)  QT]  =  det (A –  I)  

and therefore the invariants and the eigenvalues remain the same. Only the 
eigenvectors rotate.  

   For the principal invariants, the following rules hold for all scalars   , vectors  a  
and  b , tensors  A  and  B , and orthogonal tensors  Q . 

(2.1.90)  tr(A +  B)  =  tr(A) +  tr(B) linearity 

(2.1.91)  tr A  =  tr(AT)   

(2.1.92)  tr(a  b)  =  a  b     

(2.1.93)  tr( I)  =  3    in three dimensions 

(2.1.94)  tr(Q A QT)  =  tr A 

 

(2.1.95)  det(A)  =  det(AT )   

(2.1.96)  det( A)  =   3 det(A)   in three dimensions 

(2.1.97)  det(A  B)  =  det(A) det(B)  determinant rule 

(2.1.98)  det –1(A)  =  det(A–1)   for invertible tensors 

(2.1.99)  det I  =  1   

(2.1.100) det Q  =  det(Q –1)  =   1  for orthogonal tensors 

(2.1.101) det(Q  A  QT)  =  det A   

for orthogonal tensors  Q  and arbitrary tensors  A 

   A traceless tensor is called a deviator. One can uniquely decompose every 
tensor into its deviatoric and its spherical part. The deviatoric part is 

(2.1.102) T'  : =  T – 1/3 tr(T) I . 
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   After the theorem of VIETA26 one can represent every polynomial by its roots 
(nulls) 

  ( – 1) ( – 2) ( – 3)   

  =  3 – (1 + 2 + 3) 2 + (1 2 + 2 3 + 3 1)   – 1 2 3 . 

By comparison with the characteristic polynomial, we obtain a representation for 
the invariants by the eigenvalues  i  

  IT    =  1 + 2 + 3 

(2.1.103) IIT   =  1 2 + 2 3 + 3 1 

  IIIT  =  1 2 3 . 

Theorem.  A tensor has 
 either three real eigenvalues 
 or one real and two conjugate complex ones. 

Proof. From the behaviour of such cubic polynomials for very small and very 
large values of    and its continuity we conclude that at least one real root  1  
must exist. Let  e1  be the corresponding eigenvector. Then there exists an ONB 
{ei}  with respect to which the tensor has the following components 

     

       

       

1 12 13

22 23

32 33

T T

0 T T

0 T T

 
 
 
  

. 

The trace of a tensor is real 

IT  =  1 + 2 + 3  =  1 + T22 + T33  

and therefore also the sum of the other eigenvalues  

2 + 3  =  T22 + T33 . 

We make for them a complex ansatz with the imaginary unity  i 

  2  =  2 + i 2 

3  =  3 + i 3 . 

Its sum is only real if   2  =  – 3 . The determinant of the tensor is also real 

IIIT  = 1 2 3  =  1 (T22 T33  –  T32 T23)    

       2 3  =  T22 T33  –  T32 T23
  

so that the product of the two other eigenvalues is also real 

    2 3  =  (2 + i 2) (3  – i 2)  =  2 3 + 2
2 + i (3 – 2) 2 

and thus  (3 – 2) 2 = 0 . For  2 = 0  all eigenvalues are real. If  3 – 2 = 0 , 
then the two remaining eigenvalues are conjugate complex; q. e. d. 

                                                           
26 Francois Viète (1540-1603) 
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  Let  T  be a tensor with real eigenvalues  1 , 2 , 3  and corresponding 
eigenvectors  a1 , a2 , a3 . First, we consider the case in which two different 
eigenvectors  a1  and  a2  have the same eigenvalue     

  T  a1  =   a1 

T  a2  =   a2  a1    a2   

 T  a1 + T  a2  =   a1 +  a2 

=  T  (a1 + a2)  =   (a1 + a2) . 

So the sum of two eigenvectors corresponding to the same eigenvalue is also an 
eigenvector for the same eigenvalue. The same holds for all linear combinations of 
the two eigenvectors. The plane spanned by such eigenvectors is an eigenspace of 
the tensor. If the same holds for three eigenvectors which are linear independent, 
then the entire vector space is an eigenspace.  

 

Examples 

 For the zero tensor  0  every vector is an eigenvector with the (triple) 
eigenvalue  0  since 

  0  a  =  o  =  0 a . 

 For the identity tensor   I   every vector is an eigenvector with the (triple) 
eigenvalue  1  since 

  I  a  =  a  =  1 a . 

 For a spherical tensor   I  every vector is an eigenvector with the (triple) 
eigenvalue   . 

Since for spherical tensors all directions are eigendirections, we conclude 

Theorem. If  T  is a tensor and   I  a spherical tensor, then  T  and  T +  I  
have the same eigendirections. 

Accordingly, the eigenvectors of a tensor depend only on its deviatoric part. 

 For an orthogonal tensor (2.1.76) the axial vector  e1  is an eigenvector with 
eigenvalue  1. The positive sign holds for pure rotations (versors), the 
negative one for additional reflections. The other two eigenvalues are 
conjugate complex. 

 For dyads  a  b  ,  a  is an eigenvector corresponding to the eigenvalue  a  b , 
and every vector perpendicular to b  is an eigenvector for the double 
eigenvalue 0 . If  a  is perpendicular to  b , there is a triple eigenvalue  0 . 
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2.1.11 Spectral Forms of Symmetric Tensors 
 

   In mechanics, the eigenvalue problem is mainly posed for symmetric tensors, for 
which the following important theorem holds.   

Theorem. Symmetric tensors have three (not necessary different) real eigen-
values.  
Proof. By the relation of the previous proof we obtain the equation 

(2 – 3)
2  =  2

2 + 3
2 – 2 2 3   

=  (2 + 3)
2 – 4 2 3 

=  (T22 + T33)
2 – 4 (T22 T33  –  T23 T32)   

=  (T22 – T33)
2 + 4 T23

2 . 

Both terms on the right -hand side are non-negative, and so 

  0    (2  – 3)
2  =  (i 2 + i 2)

2  =  4 i2 2
 2  =  – 4 2

2. 

This is only possible if  2 = 0  , so that all eigenvalues must be real; q. e. d.  

  If we consider the case of two eigenvectors  a1  and  a2  with different eigen- 
values  1    2 , then 

  T  a1  =  1 a1      and      T  a2  =  2 a2 

  a2  T  a1  =  1 a2  a1 

a1  T  a2  =  2 a1  a2 

and because of the assumed symmetry of  T  we obtain for the difference 

  a1  T  a2  –  a2  T  a1  =  0  =  (2 – 1) (a1  a2) 

i.e.,  a1  is perpendicular to  a2 . Thus, we have shown the following 

Theorem. Eigenvectors of symmetric tensors with different eigenvalues are 
mutually orthogonal. 

We consider now the three possible cases. 

1st case: three different eigenvalues.  

In this case, the eigenvectors form an ONB called the eigenbasis of the tensor, 
which is unique (up to changes of sign). The eigenspaces are three one-
dimensional mutually orthogonal vector spaces. With respect to the eigenbasis, the 
matrix of the components has diagonal form or spectral form 

   

      

      

      

1

2

3

λ 0 0

0 λ 0

0 0 λ

 
 
 
  

 

with the three eigenvalues 1 , 2 , 3 .  
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2nd case: two of three eigenvalues are equal.  

The eigenspace corresponding the equal eigenvalues is two-dimensional. It is a 
plane perpendicular to the eigenvector of the third eigenvalue. All vectors in this 
plane are eigenvectors. A diagonal form is also possible, which is (after an 
appropriate ordering) 

   

      

      

      

1

1

2

λ 0 0

0 λ 0

0 0 λ

 
 
 
  

 

3rd case: all (three) eigenvalues are equal.  

In this case, all directions are eigendirections, and the eigenspace coincides with 
the underlying vector space. The matrix of the components has diagonal form with 
respect to each ONB  

   

      

     

      

λ 0 0

0 λ 0

0 0 λ

 
 
 
  

 . 

The tensor is the spherical tensor   I . 

Theorem. A tensor is symmetric if and only if there exists an ONB  {ep
i}  with 

respect to which the tensor has a spectral form 

(2.1.104)    
3

i 1
 T i e p

i  e p
i   

with  i : real eigenvalues,   

  e p
i : normed eigenvectors. 

Theorem. A symmetric tensor is positive definite if and only if all eigenvalues are 
positive. It is positive semidefinite, if and only if all eigenvalues are non-negative.  

   We obtain the following classification of the symmetric tensors if we order the 
eigenvalues after their value, i.e.,  1    2    3 . The columns 3 - 5 in the table 
contain the intersections with different planes. 
 
sign of      square  e p

1 - e p
2        e p

2 - e p
3           e p

1 - e p
3         tensor surface 

eigenvals.      form   plane            plane         plane 
 

  + + +      positive def. ellipse         ellipse  ellipse          ellipsoid 

  + + 0      pos.-semidef. ellipse         straight lines    straight lines  ellipt. cylinder 

  + 0 0      pos.-semidef.  straight lines -               straight lines    parall. planes 

  + + –      indef. ellipse         hyperbola  hyperbola      1fld hyperboloid 

  + –  –      indef. hyperbola -  hyperbola      2fld hyperboloid 
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Problem 2. Products between Vectors 
Two vectors  v1 = 0.6 e1 + 0.8 e3  and  v2 = – 0.8 e1 + 0.6 e3  are given with 
respect to an ONB  {ei} . Find a third vector  v3  such that {v1 , v2 , v3} 
forms an ONB. Represent the tensor  A  : =  v1  v3 + v3  v1  with respect 
to  {ei   ej}  and calculate the product  A  v2 .  

Solution 

An ONB is defined by the equations  vi  vj = ij . We first make sure that  
v1  and  v2  fulfil this. In fact,  

v1  v2  = – 0.48 e1  e1 + 0.36 e1  e3 – 0.64 e3  e1 + 0.48 e3  e3 = 0 

v1  v1  =  0.36 e1  e1 + 0.48 e1  e3 + 0.48 e3  e1 + 0.64 e3  e3 = 1 

v2  v2 =  0.64 e1  e1 – 0.48 e1  e – 0.48 e3  e1 + 0.36 e3  e3 = 1 

The mixed products  e1  e3  and  e3  e1  are all zero for an ONB  {ei}, while  
e1  e1 = 1  and  e3  e3 = 1  . For the determination of  v3  we use the 
equations  v1  v3  = 0 , v2  v3 = 0 , v3  v3 = 1 . We make the ansatz   

v3  =  v3
1 e1 + v3

2 e2 + v3
3 e3  

and obtain a system of equations for the components  v3
1 , v

3
2 , and  v3

3 

v1  v3  =  0.6 v3
1 + 0.8 v3

3  = 0 

v2  v3  =  – 0.8 v3
1 + 0.6 v3

3  =  0 

v3  v3  =  (v3
1)

2 + (v3
2)

2 + (v3
3)

2  = 1  

The first two equations are only fulfilled if  v3
1 = v3

3 = 0 , so that  v3
2  can 

only be  

(P2.1)  v3
2  =  1 .  

We want to determine  v3  such that  {v1 , v2 , v3}  is a positively oriented 
system. Thus, we postulate  v3 = v1  v2 . One could also have used this 
equation for the calculation of  v3   

  v3  =  v1  v2  =  (0.6 e1 + 0.8 e3)  (– 0.8 e1 + 0.6 e3) 

  =  – 0.48 e1  e1 + 0.36 e1  e3  – 0.64 e3  e1 + 0.48 e3  e3 

  =  – 0.48 11k ek + 0.36 13k ek – 0.64 31k ek + 0.48 33k ek   

The last equation has for  k  2  only non-zero solutions. With  132 = –1  
and  312 = 1  (11k = 0  and  33k = 0  for all  k) we obtain  v3 = – e2 . So we 
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have to choose after P2.1  –1  for a positively oriented system or  +1  for a 
negatively oriented one. We continue with  v3  – e2 .  A  is then 

  A  =  v1  v3 + v3  v1 

  =  – (0.6 e1 + 0.8 e3)  e2  –  e2  (0.6 e1 + 0.8 e3) 

  =  – 0.6 e1  e2  – 0.8 e3  e2  – 0.6 e2  e1  – 0.8 e2  e3 

=  A12 e1  e2 + A32 e3  e2 + A21 e2  e1  + A32 e2  e3 . 

We can put the components of  A  with respect to this basis in a matrix 

[Aee
ij]  = 

0 0.6 0

0.6 0 0.8

0 0.8 0

 
   
  

 . 

We now compute  

  b  : =  A  v2  

(P2.2)        = (– 0.6 e1  e2  – 0.8 e3  e2  – 0.6 e2  e1  – 0.8 e2  e3) 

  (– 0.8 e1 + 0.6 e3) . 

Since we multiply  v2  from the right side to  A , the right vector of the base 
dyad must be contracted with  v2 . The left vector of the base dyads 
remains. Since  {ei}  is an ONB, only two terms remain 

  b  =  (– 0.6) ( – 0.8) e2 + (– 0.8) (0.6) e2  =  o . 

With respect to the basis  {vi}  we obtain the component matrix for  A 

[Avv
ij]  = 

0 0 1

0 0 0

1 0 0

 
 
 
  

 . 

The calculation of  b  with respect to the basis  {vi}  is rather simple 
(compare with P2.2)  

  b  =  A  v2   =  ( v1  v3+ v3  v1)  v2   =  o 

because of the orthogonality of the basis  {vi} . Since both  {ei}  and  {vi}  
are ONBs, the matrices of the components with respect to both bases must 
have the same eigenvalues and principal invariants: IA = 0 , II A = –1 ,  
III A = 0  after (2.1.87-89). 
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  Problem 3. Direct Notation and Index Notation 
Determine  v  T  v  between a vector  v  and a tensor  T  in components 
with respect to an ONB  {ei} . Formulate the result as compact as  
possible and bring it - as far as possible - in a direct notation.  

Solution 

For the components with respect to an ONB we obtain 

v  T  v  =  vi ei  Tjk ej  ek  vl el    

=  vi Tjk vl (ei  ej)  (ek  el) . 

Since the cross-product between vectors gives a vector, we obtain as a 
result dyads or second-order tensors. We use the permutation symbol of 
(2.1.2) to evaluate the cross-products 

(P3.1)  v  T  v  =  ijm kln vi Tjk vl  em  en . 

If we want to determine the component belonging to the base dyad  e1  e2  

we set  m  1  and  n  2  and obtain the sum  ij1 kl2 vi Tjk vl . We have to 
sum over 4 dummy indices, so that we obtain 34 = 81  terms. Most of the 
terms, however, are zero since only six index combinations in  ijm  out of 
27 are non-zero. For the compactification, the rule 

ijm kln  =  det
ik jk mk

il jl ml

in jn mn

  
  
  

 
 
 
  

 

helps. One assembles a matrix with elements  ij  such that the indices 
coincide with the three indices of the permutation symbol row-wise and 
column-wise. The determinant of this matrix equals the product of the two 
permutations symbols. Calculation of the determinant after the SARRUS27 
rule gives 

ijm kln  =  ik jl mn + jk ml in + mk il jn  – mk jl in   

– ik ml jn – jk il mn . 

We insert this into P3.1  

v  T  v  =  (ik jl mn + jk ml in + mk il jn   

– mk jl in  – ik ml jn – jk il mn) vi Tjk vl  em  en  . 

                                                           
27 Pierre Frédéric Sarrus (1798-1861)  
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We can now make reductions after rule (2.1.1) for the KRONECKER 
symbols. One can rename the dummy index in one KRONECKER symbol 
and thus eliminate the other KRONECKER symbol. We find 

v  T  v  =  vj Tji vi  em  em + vi Tjj vl  el  ei  

+ vi Tjk vi  ek  ej  – vi Tjk vj  ek  ei   

– vi Tji vl  el  ej  – vi Tjj vi  em  em . 

In each term only two dummy indices appear in the base dyads. We can 
transform the result back into a direct notation 

v  T  v  =  (v  T  v) I + tr(T) v  v  

+ (v  v) TT
 – (v  T)  v – v  (T  v) – tr(T) (v  v) I  

with 

  vj Tji vi   =  v  T  v I  =  em  em Tjj = tr T 

vi vl  el  ei   =  v  v vi vi  =  v  v  Tjk ek  ej   =  TT. 

 

Problem 4. Orthogonal Tensors 
Given the two ONBs  {ei}  and  {vi}  from Problem 2, find the tensor  Q  
that describes the transformation of  {ei}  into  {vi} . Determine the 
components of  Q  with respect to the bases {ei  ej} , {vi  vj} , {vi  ej} , 
and {ei  vj} . Note the difference between change of basis and 
transformation of a vector. 

Solution 

It is obvious that  

(P4.1)  Q  =  vi  ei  =  v1  e1 + v2  e2 + v3  e3 

performs the desired transformation. The matrix of the components with 
respect to  {vi  ej}  is then  

   [Qve
ij]  = 

1 0 0

0 1 0

0 0 1

 
 
 
  

. 

 For the representation with respect to the basis  {ei  ej}  we insert the 
vectors  vi  from Problem 2   

  Q  =  (0.6 e1 + 0.8 e3)  e1 + (– 0.8 e1 +0.6 e3)  e2  – e 2  e3  
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and obtain the components  

   [Qee
ij]  =  

0.6 0.8 0

0 0 1

0.8 0.6 0

 
  
  

. 

The components with respect to  {vi  vj}  can be achieved by scalar pro-
ducts of the tensor by vectors  vi  from the left and  vj  from the right  

   Qvv
ij

  =  vi  Q  vj 

           =  (vk  vi ) (ek  vj ) =  ik ek  vj  =   ei  vj . 

With  v1 = 0.6 e1 + 0.8 e3 , v2 = – 0.8 e1 + 0.6 e3  and  v3 = – e2  we obtain 

   [Qvv
ij]  

 = 

0.6 0.8 0

0 0 1

0.8 0.6 0

 
  
  

 =  [Qee
ij] . 

Thus,  Qee
ij

 = Qvv
ij  holds. In the same way we find  

Qev
ij

  =  Q  ei  vj  =  Q
ee

kl ek  el  ei  vj   

=  Qee
kl

 ik el  vj  =  Q
ee

il el  vj . 

With the previous result  ei  vj  = Qee
ij  we obtain 

   [Qev
ij]  =  [Qee

il] [Q
ee

lj]  = 

0.36 0.48 0.8

0.8 0.6 0

0.48 0.64 0.6

 
   
   

. 

Since  Q  maps a right-hand-system into another one, it is orientation-
preserving and therefore a proper-orthogonal tensor or a versor. So its 
determinant must be +1, which can easily be proven. Such tensors are pure 
rotations 

   vi   =  Q  ei    ei   =  QT  vi .  

One should note the difference between this vector transformation and a 
change of basis. In the latter case, one changes both the basis and the 
components simultaneously, such that the vector itself remains the same, 
while only its representation changes 

   b  =  be
i
 ei  =  be

i Q
T  vi  = be

i  [Q
vv

jk]
T vj  vk  vi   
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=  be
i  Q

vv
kj

 ik
 vj  =  be

i  Q
vv

ij
 vj  =  bv

i
 vj . 

In contrast to this, a rotation of a vector would lead to a change of the 
components with respect to the same basis 

   b*  =  b e*
i
 ei  =  Q  b  =  Qee

ij b
e
k ei  ej  ek   

=  Qee
ij b

e
k
 jk ei  =  Qee

ij b
e
j ei . 

Because of  Qee
ij

 = Qvv
ij  we have for the change of the basis 

   b  =  be
i
 ei  =  be

i  Q
ee

ij
 (Q  ej) , 

while the rotation of the vector leads to  

   b*  =  Q  b  =  bi
e* ei  =  Qij

ee bj
e ei . 

 

Problem 5. Eigenvalues and Invariants  
Determine the eigenvalues and eigenvectors and the principal invariants of 
a tensor, which is given with respect to an ONB  {ei}  by  

A  =  10 (e1  e1 + e2  e2) + 5 (e1  e2+ e2  e1) + 20 e3  e3 .  

Represent  A  with respect to its eigenbasis  {v i} . Find the tensor  Q  for 
the change of the basis from {ei}  to  {v i} . Calculate the inverse of  A  with 
respect to  {ei}  and to  {vi} . 

Solution 

The matrix of the components of  A  with respect to  {ei  ej}  is 

  [Aij] 
 = 

10 5 0

5 10 0

0 0 20

 
 
 
  

. 

With (2.1.87) to (2.1.89) we can calculate the principal invariants as 

  IA  =  A11 + A22 + A33  = 40 

  IIA  =  A11 A22 – A12  A21 + A22 A33 – A23 A32 + A11 A33 – A13  A31  

                 =  100 – 25 + 200 + 200  = 475 

IIIA  =  A11 A22 A33 – A11 A23 A32 – A12 A21 A33  +  

             A12 A23 A31 + A13 A21 A32  – A13 A22 A31 

               = 2000 – 500  = 1500  
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The characteristic polynomial (2.1.86) is then  

(P5.1)  3  – 40 2  + 475   – 1500  =  0  

which can be used to determine the eigenvalues. Since  A13 = A23 = A31 = A32 

= 0  we see that  A  e3 = 20 e3 . So   = 20  is the eigenvalue of the 
eigenvector e3 . Polynomial division of P5.1 by   –20  gives 

  (3– 402+475 –1500) / ( – 20) = 2 – 20 + 75 

               3– 202 

    – 202+475 

    – 202+400 

       75 – 1500 

       75 – 1500 

           0 

The solutions of the resulting quadratic equation are 

   1,2  =  10  5 . 

So we have the following eigenvalues: 1 = 5 , 2 = 15 , 3 = 20 , where the 
order is arbitrary. The third eigenvector is already known:  v3 = e3 . We 
compute  v1

  and  v2  using (2.1.83), which results in the component form  
(Aij –  ij) vj . For  1  we obtain 

10 5 5 0

5 10 5 0

0 0 20 5

 
  
  

1
1
1

2
1

3

v

v

v

 
 
 
 
  

=

5 5 0

5 5 0

0 0 15

 
 
 
  

1
1
1

2
1

3

v

v

v

 
 
 
 
  

=

0

0

0

 
 
 
  

 

One can easily see that  v3
1 = 0 , and that the first two equations for the 

components lead to  v1
1 = – v2

1. Norming  v1  determines  v1
1  and  v2

1  

only up to their sign, so that v1
1 = v2

1 = 1/ 2 . For  2  we obtain by 

the same procedure  v1
2 =  v2

2, v1
2 = v2

2 = 1/ 2 , v1
3= 0. The spectral 

form of  A  is after (2.1.104)  

A  =  1 v
1  v1 + 2 v

2  v2 + 3 v
3  v3.  

The sense of direction of the  vi  does not matter, since these vectors appear 
in all base dyads twice.  A  has the following components with respect to  
{v i  v j}   
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[Avv
ij]

   =  

5 0 0

0 15 0

0 0 20

 
 
 
  

. 

A change of the basis from  {ei}  to  {vi}  is performed by  Q = v i
  ei . For 

this purpose, we have to fix the senses of  v1  and  v2  : v1 = 1/ 2 e1 – 1/ 2

e2 , v2 = 1/ 2 e1 + 1/ 2 e2 , v3 = e3 . Inserting them gives us the 
components of  Q  with respect to  {ei  ej}  

[Qee
ij]

   =  

1/ 2 1/ 2 0

1/ 2 1/ 2 0

0 0 1

 
 
 
 
  

. 

The inverse of  A  can be most easily determined in the spectral form 

A–1  =  1
–1 v1  v1 + 2

–1 v2  v2 + 3
–1 v3  v3 

or as a matrix 

[Avv
ij] –1   =  

1/5 0 0

0 1/15 0

0 0 1/20

 
 
 
  

. 

The representation with respect to  {ei  ej}  can be most easily calculated 
by a change of the basis 

  A1  =  [Avv
ij]
1 v i  v j  =  [Avv

ij]
1 ( Q  ei)

  (Q  ej)  

       =  [Avv
ij]
1 Qee

lk Q
ee

mn (el  ek  ei)  (em  en  ej)  

      =  [Avv
ij]
1Qee

li Q
ee

mj el  em . 

A comparison of the components with the representation  A1 = [Aee
lm]1 el

 

 em  shows that one can determine the components  [Aee
lm]1  by the matrix 

multiplication  

[Aee
lm]1  =  Qee

li [A
vv

ij]
1 Qee

jm
T 

as 

[Aee
lm]1  = 

4/30 2/30 0

2/30 4/30 0

0 0 1/20

 
  
  

. 
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Problem 6. Spectral Form 
The well-known FIBONACCI28 series is defined by 

  an =  an1 + an2              a1  =  1 ,  a2  =  1 . 

This can be written in matrix form as 

   

n 1

n

a

a
 

 
 

=
0 1

1 1

 
 
 

n 2

n 1

a

a




 
 
 

. 

Find an explicit formula for  an  using the spectral form. 

 

Solution 

With the given initial values we can write 

(P6.1)  n 1

n

a

a
 

 
 

  =  
n 2

0 1

1 1


 
 
 

1

1

 
 
 

 =   [M n2]
1

1

 
 
 

. 

We obtain  

   an  =  [M n2] 21 + [M n2] 22 . 

By the spectral form one can determine the n–2th power of the matrix of 
coefficients  M. The eigenvalues and normed eigenvectors are then 

   1  =  ½ (1+ 5 )  v  =  
1 5 5+ 5

,
1010 20

 
 
  

 

  2  =  ½ (1– 5 )  w  =  
1+ 5 2

,
5+ 510+ 20

 
 
  

. 

The matrices of the coefficients  [Mij]
n2  can be obtained from the spectral 

form by applying the exponents to the eigenvalues using the scheme for 
matrix multiplications 

Mij
n–2  =  1

n–2 

 1 2

1

2

v v

v

v

   
   

  

+2
n–2

 1 2

1

2

w w

w

w

   
   

  

. 

The calculation is somewhat laborious. The result is  

  an  =  (1
n – 2

n) / 5 . 

                                                           
28 Fibonacci (Leonardo of Pisa) around 1170-1250 
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2.1.12 Time-Dependent Vectors and Tensors 
 

and their derivatives will be needed in dynamical problems. So let  t  be the time 
or a time-like parameter. Let   (t)  be a scalar function of  t , v(t)  a time-
dependent vector, and  T(t)  a time-dependent tensor. The time-derivatives are 
defined by the limits 

   (t)   =  
d

dt


  =  

t 0
lim
 

 
1

t
[ (t + t) –  (t)]  

  v(t)    =  
d

dt

v
   =  

t 0
lim
 

 
1

t
 [v(t + t) – v(t)]  

  T(t)   =  
d

dt

T
  =  

t 0
lim
 

 
1

t
 [T(t + t) – T(t)]  

assuming that they exist. 

  The following rules hold for all scalars   , vectors  a  and  b  , and tensors  T  
and  S , all being differentiable functions of time.  Then 

  (a + b)  =  a + b 

  (a  b)  =  a  b + a  b 

  (a  b)  =  a  b + a  b 

  (T + S)  = T + S 

  (T  S)  =  T  S + T  S 

  ( T)  =   T +  T 

  (T  a)  =  T  a + T  a 

  (a  T)  =  a  T + a  T 

  (T  a)  =  T  a + T  a 

  (a  T)  =  a  T + a  T 

  (TT)  =  (T)T 

If we represent a time-dependent vector with respect of a time-independent ONB  

  v  =  vi(t) ei , 

then by  ej
  = o  we get  

  v  =  vi ei  

so that the time-derivative of a vector is reduced to the time-derivatives of its 
scalar components. Analogously we obtain for a tensor 

  T  =  T ij(t) ei  ej  

the time-derivative 
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  T  =  T ij  ei  ej . 

If  T  is invertible at all times, we get 

(2.1.105) (T –1)  =  –T –1  T  T –1 

since  

(T –1  T)  =  0  =  (T –1)  T + T –1  T. 

We now consider as a special case a time-dependent orthogonal tensor  Q(t) . By  
Q  QT = I  we see that 

(2.1.106) (Q  QT)  =  0  =  Q  QT + Q  QT    

=  Q  QT + (Q  QT)T.   

Thus, Q  QT  is skew. If  Q(t)  rotates a fixed ONB  {ei}  into some time-
dependent ONB  {ei(t) } , this allows the representation 

  Q  =  ei(t)  ei   QT = ei  ei(t) 

and  

Q  =  ei(t)
  ei 

and 

Q  Q–1  =  Q  QT   

=  ei(t)
  ei  ej  ej(t)  =  ei(t)

  ei . 

 

 

2.1.13 Rigid Body Dynamics 
 

   As a demonstration for the application of tensors, we will next consider the laws 
of motion, and specify them for rigid bodies. It will be shown that a direct tensor 
notation enables us to give these laws a very clear and compact form. 

   Let us consider a (deformable) body  B  which moves in the space being 
subjected to forces and torques. Let  O  be a fixed reference point in space and  rO  
the position vector of some other point with respect to  O . The centre of mass of 
the body  B  is defined by its position vector 

(2.1.107) rM  : =  
1

m
 
V

rO  dV  =  
1

m


V
rO dm 

with        

                              m   mass of  B  

           mass density in  B  

                              V   the current region of space occupied by  B   
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If we decompose the position vector of an arbitrary point of the body into   

rO = rM +  x ,  

we obtain by the definition of the centre of mass the useful formula 

(2.1.108)  
V

x dm  =  o   

as well as 

     
V

x dm  =  o ,   
V

x dm  =  o    

etc.  

   The linear momentum of the body is defined as the time-dependent vector 

(2.1.109) p  : =  
V

rO
 dm  =  

V
 (rM

 + x
 ) dm  =  rM

 m ,  

and the angular momentum or moment of momentum with respect to  O  is the 
vector 

(2.1.110) dO  : =  
V

rO  rO

 dm .  

The balance of linear momentum (NEWTON 1687)  is in general 

(2.1.111) p  =  
d

dt


V
rO

 dm  =  
V

rO
 dm  =  rM


  m   

  =  f  =  resulting force acting on B  
 
 
           
 
    
                                    x                          

M 
                               rO          

                                                            rM  

                        V 
                       
          O 
 
 
and the balance of angular momentum  (EULER29 1775)  with respect to  O 

                                                           
29 Leonhard Euler (1707-1783) 
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            (2.1.112) dO

   =  

d

dt
 
V

rO  rO

  dm  =   

V
rO  rO


  dm   

  =  mO   =  resulting torque with respect to  O  acting on the body. 

We now use the above decomposition of the position vector  rO = rM  +  x   

dO

   =  

V
rO  rO

 dm  =  
V

(rM + x)  (rM + x) dm   

=  
V

rM  rM
 dm + 

V
rM   x dm  

+ 
V

x  rM


 dm + 
V

x  x dm   

=  rM  rM
 m + rM   

V
x dm  

+ 
V

x dm  rM


  + 
V

x  x dm   

and by (2.1.108) 

dO

  =  rM  rM

 m + 
V

x  x dm   

=  mO .  

By using VARIGNON´s principle, we can also refer the torques to  M   

mO  =  rM  f + mM . 

If we multiply the balance of linear momentum (2.1.111) by  rM 

  rM  rM
 m  =  rM  f  

then the difference of the result and the previous equations gives the balance of 
angular momentum with respect to the centre of mass 

(2.1.113) dM

   =  mM  with  dM  : =  

V
x  x  dm  

i.e., in the same form as for a fixed point (2.1.112). In contrast, if we transform the 
balance of angular momentum to some other moving point, it has to be enlarged 
by additional terms.   

   If we want to further reduce the balance of angular momentum, we restrict our 
consideration to rigid bodies. The displacement of any point of a rigid body with 
position vector  rO = rM + x  can be decomposed into the displacement of the 
centre of mass 

  uM (t)  =  rM (t) – rM (0) 

and a rotation of  x  around  M , which can be performed by a versor  Q(t)  

  x(t)  =  Q(t)  x(0) . 
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Its time-derivative is 

  x(t)  =  Q(t)  x(0)  =  Q(t)  QT(t)  x(t) 

           =   (t)  x(t)  

with   (t)  being the axial vector of the skew tensor  Q  QT   after (2.1.106) 
called the angular velocity. The total velocity of an arbitrary point of the body is 
thus 

 (2.1.114)  v(t)  =  rO
  =  rM (t)

 + x (t)  =  vM (t) +  (t)  x(t)  

This is EULER´s velocity formula of rigid body kinematics (wherein one could 
also refer to any other reference point of the body instead of the centre of mass). 
Consequently, each vector  x  being fixed to the body rotates with the same 
angular velocity  x  =    x . 

The angular momentum with respect to  M  is 

 dM (t)  =   
V

x  x  dm 

 =   
V

x  (  x) dm  

and after the formula for double cross-products 

 =  
V

 [ (x  x) – x (x  )] dm 

 =  [ 
V

(x  x I – x  x) dm]   

(2.1.115) dM  =  JM
      

with the tensor of inertia with respect to M 

  JM  : =  
V

 (x2 I – x  x) dm . 

Its components with respect to some ONB are the moments of inertia 

  Jik  =  ei  JM  ek  =  
V

[(x1
2 + x2

2 + x3
2) ik  –  xi xk] dm  

i.e.  J11  =  
V

 (x2
2 + x3

2) dm  J12  =  J21  =   – 
V

x1  x2  dm 

  J22  =  
V

 (x3
2 + x1

2) dm  J23  =  J32  =   – 
V

x2  x3 dm 
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  J33  =  
V

 (x1
2 + x2

2) dm  J31  =  J13  =   – 
V

x3  x1 dm  

The tensor of inertia is symmetric for all bodies. Accordingly, there exists an 
eigenbasis  {e p

i}  which gives the spectral form 

  JM   =  
3

i 1
 J p

i e p
i  e p

i . 

These principal axes of inertia indicated by the vectors  e p
i  are for all bodies and 

all motions fixed to the body, but not fixed in space. The principal moments of 
inertia  J p

i   are time-independent and positive, so that  JM  is positive definite.  

   For evaluating the balance of angular momentum, we will need the time 
derivative of the tensor of inertia, which is by use of EULER´s velocity formula 
(2.1.114)  

  JM
  =  

3

i 1
 J p

i [e p
i
  e p

i + e p
i  e p

i
 ] 

(2.1.116)         =  
3

i 1
 J p

i [(  e p
i
 )  e p

i
 + e p

i  (  e p
i
 )] 

          =  
3

i 1
 J p

i [  (e p
i  e p

i) – (e p
i  e p

i)  ] 

          =    JM  –  JM   . 

Accordingly, the rate of the angular momentum equals 

  dM

  =  JM

   + JM   

          =  (  JM – JM  )   + JM  . 

The term in the middle is zero after the rules of the triple product. Therefore, the 
balance of angular momentum becomes with respect to the centre of mass of a 
rigid body 

(2.1.117) mM  =  JM   +   JM    

If we also represent the angular velocity with respect to the eigenbasis  {e p
i}   

   (t)  =   p
i(t) e p

i(t)
  

then its time-derivative is 

   (t)  =   p
i
 e p

i
  +  p

i e p
i
 

            =   p
i
 e p

i +  pi (  e p
i) 

            =   pi
 e p

i +     

            =   pi
  e p

i . 
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This holds analogously for each ONB {ei} that is fixed to the body. The 
component form of the balance of angular momentum with respect to such a basis 
is 

  mMi  =  Jil  
l
  +  

l  Jkp   
p  lki 

and in particular with respect to the eigenbasis 

  mM 
p

1  =  J p1  p1
  +  p2  p3 (J p3  –  J p2) 

(2.1.118) mM 
p

2  =  J p2  p2
  +  p1  p

3 (J p1  –  J p3) 

  mM 
p

3  =  J p3  p3
  +  p2  p

1 (J p2  –  J p1)   

These are EULER´s equations for gyroscopes (1758) with respect to the centre 
of mass and to the principal axes of inertia. 

   The kinetic energy of the rigid body is  

  K  =  ½ 
V

rO
2 dm   

  =  ½ 
V

(rM
 + x

)2 dm   

=   ½ 
V

(rM
 +   x)2 dm 

  =  ½ rM
2 m + ½ 

V
(  x)2 dm + rM

     
V

x  dm 

(2.1.119) =  ½ rM
2 m + ½ 

V
(  x)2 dm    

  =  Ktrans + Krot  

i.e., a sum of translatoric and rotatoric energy. The latter can be reformulated as 

  Krot  =  ½ 
V

(  x)  (  x) dm   

=  ½ 
V

  [x  (  x)] dm 

         =    ½ 
V

[(x  x)  – (x  ) x] dm    

(2.1.120) =    ½ 
V

[x2 I – (x  x)] dm   

         =  ½   JM     

=  ½   dM 
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         =  ½ (J11  
1

2 + J22  
2
2 + J33  

3
2) 

      + ( 
1  J12  

2 +  
2  J23  

3 +  
3 J31  

1) . 

This is a positive definite square form in the angular velocity, i.e., the rotatoric 
energy is positive for all    o . With respect to the principal axes of inertia the 
last bracket vanishes. 

   If we now consider the particular case of a load-free gyroscope (mM  o , f  o). 
In this case we have 

 conservation of linear momentum (2.1.121) 

  p  =  vM m  =  constant        vM =  constant 

 conservation of angular momentum (2.1.122) 

 dM  =  JM    =  constant 

 conservation of energy (2.1.123)     

K  =  ½ vM
2 m + ½   JM    =  constant 

We will later show that the conservation of energy is a result of conservation of 
linear momentum and angular momentum and thus does not give another 
independent balance law. 

Using (2.1.123) we conclude with (2.1.121)  

  JM    =  constant (energy ellipsoid) 

and with (2.1.122) 

dM
2
  =    JM

2    =  constant  (angular momentum ellipsoid) 

The tensor surfaces of  JM  and  JM
2  are two ellipsoids, both fixed to the body and 

with the same axes, namely the principal axes of inertia of the gyroscope. The 
geometric interpretation is that    is located on both ellipsoids and, therefore, on 
the intersection of them.    describes the polecone. The normal  n  of the energy 
ellipsoid lies in the direction of 

JM    =  dM   =  constant 

and is fixed in space after (2.1.122). The energy ellipsoid is rolling on a tangential 
plane fixed in space (POINSOT30´s rolling motion). 

   On the other hand we can conclude from (2.1.122) 

dM
2
  =  dM  I  dM  =  constant  (sphere) 

and from (2.1.123) 

  JM    =  dM  JM
–1  dM  =  constant  

     (McCULLAGH ellipsoid) 
 

                                                           
30 Louis Poinsot (1777-1859) 
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 angular momentum ellipsoid                       dM 
       tangential plane (fixed)        
               
         energy ellipsoid 
 
 
 
 
 
 

The first describes a sphere fixed in space and with respect to the body. The latter 
is the McCULLAGH31 ellipsoid fixed with respect to the body. The vector of 
angular momentum lies in the intersection of the body-fixed ellipsoid and a sphere 
and describes the polehode.  The normal to  JM

–1  is in the direction of 

  JM
–1  dM   =   

and swings in space. 
 
 
          McCullagh ellipsoid                
                        
        

           sphere        dM  (fixed) 
 
 
 

 

 

 

2.1.14 Bending of Bars 
 

   We consider the three-dimensional bending problem of originally straight bars. 
We make the following assumptions. 

 BERNOULLI´s hypothesis: plain cross-sections remain plain and 
perpendicular to the central axis of the bar  

 small displacements, small rotations, and small deformations 

                                                           
31 James McCullagh (1809-1847) 
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 linear-elastic material:    =  E   (HOOKE´s law)  

 no axial loads. 

Let 

 s     be the coordinate of the arc length of the undeformed bar 

  the derivative with respect to  s 

 (s) the (infinitesimal) rotation vector of the cross-section in  s 

 A   the cross-section 

 A(s)   the area of the cross-section 

x     the position vector of the neutral fibre to an arbitrary point of the 
cross-section 

 t     the normed tangent vector to the axis of the bar  (t =  1) 

 

 

We consider some cross-sections at a constant  s . As we have already seen before, 
one can represent an infinitesimal rotation by an axial vector   (s) . For the 
rotation of the cross-section plane, this vector is contained in this plane. The 
displacement resulting from bending is 

  u  =   (s)  x + uo 

with some constant part  uo . The derivative of the tangential part of the 
displacement  u  t  is the stretch in axial direction 

ds

ds(1+ )


 s ds

ds

s

z,

A

S

P

dA

0

y,

e3

e2x

rs

x

e1,
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t  =  
d

ds
 (u  t)  =  u  t + u  t   

=   (s)   x  t +  (s)  x  t +  (s)  x  t   

(2.1.124)      =    x  t             with     : =  
d

ds
 (s)  

since  x  does not depend on  s ,  t   lies in the cross-section plane, while   (s)  x  
is perpendicular to it. The traction vector in some point of the cross-section 
indicated by  x   is after HOOKE´s law 

    =   t t  =  E t t  =  E {(  x)  t} t . 

Since we assumed that no resulting normal force acts on the cross-section, we 
obtain 

  
A

 t dA  =  E 
A

(  x)  t dA  =  E (t  )  
A

x dA  =  0  

so that the neutral fibre must go through the centroid of the cross-section. The 
resulting torque with respect to the centroid is 

  m  =  
A

x   dA  =  E 
A

{  (x  t)} x  t dA 

       =  E ( 
A

(x  t)  (x  t) dA)   

(2.1.125) m  =  E JA    

with the tensor of inertia of area 

 JA  : =  
A

 (x  t)  (x  t) dA  

obviously being symmetric. We choose an ONB  {ei}  with  e1  t  so that 

 x(y, z) = y e2 + z e3 

and 

 Jik  =  ei  JA  ek 

      =  
A

ei  {(y e2 + z e3)  e1} {(y e2 + z e3)  e1}  ek  dA 

      =  
A

 (y i21 + z i31) (y 21k + z 31k) dA  

and also 

Jyy  = 
A

z2 dA Jzz  = 
A

y2 dA Jyz  =  Jzy  =  – 
A

y z dA  
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while all other components with respect to this basis are zero 

 [Jij]  = yy yz

yz zz

0 0 0

0 J J

0 J J

 
 
 
 
  

 . 

e1  is eigenvector of  JF  with eigenvalue 0 . The two non-trivial eigenvalues  J p
1  

and  J p
2  are the roots of the characteristic equation of  JF 

 IIIJ  –  J p
i IIJ + (J p

i)
2 IJ  –  (J p

i)
3  =  0 

 =  0  –  J p
i (Jyy Jzz  –  Jyz

2) + (J p
i)

2 (Jyy + Jzz)  –  (J p
i)

3    

with the solutions 

 J p
2,3  =  ½ (Jyy + Jzz)       1 2 2

yy zz yy zz yz4
( J J ) J J J    

          =  ½ (Jyy + Jzz)       1 2 2
yy zz yz4

( J J ) J   

called the principal moments of inertia. 

   For the transformation of an arbitrary basis  {ei}  into the eigenbasis  {e p
i}  we 

use the transformations of the components 

 J p
ik  =  Qil Jlm Qkm 

with 

 [Qij] = 

1 0 0

0 cos sin

0 sin cos

 
 

 
  
  

 

and the angle of rotation   . The matrix has spectral form with respect to the  
principal axes of inertia 

 [J pij] = p

p

2

3

0 0 0

0 J 0

0 0 J

 
 
 
 
  

. 

Thus 

 J p23
   =  0  =  sin  cos  (J22  –  J33) + (cos2   – sin2 ) J23 . 

With the trigonometric relations 

  2 sin   cos   =  sin (2) 

  2 cos2    =  1 + cos (2) 

  2 sin2    =  1 – cos (2) 

we conclude 
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  ½ sin (2) (J22 – J33) + cos (2)  J23   =  0 

or 

  tan (2)  =  23

33 22

2J

J J
 

as an equation to determine    and the eigenbasis 

  e p
1  =  e1 

  e p
2  =  cos  e2 + sin  e3 

  e p
3

  =  – sin  e2 + cos  e3  

 

 

2.1.15 Higher-Order Tensors 
 

   The scalar product of two vectors (which we will consider from now on as  
1st-order tensors) gives the real number 

v  x . 

Up to now, we have only introduced the twofold or dyadic tensor product between 
two vectors  v1  and  v2   by its action on some vector  x   

  v1  v2  x  : =  v1 (v2  x)  =  (v2  x) v1 

(simple contraction). Analogously one defines the three-fold tensor product 
between three vectors v1 , v2 , and  v3  by its action on some vector  x , the result of 
which is the 2nd-order tensor 

 v1  v2  v3  x  : =  v1  v2 (v3  x) 

(simple contraction). The three-fold tensor product is called a triad or 3rd-order 
tensor. 

   One can continue this way up to the introduction of a K-fold tensor product of  
K  vectors  v1 , v2 , ... , vK   by its action on some vector  x , the result of which is 
the K–1-fold tensor product  

 v1  ...  vK  x  : =  v1  ...  vK–1 (vK  x) 

(simple contraction).  

   We had already introduced the simple contraction of two dyads as a composition 
of two linear mappings 

 v1  v2  x1  x2  =  (v2  x1) v1  x2 . 

   A multiple contraction can be achieved if one contracts more couples of 
adjacent vectors by scalar products. The order in which these contractions are 
performed matters, and it can be defined in different ways. An example is the 
double contraction of two dyads, the result of which is a scalar 
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 v1  v2  x1  x2  : =  (v1  x1) (v2  x2) . 

This rule can be generalised in the following way. 

Definition. The P-fold contraction of a K-fold tensor product with an M-fold 
tensor product for  K  P   M  is the (K+M–2P)-fold tensor product 

  (v1  ...  vK) ... (x1  ...  xM)   

(2.1.126) =  v1  ...  vK–P  xP+1  ...  xM  

                   (vK–P+1  x1) (vK–P+2  x2) ... (vK  xP) . 

wherein " ..." stands for  P  scalar products.  

Examples 

K1,  M1, P1 v  x a scalar 

K2,  M1, P1 v1  v2  x  =  v1 (v2  x)  a vector 

K3,  M1, P1 v1  v2  v3  x  =  v1  v2  (v3  x)  a dyad 

K1,  M2, P1 v  x1  x2  = (v  x1) x2  a vector 

K2,  M2, P1 v1  v2  x1  x2 = (v2  x1) v1  x2  a dyad 

K2,  M2, P2 v1  v2   x1  x2 = (v1  x1) (v2  x2)  a scalar 

K3,  M1, P1 v1  v2  v3  x1 =  v1  v2 (v3  x1)  a dyad 

K3,  M2, P1 v1  v2  v3  x1  x2 =  v1  v2  x2 (v3  x1)  a triad 

K3,  M2, P2 v1  v2  v3  x1  x2 =  v1 (v2  x1) (v3  x2)  a vector 

K2,  M3, P1 v1  v2  x1  x2  x3 =  v1  x2  x3 (v2  x1)  a triad 

K1,  M3, P1 v1  x1  x2  x3 =  (v1  x1) x2  x3   a dyad 

K3,  M3, P3 v1  v2  v3  x1  x2  x3  =  (v1  x1) (v2  x2) (v3  x3)  
  a scalar 

etc. 

   Linear combinations of tensor products of equal order are achieved in analogy to 
those of dyads. 

   Tensors of K-th-order with  K  0  can be generated by K-fold tensor products 
between base vectors of some ONB 

  
1i

e 
2i

e  ...  Ki
e  

as linear combinations 

(2.1.127) C  =  
1 2 Ki i ...iC

1i
e 

2i
e  ...  Ki

e  

with  3K  components in three-dimensions. For  K  1  this is a vector, for  K  0  it 
is defined as a scalar, i.e., a real.  
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Notations 

  tensors of 0th-order:   scalars with  30 = 1  component 

         tensors of 1st-order:   vectors with  31 = 3  components 

                   tensor of 2nd-order:    dyads with  32 = 9  components 

                   tensors of 3rd-order:   triads with  33 = 27  components 

                   tensors of 4th-order:  tetrads with  34 = 81  components. 

   If  {ei}  is another ONB, then we can represent a K-th-order tensor  C  as 

  C  =  Cij...kl  e
 
i  e 

j  ...  e 
k  e 

l . 

The transformations of the components under change of ONBs results from the 
orthogonal mappings  

  Q  : =  e 
i  ei  =  Qrs er  es     

    e 
i  =  Q  ei  =  (Qrs er  es)  ei  =  Qri er 

 generalising those of vectors (2.1.79) and of dyads (2.1.80) as 

(2.1.128)  Cij ... kl  =  Qim  Qjn ... Qkr  Qls  Cmn ... rs . 

  A tensor of K-th-order can be applied to some vector by a simple contraction as 

 C  x =  (Cij...kl ei  ej  ...  ek  el)  (xm em)  

  =  Cij...kl ei  ej  ...  ek (el  em) xm 

  =  Cij...kl ei  ej  ...  ek lm xm 

   =  Cij...kl xl ei  ej  ...  ek  

giving a (K–1)-th-order tensor. For  K  2  this operation coincides with the linear 
mapping between vectors.  

   Similarly, one can define a simple contraction between a K-th-order tensor and a 
dyad as a generalisation of the composition of two 2nd-order tensors  

 C  T =  (Ci...jkl ei  ...  ej  ek  el)  (Tmp em  ep)  

  =  Ci...jkl ei  ...  ej  ek  ep (el  em) Tmp 

  =  Ci...jkl ei  ...  ej  ek  ep  lm Tmp 

   =  Ci...jkl Tlp ei  ...  ej  ek  ep 

and obtains a K-th-order tensor. Thus, the two adjacent base vectors are contracted 
in a scalar product. 

   One can also introduce a double contraction between a K-th-order tensors and a 
dyad as 

 C  T =  (Ci...jkl ei  ...  ej  ek  el)  (Tmp em  ep)   

  =  Ci...jkl ei  ...  ej (ek  em) (el  ep) Tmp 
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  =  Ci...jkl ei  ...  ej  km lp Tmp 

   =  Ci...jkl Tkl ei  ...  ej  

giving a (K–2)th-order tensor.  

   In analogy to (2.1.126) one can continue like this until the P-fold contraction of 
a Kth-order tensor with an Mth-order tensor (K, M ≥ P), resulting in a (K+M–
2P)th-order tensor.  

Theorem. A linear mapping of an M-th-order tensor into an L-th-order tensor can 
be uniquely represented by an (L+M)-th-order tensor through an M-fold 
contraction.   

This motivates the use of higher-order tensors. 

   An interesting particular case is with  L  0  and  M  arbitrary, an M-fold 
contraction of two M-th-order tensors. The result is a 0-th-order tensor, i.e., a 
scalar 

         C ... D =    (Cij...k  ei  ej  ...  ek) 

 ... (Dmp...q em  ep  ...  eq)  

(2.1.129)   =   Cij...k  Dmp...q (ei  em) (ej  ep) ... (ek  eq)   

    =   Cij...k  Dmp...q im jp ... kq    

     =   Cij...k  Dij...k . 

One can interpret this operation as a scalar product in the space of L-th-order 
tensors, since the according axioms of a scalar product are fulfilled. This scalar 
product induces a norm  

(2.1.130) C : =  (C ... C)   

as well as lengths of and angles between tensors of arbitrary order in analogy to 
those of vectors. 

   For L  2  this gives 

   S  T =  (Sil ei  el)  (Tmp em  ep)  

   =  Sil (ei  em) (el  ep) Tmp 

   =  Sil im lp Tmp 

   =  Sil Til  

which can be expressed by the trace as 

(2.1.131)  S  T  =  tr(S  TT )  =  tr(ST  T)  =  tr(TT  S)  =  tr(T  ST ) . 

   In the literature, this scalar product between tensors is sometimes called a double 
scalar product (because of the double contraction). It commutes and is linear in 
both factors. In contrast to this, one can show that  tr(S  T)  does not define a 
scalar product, since it is not positive definite for   S  T . 

   In particular, we obtain for  T  I  a representation for the trace of a tensor  S   
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(2.1.132)  S  I  =  tr(S  I)  =  tr(S) . 

For simple dyads we get  

  (a  b)  (c  d)  =  (a  c) (b  d) . 

With respect to this scalar product, the symmetric and the skew tensors are 
mutually orthogonal. In fact, if  T  is an arbitrary dyad,  S  symmetric and  A  
skew, then 

(2.1.133) S  A  =  0 

and therefore 

S  T  =  S  ½ (T + TT )  =  S  sym(T) 

A  T  =  A  ½ (T – TT )  =  A  skw (T) . 

Using this scalar product, we are able to introduce a tensorial ONB. 

Definition. A tensorbasis  {fi  g
 
j}  is called an orthonormal basis (ONB) if 

  fi  g
 
j  fk  g

 
l  =  ik jl    i, j, k, l = 1, 2, 3. 

The following examples are given. 

Let  {ei}  be a vectorial ONB. Then 

 {ei  ej}  is an ONB in the 9-dimensional space of 2nd-order tensors, 

 { ei  ei  and 2  sym(ei  ej) , i < j,  i,  j = 1, 2, 3}  is an ONB in the 6-
dimensional space of symmetric tensors,  

 { 2  skw (ei  ej) , i < j}  is an ONB in the 3-dimensional space of skew 
tensors.  

 

   Only tensors of even-order (2K) can be interpreted as linear mappings between 
tensors of the same order (K). Their invertibility can be defined in complete 
analogy to 2nd-order tensors. Among the 2K-th-order tensors is a distinguished 
element, namely the 2K-th-order identity 

  I  =  
1 K 1i i

 2 K+2i i ... 
K 2Ki id  e

1i
 e 2i

 ...  e
2Ki  

=  e
1i
 e 2i

  ...  e
Ki
 e

1i
 ...  e

Ki
. 

Generalising the symmetry definition of dyads to 2K-th-order (even) tensors by  
K-fold contractions from both sides with arbitrary K-th-order tensors  S  and  T  
gives 

  S  ...  C  ...  T  =  T  ...  C  ...  S . 

This is equivalent to the conditions for the components with respect to some ONB 

  C
1i 2i  ... Ki K+1i  ... 2Ki   =   C

K+1i K+2i 2Ki 1i  ... Ki
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for all indices. Symmetry does therefore not include the invariance under arbitrary 
interchanges of indices, but only under interchanges of the first index group and 
the second.  

   For even order (2K) tensors one can define eigenvalue problems in analogy to 
Chapter 2.1.10. The eigendirections are directions in the space of K-th-order 
tensors. Instead of eigenvectors, we are now looking for K-th-order eigentensors. 
The resulting characteristic equation again contains principal invariants as its 
coefficients. Many properties of the eigenvalue problem of dyads can also be 
applied analogously to such even-order tensors. In particular, if such tensor is 
symmetric, a spectral form can always be achieved with respect to its eigenbasis.  

   For odd-order tensors, however, an eigenvalue problem in this form can not be 
defined.  

 

 

2.1.16 Tetrads 
 

   Since we deal in mechanics mainly with dyads or 2nd-order tensors, we will 
occasionally need 4th-order tensors or tetrads being used as linear mappings 
between dyads 

  C  T =  (Cijkl  ei  ej  ek  el)  (Tmp em  ep)  

   =  Cijkl  ei  ej (ek  em) (el  ep) Tmp 

(2.1.134)  =  Cijkl  ei  ej km lp Tmp 

    =  Cijkl Tkl  ei  ej . 

   In the linear theory of elasticity, tetrads are frequently used for linear 
dependences of the stress tensor and the deformation tensor, as we will see later. 
The composition of such tensors  C  and  D  maps a 2nd-order tensor  T  into 

  (C  D)  T  : =  C  (D  T)  =  C  D  T . 

So the brackets are not needed. 

The 4th-order zero tensor  O  maps all dyads  T  into the second-order zero 

  O  T  =  0 . 

All of its components are zero with respect to all bases.  

The 4th-order identity tensor  I  maps any dyad into itself 

  I  T  =  T .  

One obtains its component representation with respect to some ONB as 

(2.1.135) I  =  ik jl ei  ej  ek  el   =  ei  ej  ei  ej . 
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The eigenvalue problem of a tetrad consists of finding some 2nd-order eigen- 
tensors  A  for eigenvalues    that fulfil the eigenvalue equation 

(2.1.136) C  A  =   A . 

Here we expect 9 (not necessarily different) eigenvalues and 9 corresponding 
eigentensors, being either real or complex. 

The inverse  C –1  of an invertible tetrad  C  gives  

  C –1  C  T  =  T 

for all dyads  T . This is equivalent to 

(2.1.137) C –1  C  =  I  =  C   C –1. 

   In general, a tetrad has 34 = 81 independent components  Cijkl , i, j, k, l = 1, 2, 3. 
To represent them in a matrix, it is necessary to enlarge the concept of a matrix to 
a hypermatrix, i.e., a matrix whose components are also matrices. This can be 
achieved in the following form 

1111 1112 1113 1211 1212 1213 1311 1312 1313

1121 1122 1123 1221 1222 1223 1321 1322 1323

1131 1132 1133 1231 1232 1233 1331 1332 1333

2111 2112 2113

2121 2122 2123

2131

C C C C C C C C C

C C C C C C C C C

C C C C C C C C C

C C C

C C C

C

     
     
     
          

2211 2212 2213 2311 2312 2313

2221 2222 2223 2321 2322 2323

2132 2133 2231 2232 2233 2331 2332 2333

3111 3112 3113 3211 3212 3213

3121 3122 3123

3131 3132 3133

C C C C C C

C C C C C C

C C C C C C C C

C C C C C C

C C C

C C C

     
     
     
          
 
 
 
  

3311 3312 3313

3221 3222 3223 3321 3322 3323

3231 3232 3233 3331 3332 3333

C C C

C C C C C C

C C C C C C

 
 
 
 
 
 
 
 
 
 

    
    
    
         

 

   The number of 81 independent components can eventually be drastically 
reduced by symmetries. While the components of a dyad have only two indices, 
with respect to which a symmetry may exist, we have four indices in the case of 
tetrads and, therefore, have to distinguish different symmetries. This will be done 
next. 

   The transposition of a tetrad is introduced in analogy to that of a dyad (2.1.41) 
by the relation 

(2.1.138) S  CT  T  =  T  C  S  

which shall be valid for all dyads  S  and  T . A tetrad possesses the (main) 
symmetry if it coincides with its transpose. For the components with respect to 
some ONB this is equivalent to  

  Cijkl  =  Cklij . 

These are 36 independent conditions. Consequently, a symmetric tetrad has   
n2 / 2 + n / 2 = 45  independent components with  n  9  in our case.  
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   Independently from the (main) symmetry, we define two more types of 
symmetries for tetrads, namely the left subsymmetry if 

(2.1.139) T  C  =  TT  C 

holds for all tensors  T , and the right subsymmetry if 

(2.1.140) C  T  =  C  TT  

holds. For the components with respect to some ONB this is equivalent to the 
conditions 

  Cijkl  =  Cjikl   (left subsymmetry) 

 Cijkl  =  Cijlk   (right subsymmetry). 

These two subsymmetries are particularly helpful if a tetrad  C  is used to map 
symmetric dyads into symmetric ones. For such applications the following 
theorems hold. 

 A tetrad  C  has the left subsymmetry if and only if  C  T  is symmetric for 
arbitrary dyads  T . 

 A tetrad  C  has the right subsymmetry if and only if  C  TA =  0  holds for all 
skew dyads  TA. Therefore, all skew tensors are eigentensors of  C  with a 
triple eigenvalue 0.  

 If a tetrad possesses a subsymmetry, it is singular (non-invertible).     

   In the linear theory of elasticity, one considers linear functions between the 
(symmetric) deformation tensor and the (symmetric) stress tensor. For such linear 
functions between symmetric dyads we can assume both subsymmetries without 
influencing the relevant part of the function. In doing so, we can reduce the 
number of independent components of the tetrad to 6  6 = 36. In this case it is 
convenient to represent symmetric dyads as members of a 6-dimensional linear 
space 

  T   =  T11  e1  e1 + T22  e2  e2 + T33  e3  e3   

   + T23 (e2  e3 + e3  e2)   

(2.1.141)   + T31 (e3  e1 + e1  e3)  

   + T12 (e1  e2 + e2  e1)  

       =  T11 EV1 + T22 EV2 + T33 EV3   

   + 2 T23 EV4 + 2 T31 EV5 + 2 T12  EV6  

       =  TV EV    (sum over    from 1 to 6) 

with the matrix of components 

 {TV1 , TV2 , TV3 , TV4 , TV5 , TV6} : =  {T11 , T22 , T33 ,2 T23 , 2 T31 , 2  T12}  

with respect to the symmetric tensor basis 

  EV1  : =  e1  e1 
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  EV2  : =  e2  e2 

  EV3  :  =  e3  e3 

  EV4  :  =  1/2 (e2  e3 + e3  e2 ) 

  EV5   : =  1/2 (e1  e3 + e3  e1 ) 

  EV6  :  =  1/2 (e2  e1 + e1  e2 )  

where the square roots  2  are normalisation factors of the basis  {EV}  

EV  EV  =    

such as 

 EV6  EV6  =  1/2 (e2  e1 + e1  e2)   1/2 (e2  e1 + e1  e2)  =  1 . 

   This turns {EV}  into an ONB in the 6-dimensional space of symmetric dyads. 
It leads to a VOIGT32 representation (1882) of a tetrad with the two 
subsymmetries 

(2.1.142) C  =  CV  EV  EV  

with summation over Greek indices from 1 to 6 . The components of the tetrad can 
now be given as a 6  6 matrix 

1123 1113 11121111 1122 1133

2211 2222 2233 2223 2213 2212

3311 3322 3333 3323 3313 3312

2311 2322 2333 2323 2313 2312

1311 1322 1333 1323 1313 1312

1223 1211211 1222 1233

2C 2C 2CC C C

C C C 2C 2C 2C

C C C 2C 2C 2C

2C 2C 2C 2C 2C 2C

2C 2C 2C 2C 2C 2C

2C 2C2C 2C 2C 3 12122C

 
 
 
 
 
 
 
 
 
  

 

We shall mention that in the literature the normalisation is sometimes not applied 
which leads to a slightly different representation (without the 2 and the 2). 

   Obviously, the tetrad with the two subsymmetries possesses also the (main) 
symmetry if and only if the VOIGT 66 matrix is symmetric. In this case only 21 
independent components remain.  

   The 4th-order identity tensor possesses the (main) symmetry, but no 
subsymmetry since this would lead to a loss of invertibility. The identity tensor is 
invertible of course. 

   The identity tetrad must be distinguished from that particular tetrad  I S  which 
possesses both subsymmetries and maps every dyad into its symmetric part. We 
call it a symmetriser  

  I S  =  ¼ ik jl (ei  ej + ej  ei)  (ek  el + el  ek) 

                                                           
32 Woldemar Voigt (1850-1919) 
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  =  ¼ (ei  ej + ej  ei)  (ei  ej + ej  ei)  

(2.1.143) =  ½ (ei  ej + ej  ei)  (ei  ej)  

=  ½ (ei  ej)  (ei  ej + ej  ei) 

with the VOIGT representation 

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 
 
 
 
 
 
 
 
  

 . 

This tensor is used as the identity on the symmetric dyads.  

 

   In analogy to 2nd-order tensors we define the following properties of tetrads. 

Definition. A (not necessarily symmetric) tetrad  C  with the property 

 A   C  A    0     A  0  is called positive definite 

 A   C  A    0  A   is called positive semidefinite 

 A   C  A    0  A  0   is called negative definite 

 A   C  A    0  A   is called negative semidefinite. 

If nothing of the above holds, the tetrad is called indefinite. Evidently, only the 
symmetric part of the tetrad enters into these definitions. For a symmetric  C  the 
positive definiteness is equivalent to the positivity of all eigenvalues.  

Such classifications can be made for all tensors of even-order. 

 

Problem 7. Multiple Contraction  
Between tensors of higher-order, a multiple contraction was introduced. 
Simplify the following expression for two vectors  a  and  b  

(P7.1)  v  =    a  b  

as far as possible, with   = ijk ei  ej  ek  . 

Solution 

  is  a triad, while  a  b  is a simple dyad. The double contraction reduces 
both tensors by the order two, so that the result is a 1st-order tensor or a 
vector  v . By using indices, we obtain 

   v  =  ijk ei  ej   ek  am bn em  en   
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=  ijk am bn jmkn ei  =  ijk aj bk ei  =  jki aj bk ei   

=  a  b . 

v  is perpendicular to the plane spanned by  a  and  b . The tensor  a  b  is 
a simple dyad with  IIa  b = IIIa  b = 0 .  
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   Let  f  be a real-valued differentiable function of a real variable. Its linear 
approximation at  x  is the differential 

  df (x , dx)  =  
df

dx
dx  =  f (x)  dx  

with the derivative 

  f (x)    =  
df

dx
  : =  lim

x 0

1

x
[f  (x + x) – f  (x)] . 

This concept shall now be generalised to tensor functions.  

   Let  r  be some position vector in the EUCLIDean space and   (r)  a real field 
(scalar field), i.e., a function that assigns to each position vector a scalar. 
Examples: the temperature field, or the field of mass density or energy density. 
The differential of    at  r  in the direction of  dr  is defined as the limit 

(2.2.1)  d (r , dr) : =  
h 0
lim


 
1

h
[ (r + h dr) –  (r)]    

=  
d

dh
  (r + h dr) h = 0 

If the function   (r)  is sufficiently smooth, then the differential is linear in  dr , 
and therefore there exists a vector field  grad  (r) , called the gradient of   (r) , 
such that 

(2.2.2)  d (r , dr)  =  grad  (r)  dr . 

Other notations for the gradient are  

  grad  (r)  =  
d

d


r

  =   (r) .  

With respect to a fixed ONB  {ei}  we have the component representations   

  r  =  xj ej   and   dr  =  dxi ei   

and for the differential of    at  r  in the direction  dr  ei 

(2.2.3)  d (r , ei)  =  
h 0
lim


1

h
 [ (r + h ei)  –   (r)]  =  grad  (r)  ei   

which corresponds to the i-th component of the gradient. If, e.g.,   i  1 , then   
r + h e1  has the components  {x1 + h , x2 , x3} , and the limit is the partial 

2.2 Vector and Tensor Analysis 

2.2.1   The Directional Differential 
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derivative of   (xi ei)  =   (x1 , x2 , x3)  with respect to  x1 , which is often denoted 
by ", 1"  

  
 1 2 3

1

x ,x ,x

x





  : =  d (r , e1)  =  grad  (r)  e1  =   , 1 . 

With this we obtain the component representation of the gradient with respect to 
some ONB 

(2.2.4)  grad  (r)  =   
 1 2 3

i

x ,x ,x

x





 ei   =    , i ei   

We consider an iso-surface of   , i.e., a surface in the EUCLIDean space on 
which    is constant. If  dr  is tangential to this surface, then 

  d (r , dr)  =  grad  (r)  dr  =  0 . 

Consequently,  grad   is orthogonal or normal to the tangential plane of the iso-
surface in  r   and points in the direction in which     has the largest increase. 
    

 

       =  const       grad  

 

     r          dr 

                                         

As an example we consider the temperature field          
 
   (r)     (r) .  

The temperature gradient        

(2.2.5)  g(r)  : =  grad  (r)  =  
 1 2 3

i

x ,x ,x

x





  ei   =    , i ei   

points in the direction of the largest temperature increase. If there is a linear 
relation between  g  and the heat flux vector  q  (FOURIER´s33 law of heat 
conduction), then it can be represented by the heat conduction tensor  K  as 

(2.2.6)  q  =  – K  g . 

After the CASIMIR-ONSAGER34 reciprocal relations,  K  is symmetric and 
therefore allows for a spectral representation 

                                                           
33 Jean Baptiste Joseph de Fourier (1768-1830) 
34 Hendrik Brugt Gerhard Casimir (1909-2000), Lars Onsager (1903-1976) 
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  K  =  
3

i 1
 i  e p

i  e p
i   

with real eigenvalues  i . According to the experimental result that the heat flux is 
always directed from the hot to the cold, the heat conduction tensor is positive 
semidefinite (we will later see that this is a consequence of the second law of 
thermodynamics), and thus 

  i   0    for i = 1, 2, 3 . 

If the heat conduction ability is equal in all directions (isotropic heat conduction), 
then 

  1  =  2  =  3  = :   

and 

  K  =  
3

i 1
   ei  ei  =   I  

is a spherical tensor. In this case, the isotropic FOURIER´s law of heat conduction 
is reduced to 

(2.2.7)  q  =  –  g 

with the (non-negative) coefficient of heat conduction   . Its components with 
respect to some ONB are 

(2.2.8)  qi  =  –   
 1 2 3

i

x ,x ,x

x





   =  –   (x1 , x2 , x3)

 , i  . 

 

   Let us next consider a vector field  v(r) . Examples are the displacement field, 
the velocity field, the force field, and the heat flux field. We determine the 
differential of  v  at  r  in the direction of  dr  analogously to (2.2.1) as 

(2.2.9)  dv(r , dr)  : =  
h 0
lim


1

h
 [v(r + h dr) – v(r)] . 

This expression is again linear in  dr  if the field  v(r)  is sufficiently smooth. 
Thus, there exists a tensor field  grad v(r) , the gradient of  v , which gives 

(2.2.10)  dv(r, dr)  =  
 dv r

dr
  dr   =  grad v(r)  dr . 

After choosing some ONB  {ei} , the differential in the direction of  ei  is 

  dv(r, ei)  : =  
h 0
lim


1

h
 [v(r + h ei) – v(r)]   
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=  
 1 2 3

i

x ,x ,x

x




v
  =  v(x1 , x2 , x3)

 , i 

=  grad v(r)  ei  

containing the partial derivatives  v(x1 , x2 , x3)
 , i . If we represent the vector field 

by its components with respect to a fixed ONB  {ei} , which are scalar fields,  

  v(r)  =  vi(x1 , x2 , x3) ei  

then we can express the partial derivatives of the vector field by those of its scalar 
components as 

  v(x1 , x2 , x3)
 , i   =  [vj(x1 , x2 , x3) ej]

 , i  =  vj(x1 , x2 , x3)
 , i  ej   

so that 

  grad v  ei  =  v(x1 , x2 , x3)
 , i   =  vj ( x1 , x2 , x3)

 , i  ej   

  =  [vj (x1 , x2 , x3)
 , k  ej  ek]  ei . 

Accordingly, the gradient of the vector field  v  is the tensor field 

(2.2.11)  grad v  =   vj (x1 , x2 , x3)
 , k   ej  ek  

The matrix of its components is 

  

1 1 1

1 2 3

2 2 2

1 2 3

3 3 3

1 2 3

v v v

x x x

v v v

x x x

v v v

x x x

   
    
   
    
   
 
    

. 

   The transposed field of the gradient is notated as  grad T v . The symmetric part 
of the gradient will often be needed in kinematics. It is sometimes called the 
deformator of the vector field 

(2.2.12)  def v  :  =  ½ (grad v + grad T v)  =  ½ (vj ,
 
k + vk ,

 
j) ej  ek . 

Its component matrix is with respect to some ONB 

  

31 1 2 1

1 2 1 3 1

32 1 2 2

1 2 2 3 2

3 3 31 2

1 3 2 3 3

vv v v v1 1

x 2 x x 2 x x

vv v v v1 1

2 x x x 2 x x

v v vv v1 1

2 x x 2 x x x

       
            

                   
 

                     

. 

The trace of the gradient of a vector field is called the divergence (-field)  
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(2.2.13)  div v  : =  tr (grad v)  =  vj
 ,  j  =  v1 ,

 
1 + v2 ,

 
2 + v3 ,

 
3   =  

ix




v
  ei . 

Thus, the divergence of a vector field is a scalar field. 

   The curl of a vector field is defined by the axial vector  tA  of the skew part of 
the gradient 

  W  : =   ½ (grad v – grad T v) 

as 

(2.2.14)  curl v  : =  2 tA . 

The component matrix of  W  is then 

  

31 2 1

2 1 3 1

32 1 2

1 2 3 2

3 31 2

1 3 2 3

vv v v1 1
0

2 x x 2 x x

vv v v1 1
0

2 x x 2 x x

v vv v1 1
0

2 x x 2 x x

      
           

                  
      

             

 . 

The component representation of the curl is  

(2.2.15)  curl v  =  (v3 ,
 
2 – v2 ,

 
3) e1 + (v1 ,

 
3 – v3 ,

 
1) e2 + (v2 ,

 
1 – v1 ,

 
2) e3   

=  vi ,
 
k kil  el .   

   Similarly one can define the divergence of a tensor field  T  as that particular 
vector field which acts on an arbitrary constant vector  a  as 

  a  div T  =  (div T)  a  : =  div (a  T)  =  div (TT  a) .  

If we set  a  ei , we obtain the i-th component of  div T  with (2.2.13) 

  ei   div T  =  div(ei  T)  =  div(Tim
  em)  =  Tim ,

 
k em  ek  =  Tim ,

 
m 

and therefore 

(2.2.16)  div T   =  Tim ,
 
m ei  , 

a vector field. 

   Similarly, one defines the curl of a tensor field  T  by its effect on a constant 
vector  a  

(2.2.17)  (curl T)  a  : =  curl(a  T)  =  curl(TT  a) . 

If we set  a  ei , then with (2.2.15) 

  (curl T)  ei   =  curl(ei  T )   =  curl(Tij  ej)  =  Tij ,
 
k kjl  el    

  =  Tmj ,
 
k lkj  el  em  ei   

and therefore 
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(2.2.18)  curl T  =   Tmj ,
 
k lkj  el  em  

which is also a tensor field. 

   We will later need the tensor of incompatibility of a symmetric tensor field  T   
as 

(2.2.19)  inc T  : =  – curl curl T  =  ikj lmn  Tjm , kn  ei  el . 

This gives again a 2nd-order tensor field.  

   One should note that the definitions of grad, div, and curl are not unique in the 
literature.   

   We obtain the general rules for these operations:  

 the gradient operation increases the order of a field by 1 

 the divergence operation decreases it by 1 

 the curl leaves it equal.  

The chain rule also holds for gradients, divergence, and curl operations. 

 

 

   In the literature, the calculus in linear spaces is often formalised by the nabla35 
operator, which has a double function as a differential operator and as a (co-) 
vector. This needs some explanation. Nabla is introduced as 

(2.2.20)    : =  
ix




ei 

with respect to some fixed ONB  {ei}  and with tensor fields of arbitrary order 
algebraically connected, i.e., by a scalar product or a simple contraction, a tensor 
product, a cross-product, or another product.  

   The rules for the application are then: 

1.) Apply the differential operator  
ix




 to all of these fields (if necessary by use 

of the product rule). 

2.) Connect  ei  with the result according to the given algebraic product. 

It is important to note that the order of these two steps is in general not 
interchangeable.  

   As an example we choose the gradient of a scalar field after (2.2.4): 

                                                           
35 from greek   = harp 
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(2.2.21)  grad  (r)  =   
 1 2 3

i

x ,x ,x

x





 ei   =    , i ei   =    =   . 

In this case, the algebraic product between    and    is a scalar multiplication of 
a scalar with a (co)vector, where the scalar can be written before or after the 
vector. 

   For a gradient of a vector field the order is no longer arbitrary, since we have to 
use the tensor product in this case after (2.2.11), which does not commute, 

(2.2.22)  grad v  =  
 j 1 2 3

k

v x ,x ,x

x




 ej  ek   =  vj(x1 , x2 , x3) ej   

kx




 ek  

   =  v  . 

For the divergence (2.2.13) and the curl (2.2.15) of a vector field we can write 

(2.2.23)  div v  =  tr(v  )  =  v    =    v 

(2.2.24)  curl v  =    v  =  – v   

and for the divergence of a tensor field (2.2.16) 

(2.2.25)  div T  =  T     =    TT   

and for the curl of a tensor field (2.2.17) 

(2.2.26)  curl T  =    TT   =  – (T  )T. 

The tensor of incompatibility (2.2.19) is in nabla notation  

(2.2.27)  inc T  : =  – curl curl T   =    T   

from which we see the identity 

(2.2.28)  div inc T  =    T      =  o . 

The deformator (2.2.12) is 

(2.2.29)  def v  : =  ½ (grad v + grad T v)  =  ½ (v   +   v) .    

If the differential operation of nabla does not apply to the whole term, but only to 
a part of it, then we can indicate this by brackets or by a superimposed arrow. As 
an example, we consider the gradient of two differentiable scalar fields     and   

  ( )  =  ()   + ()   =  


   +  


  

after (2.2.31).  

     For all differentiable scalar fields   (r) ,  (r) , vector fields  u(r) , v(r) ,  and 
tensor fields  T(r) , S(r)  the following rules hold. 
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(2.2.30)  grad(  + )  =  ( + )  =   +   =  grad   + grad  

(2.2.31)  grad( )  =   grad  +  grad  

(2.2.32)  grad(u + v)  =  (u + v)    =  u   + v     

=  grad u + grad v 

(2.2.33)  div(u + v)  =  (u + v)    =  u   + v    =  div u + div v 

(2.2.34)  curl(u + v)  =    (u + v)  =   u +   v  =  curl u + curl v  

(2.2.35)  grad( v)  =  ( v)    =  (v  ) + v  ()   

=   grad v + v  grad   

(2.2.36)  div( v)  =  ( v)    =  (v ) + v  ()   

=   div v + v  grad  

(2.2.37)  grad(u  v)  =  (u  v)   =  (  u)  v + (   v)  u   

=  v  (u  ) + u  (v  )  =  v  grad u + u  grad v   

=  grad T(u)  v + grad T(v)  u 

(2.2.38)  div(u  v)  =  (u  v)    =  u (v  ) + (u  )  v  

=  u  div v + grad(u)  v 

(2.2.39)  div(T  v)  =    (T  v)  =  (T  v)      

=  T  (  v) + (  T)  v  

=  tr(T  grad v) + div(TT)  v  =  TT  grad v + div(TT)  v 

(2.2.40)  div(v  T)  =  (v  T)    =    (v  T)   

=  T  (v  ) + v  (T  )   

=  tr(TT  grad v) + div(T)  v  =  T  grad v + div(T)  v 

(2.2.41)  div( T)  =  ( T)    =   (T  ) + T  ()   

=   div T + T  grad  

(2.2.42)  div(T + S)  =  (T + S)    =  T   + S    =  div T + div S  

 

   With the nabla notation one sees the following identities for all differentiable 
scalar fields   (r) , vector fields  v(r) ,  and tensor fields  T(r) . 
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(2.2.43) curl grad   =    ( )  =  o 

(2.2.44) curl grad T v  =    (v  )  =  (  v)    =  grad curl v        

(2.2.45) curl grad  v  =    (  v)  =  0   

(2.2.46) div curl v  =    (  v) =  (  )  v  =  0   

(2.2.47) curl curl v  =    (  v)  =  (v  )  – (v  )     

 =  grad div v – div grad v   

(2.2.48) div grad T v  =  (  v)    =   (  v)   =  grad div v 

(2.2.49) div grad grad   =  [()  ]    =  [()  ]   

  =  grad div grad    

(2.2.50) div grad grad v   = [(v  )  ]    =  [(v  )  ]     

 =  grad div grad v    

(2.2.51) div div grad v  =    [(v  )  ]  =  [(v  ) ]     

 =  div grad div v      

(2.2.52) div grad curl v  =  [(  v)   ]    =    [(v  )  ]   

 =  curl div grad v  

(2.2.53) div (curl T)T  =  – T       =  o  

 

   The LAPLACE36 operator is defined as   

(2.2.54)    : =     ,  

which equals the operations  div grad. Examples: Let    be a scalar field, then  

(2.2.55)      =       =  div grad    =  
ix




ei   
kx




 ek    =    , ii   

is a scalar field. Let  v  be a vector field, then 

(2.2.56)   v  =  v   =  v (  )   =  v      =  div grad v 

is also a vector field.  

 

 

 

 

                                                           
36 Pierre Simon Laplace (1749-1827) 
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   If one uses coordinates to describe the geometrical space, the simplest 
coordinate system is a Cartesian one. However, if the problem under consideration 
comprises a rotational symmetry, which is quite often the case, it is not 
recommended to use Cartesian coordinates, but instead cylindrical ones. We will 
therefore derive the most important representations in cylindrical coordinates.  

   Here, a point is described by three real numbers  r ,  ,  z , where  r  is the 
distance of the z–axis,  z  the height above the base plane, and    the angle of the 
projection into this plane, which can take values between  0o  and  360o. Note that 
for both endpoints the angle is not unique. Therefore we use the open interval and 
leave out points with    0  or with  r  0 . 

   Cylindrical coordinates are rectangular and curved. If  {x , y , z}  are Cartesian 
coordinates with associated ONB  {ex , ey , ez} , then we obtain the transformations 

  x  =  r cos     y  =  r sin      

  r 2  =  x 2 + y 2     =  arctan  
y

x
       

for  r  0 , while  z  is identical in both systems. 

 
               ez  
    

        z 

     ey 
                r      
          ex 

 

In a point with coordinates  {r ,  , z}  we can introduce an associated local ONB 
by 

  er ( )  : =  cos   ex + sin   ey  

  e ( )  : =  – sin   ex + cos   ey  

  ez   

This gives for the differentials 

  der  =  rd

d
e

 d   =  d  e   

  de  =  
d

d


e

 d   =  – d  er   

The position vector is 
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  r  =  x ex + y ey + z ez  

    =  r er ( ) + z ez  

and its differential 

  dr  =  dx ex + dy ey + dz ez  

  =  dr er ( ) + r der ( ) + dz ez   

=  dr er ( ) + r d e ( ) + dz ez  

The gradient of a scalar field   (r ,  , z)  can be obtained by the differential 

  d (r ,  , z)  =  grad    dr 

=   , r dr +  ,   d +  , z dz    

  =  grad    [dr er ( ) + r d e ( ) + dz ez] 

=   , r  er  dr er +  ,   
1

r
 e   r d  e 

 +  , z ez  dz ez 

and by comparison 

(2.2.57)  grad    =   , r er +  ,   
1

r
 e +  , z ez  . 

The gradient of a vector field  v(r,  , z)  is obtained by its differential 

  dv(r , dr)  =  v , r dr + v ,   d + v , z dz  

        =  grad v  dr  

with the partial derivatives 

  v , r   =  (vi ei)
 , r  =  v r, r  er + v , r  e + v z, r  ez   

  v ,    =  (vi ei)
 ,   =  v r,   er + v r

  er ,
 
 + v,   e + v  e ,

 
 + v z,   ez   

                =  v r,  er + v r
  e + v,   e  – v  er + v z,   ez   

  v , z   =  (vi ei)
 , z  =  v r, z  er + v, z  e + v z, z  ez   

By inserting them and comparison we obtain the matrix of components of   grad v  
as   

(2.2.58)  

 
 

r r r
r z

r
r z

z z z
r z

1
v v v v

r
1

v v v v
r

1
v v v

r

  
 
 
 
 
 
  




  




, , ,

, , ,

, , ,

. 

The divergence is its trace 

(2.2.59)  div v  =  v r, r + 
1

r
 (v ,  + v r) + v z, z  
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and the curl is 

(2.2.60)  curl v  =  (
1

r
 v z,    –  v, z )  er + (v r, z  –  v z, r )  e  

+ [v, r + 
1

r
 ( v 

  –  v r,   )]  ez .  

The divergence of a tensor field is  

(2.2.61)  div T  =  (T rr, r + 
1

r
 T r,  + 

rrT T

r

 
 + T rz, z )  er   

+ (T r, r + 
1

r
 T ,  + 

r rT T

r

 
 + T z, z )  e   

+ (T zr, r + 
1

r
 T z,  + 

zrT

r
 + T zz, z)  ez .  

Nabla has the following representation in cylindrical coordinates 

(2.2.62)    =  
r




 er +
r




  e +
z




 ez  

and the LAPLACE operator  

(2.2.63)    : =      =  
2

2r




 + 

r r




 + 
2

2 2r




 + 
2

2z




. 

 

 
Problem 8. Cylindrical Coordinates I 
The sketched windmill with only one rotor blade rotates with a constant 
angular velocity  . The mass of the blade is m , and we approximate it by a 
homogeneous bar with moment of inertia  J   with respect to the rotor axis. 
We consider the load-free case. Determine the moment at the foundation  A  
caused by the imbalance of the blade. 

Solution 

First we cut the windmill free. At the foundation point we introduce the 
torque  mA(t) . This is the only torque acting on the mill. The angular 
momentum with respect to  A  is  

d(t)  =  m rAM (t)  rAM (t) +  J  (t) ez . 

The first term represents the motion of the centre of mass of the blade (after 
STEINER´s37 theorem). The second term comes from the rotation of the 
blade with respect to its centre of mass. The moment of inertia of a 

                                                           
37 Jakob Steiner (1796-1863) 
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homogeneous bar with respect to some axis perpendicular to its own axis 
through the centre of mass is  

J  =  m l 2/ 12  =  m (2R)2/ 12  =  m R2/ 3 .  

The axis of rotation points in the ez–direction. After the balance of angular 
momentum, the resulting moments equal the rate of moment of momentum  

mA(t)  =  d(t)  =  [m rAM (t)  rAM (t)] + J (t) ez . 

 
                        ey 
 
                              m 
                                                           = t 
            
 
                                               ex 
 
                                          R 
 
 
         H               rAM(t) 
 
 
          
 
                           A 
 

  

If the angular velocity is constant, then   (t)
 = 0  and only 

  mA(t)  =  m rAM (t)  rAM (t) + m rAM (t)  rAM (t)
 

(P8.1)            =  m rAM(t)  rAM (t)
  

remains. The position vector is assigned with respect to a basis in the hub 
of the mill. Its distance from the foundation is most easily represented by a 
fixed ONB, while for the blade a cylindrical system is preferable 

  rAM (t)  =  H ey + R er( ) . 

The angle    results from the initial condition  (0) = 0  as   =  t .  We 
determine the acceleration  rAM

(t)  by the chain rule using  

( )rd

d




e
 = e ( )   

( )d

d
 


e
 =  – er( )  

so that (Chapter 2.2.3) 

  rAM (t)
  =  [H ey + R er ( )]   =  R  e ( ) 
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  rAM (t)
  =  – R  2 er ( ) . 

Now we use P8.1  

  mA(t)  =  m rAM (t)  rAM (t)
   

=  – R  2 m [H ey + R er ( )]  er ( )  

=  – R  2 m H ey  er( ) , 

and with  er   =  cos   ex + sin   ey   

  mA(t)  =  R  2 m H cos ez . 

This must be supported by the foundation. 

 

Problem 9. Cylindrical Coordinates II 
Calculate the angular momentum with respect to the axis of rotation of a 
homogenous circular plate rotating with angular velocity    around  ez  

with a thickness  D , radius  R ,  and mass density   . 

Solution 

We represent the angular momentum after (2.1.110) as a volume integral in 
cylindrical coordinates 

  d  =  
D R 2

0 0 0


   r  r  r d dr dz . 

The position vector is  r = r er( t) . We apply the chain rule and  

( )rd

d




e
  =  e ()   

to obtain  

r  =  r  e ( t) .  

Then the angular momentum is 

  d  =   D 
R 2

0 0


  r3 er  e 

 d dr . 

With  er  e  = ez , independent of  r  and   , we find 

  d  =  ½   D  R4 ez . 
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are needed to transform volume integrals into surface integrals, or vice versa.  

Divergence Theorem (GAUSSOSTROGRADSKI38) Let V  be a three-
dimensional regular volumetric region in the EUCLIDean space, and  A  its 
surface with outer normal  n . Let further  U  be a tensor field of arbitrary order, 
and    an arbitrary product between  U  and  n . Then 

(2.2.64)  
A

U  n dA  =  
V

U   dV 

The following special cases will be important for us. 

 U  is a scalar field    and    the scalar multiplication of a scalar and vector. 
Then 

(2.2.65)  
A

 n dA  = 
V

   dV   =  
V

grad  dV. 

 U  is a vector field  u  and    the scalar product between vectors. Then 

(2.2.66)  
A

u  n dA  =  
V

u   dV   =  
V

div u dV. 

We give a sketch of the proof of this form, from which the other forms can be 
easily derived. We write down the component form with respect to some ONB 


V

div u dV  =   
V

31 2

1 2 3

uu u

x x x

  
     

 dx1 dx2 dx3 . 

 

                   x2 

 
  A 23   A ''   A '            
 
  dA23            dA''      dA' 
                   projection ray 
             n''   P''      P'               n' 
 
             x1 

 
         x3 

  

 

                                                           
38 Carl Friedrich Gauß (1777-1855), Mikhail Vasilevich Ostrogradski (1801-1862) 

118 2 Introduction to Tensor Calculus

2.2.4   Integral Transformations 



We first assume that the region  V   is convex. If we project this region into the  
x2–x3–coordinate plane, we obtain the area  A23 . We next decompose the surface 
of  V  into its positive part  A '   with respect to  x1  and its negative part  A ''. A 
projection ray parallel to the x1–axis penetrates the surface  A  of  V  twice at the 
points  P'   and  P''. In these points we notate the elements of area as  dA'  and  dA''  
and the normal vectors as  n'  and  n'' , respectively. The projections of these area 
elements into the x2–x3–plane shall be  dA23 = dx2 dx3 . For them we obtain the 
relation 

  dA23  =  dA' cos(n', e1)  =  dA'' cos(n'', – e1)  

wherein the cosine of the angle spanned by  n'  and  e1  can be calculated by the 
scalar product  

cos(n', e1)  =  n'  e1 

and analogously 

cos(n'', – e1)  =  – n''  e1  

so that 

  dA23  =  n'  e1 dA'  =  – n''  e1  dA''. 

The first term of the integral is by partial integration 

1

1

u

x




V
 dx1 dx2 dx3  =  

23


A

P'
1

1P'

u

x


  dx1 dA23     

=  
23


A

[u1 (P' ) – u1 (P'' )] dA23 

=  



A
u1 n'  e1 dA'  – 




A
u1 (– n''  e1) dA''   

= 
A

u1 e1  n dA .  

For the other two terms of the integral we obtain analogously 


V

2

2

u

x




 dx1 dx2 dx3  = 
A

u2 e2   n dA  

and 


V

3

3

u

x




 dx1 dx2 dx3  = 
A

u3 e3   n dA  

and for the sum of the three 


V

div u dV   = 
A

u  n dA . 
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If the region is not convex, the projection ray penetrates the surface possibly more 
than twice. Then we can also project these parts of  A   into the e2 e3plane. 
Finally we will obtain again the same formula. If the region contains internal  
voids, then one must also integrate over the internal surfaces.  

   For  u    v  T  with a vector field  v  and a tensor field  T  we obtain by the 
divergence theorem with (2.2.40) 


A

 v  T  n dA  = 
V

div (v  T) dV   

(2.2.67)  = 
V

[T  (v  ) + v  (T  )] dV   

   = 
V

(T  grad v + v  div T) dV. 

 U  is a vector field  u  and    the cross-product between vectors. Then 

  
A

u  n dA  = 
V

u   dV   =   – 
V

curl u dV 

or 

(2.2.68)  
A

n  u dA  =  
V

curl u dV 

hold. 

 U  is a vector field  u  and    the tensorial product between vectors. Then 

(2.2.69)  
A

u  n dA  = 
V

 u   dV   =  
V

grad u dV 

holds. 

 U  is a tensor field of arbitrary order and    a simple contraction. Then 

(2.2.70)  
A

U  n dA  =  
V

U   dV   =  
V

div U dV. 
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