
Chapter 2
Iterative Learning Control—An Overview

This chapter gives the required background on iterative learning control. After intro-
ducing the defining characteristic of this form of control, attention is restricted to the
laws used in the stroke rehabilitation research.

2.1 Introduction

The development of iterative learning control (ILC) emerged from industrial applica-
tions where the system involved executes the same operation many times over a fixed
finite time interval.When each operation is complete, resetting to the starting location
takes place and the next operation can commence immediately, or after a stoppage
time. A common example is a gantry robot undertaking a pick and place operation
in synchronization with a moving conveyor or assembly line. The sequence of oper-
ations is: (a) the robot collects a payload from a fixed location, (b) transfers it over a
finite duration, (c) places it on themoving conveyor, (d) returns to the original location
for the next payload and then (e) repeats the previous four steps for as many payloads
as is required or can be transferred before it is required to stop.

To operate in pick and place mode it is necessary to supply the robot with a tra-
jectory to follow and the task for a control law is to ensure that the robot follows the
prescribed trajectory exactly or, more realistically, to within a specified tolerance. In
addition to controlling its ownmovement and that of the payload, the control lawmust
prevent other effects, such as disturbances and signal noise, from degrading tracking
and thereby forcing it outside of the tolerance bound. If the robot begins to operate
outside permissible limits, the control task is to bring it back within the specified lim-
its as quickly as required or is physically possible. This taskmust be achievedwithout
causing damage to, e.g., the sensing and actuating technologies used.

© The Author(s) 2015
C.T. Freeman et al., Iterative Learning Control for Electrical Stimulation
and Stroke Rehabilitation, SpringerBriefs in Control,
Automation and Robotics, DOI 10.1007/978-1-4471-6726-6_2

3

4 2 Iterative Learning Control—An Overview

In the ILC literature, each completionor executionof the task is described as a pass,
iteration or trial, but in this monograph the latter term is exclusively used. Similarly,
the finite time each trial takes to complete will be referred to as the trial length. Once a
trial is finished, all data used and generated during its completion is available for use
in computing the control action to be applied on the next trial. The use of such data
is a form of learning and is the essence of ILC, embedding the mechanism through
which performance may be improved by past experience.

The ILC mode of operation outlined above is the most common, i.e., complete a
trial, reset and then repeat. This is different from repetitive control where the system
continuously executes over the period of the reference signal, i.e., with no stoppage
time between trials.

This chapter gives an overview of ILC, where the focus is on the algorithms that
have been used to date in the technology transfer to next generation healthcare, with
pointers to the literature for other design algorithms and applications. The particu-
lar area of next generation healthcare addressed is robotic-assisted upper limb stroke
rehabilitation. In this context ILC is used to adjust the level of assistive stimulation
applied during a treatment session where the patient attempts to re-learn a daily liv-
ing task, such as reaching out to an object with the affected limb, by repeated attempts
guided by a robot.

2.2 The Origins of ILC

The widely recognized starting point for ILC is Arimoto et al. (1984), which con-
sidered a simple first order linear servomechanism system for a voltage-controlled
dc-servomotor. As in other areas, there is debate on the origins of ILC, for which
the survey papers (Ahn et al. 2007; Bristow et al. 2006) and, in particular, Ahn et al.
(2007) give coverage and relevant references. In the opening paragraphs of Arimoto
et al. (1984) the analogy between ILC and human learning is drawn in the text: ‘It is
human to make mistakes, but it also human to learn from such experience. Is it possi-
ble to think of a way to implement such a learning ability in the automatic operation
of dynamic systems?’.

The analysis in Arimoto et al. (1984) developed, using the servomotor example as
a particular example, a control law applicable to systems required to track a desired
reference trajectory of a fixed trial length T and specified a priori. On completion of
each trial, the system states reset andduring time taken to complete this task themea-
sured output is used in the construction the next control output. The systemdynamics
were assumed to be trial-invariant and invertible. These distinguishing features led
to the establishment of ILC as a major and ongoing area of control systems research
and applications. Several of these assumptions, e.g., trial-invariant dynamics, have
been relaxed in recent years but the concept of learning from experience gained over
repeated trials of a task is retained.

Since it was first introduced ILC has broadened in breadth and depth, including
links with established fields such as robust, adaptive and optimal control. Applica-
tion areas have also expanded beyond industrial robotics and process control. In the

2.2 The Origins of ILC 5

latter area, one starting point for the literature is the survey paper Wang et al. (2009),
which also considers the connections with repetitive control and run-to-run control.
This chapter now proceeds to consider the ILC theory and algorithms that have found
novel application in stroke rehabilitation. For consistency, discrete descriptions of the
dynamics are used.

2.3 ILC for Linear Systems

When ILC is applied to discrete dynamics the notation used for a scalar or vector
valued variable in this monograph is yk(p), p = 0, 1, . . . , T . Here the nonnegative
integer k is the trial number and T ∈ N denotes the number of samples on each trial,
with the assumption of a constant sampling period. Suppose also that the dynamics
of the system or process considered can be adequately modeled as linear and time-
invariant. Then the state-space model of such a system in the ILC setting is

xk(p + 1) = Axk(p) + Buk(p)

yk(p) = Cxk(p), xk(0) = x0 (2.1)

where on trial k, xk(p) ∈ R
n is the state vector, yk(p) ∈ R

m is the output vector and
uk(p) ∈ R

l is the control input vector.
In thismodel it is assumed that the initial state vector does not change from trial-to-

trial. The casewhen this assumption is not valid has also been considered in the litera-
ture. The dynamics are assumed to be disturbance-free but again this assumption can
be relaxed. It also possible to write the dynamics in input-output form involving the
convolution operator or take the one-sided z transform and hence analysis and design
in the frequency domain is possible. To apply the z transform it is necessary to assume
T = ∞ but in most cases the consequences of this requirement have no detrimental
effects. For amore detailed analysis of cases where there are unwanted effects arising
from this assumption, see the relevant references in Ahn et al. (2007), Bristow et al.
(2006) and more recent work in Wallen et al. (2013).

Let r(p) ∈ R
m denote the supplied reference vector. Then the error on trial k is

ek(p) = r(p) − yk(p) and the core requirement in ILC is to construct a sequence
of input functions uk+1(p), k ≥ 0, such that the performance achieved is gradually
improvedwith each successive trial and after a ‘sufficient’ number of these the current
trial error is zero or within an acceptable tolerance. Mathematically this can be stated
as a convergence condition on the input and error of the form

lim
k→∞ ||ek || = 0, lim

k→∞ ||uk − u∞|| = 0 (2.2)

where u∞ is termed the learned control and || · || denotes an appropriate norm on
the underlying function space. As one possibility, let || · ||2 denote the Euclidean
norm of its argument and set ||e|| = maxp∈[0,T] ||e(p)||2. The reason for including
the requirement on the control vector is to ensure that strong emphasis on reducing

6 2 Iterative Learning Control—An Overview

the trial-to-trial error does not come at the expense of unacceptable control signal
demands. In application, only a finite number of trials will ever be completed but
mathematically letting k → ∞ is required in analysis of, e.g., trial-to-trial error con-
vergence.

The standard form of ILC algorithm or law computes the current trial input as the
sum of the input used on the previous trial and a corrective term, i.e.,

uk+1 = uk + Δ(uk, ek) (2.3)

whereΔ(uk, ek) is the correction termand is a function of the error and input recorded
over the previous trial. A large number of variations exist for computing the correc-
tion term, including laws that make use of information generated on a finite number
(greater than unity) of previous trials. For the stroke rehabilitation application it is the
repeated performance of a finite duration task (with the input on the current trial com-
puted by adding a corrective term that is directly influenced by the previous trial error)
that makes ILC particulary suitable.

An extensively used analysis and design setting for discrete systems is based on
lifting in the ILC setting. Suppose that (2.1) is asymptotically stable and hence all
eigenvalues of the statematrix A havemodulus strictly less than unity. If this is not the
case then a stabilizing feedback control loopmust be first applied. For simplicity, con-
sider single-input single-output (SISO) systems with an assumed relative degree of
one, and hence in (2.1) the firstMarkov parameterCB �= 0. For the cases of multiple-
input multiple-output (MIMO) systems and/or the assumption on the Markov para-
meter does not hold, refer to the relevant references in Ahn et al. (2007), Bristow et al.
(2006).

Introduce

yk =

⎡
⎢⎢⎢⎣

yk(1)
yk(2)

...

yk(T)

⎤
⎥⎥⎥⎦ , uk =

⎡
⎢⎢⎢⎣

uk(0)
uk(1)

...

uk(T − 1)

⎤
⎥⎥⎥⎦ , d =

⎡
⎢⎢⎢⎣

d(1)
d(2)

...

d(T)

⎤
⎥⎥⎥⎦ . (2.4)

Then under the assumption that r(0) = Cx0, (2.1) can be written in the form

yk = Guk + d (2.5)

with

G =

⎡
⎢⎢⎢⎢⎣

p1 0 . . . 0

p2 p1 . . . 0
...

...
. . .

...

pT pT −1 . . . p1

⎤
⎥⎥⎥⎥⎦

(2.6)

where p j = C A j−1B and d(j) = C A j x0, j = 1, . . . , T .

2.3 ILC for Linear Systems 7

2.3.1 Control Laws and Structural/Performance Issues

Consider the SISO version of the state-space model (2.1) and suppose that both the
system dynamics and the measured output are deterministic, i.e., noise-free. Then a
derivative, or D-type, ILC law constructs the current trial input as

uk+1(p) = uk(p) + Kd [ek(p + 1) − ek(p)] (2.7)

where Kd is a scalar to be designed such that limk→∞ ||ek || = 0.Also routine analysis
shows that this condition holds if and only if |1−CBKd | < 1. Somewhat surprisingly,
this condition is independent of the system dynamics embodied in state matrix A and
can only be satisfied if CB �= 0.

The reason why trial-to-trial error convergence (k) is independent of the system
state matrix is the finite trial length, over which duration even an unstable linear sys-
temcan only produce a bounded output. In design based on a liftedmodel, the solution
is to first design a stabilizing feedback control law for the unstable system and then
apply ILC to the lifted version of the resulting controlled system. This step may also
be required for stable systems to ensure acceptable transient dynamics along the trials.
This results in a two stage design whereas the repetitive process, a class of 2D linear
systems, setting allows simultaneous design for trial-to-trial error convergence and
along the trial dynamics, see, e.g., Hladowski et al. (2010, 2012) where experimental
verification on a gantry robot that replicates many industrial processes to which ILC
is applicable is also given.

If the systemmodel has relative degree greater than one it follows immediately that
trial-to-trial error convergence cannot be achieved. This problem arises for many ILC
laws and has received considerable attention in the literature, where one starting point
is again the relevant references in the survey papers (Ahn et al. 2007; Bristow et al.
2006). This feature is also present in the 2D systems/repetitive process designs. The
most that can be done for a system of relative degree h is to lose control over the first
h −1 samples along the trial and design a control law that gives convergence over the
remaining samples.

In ILC, once trial k is complete the following information is available for the com-
putation of the control uk+1: (1) Information from the entire time duration of any pre-
vious trial and (2) Information up to the current sample on trial k + 1. The following
is one definition of causality in ILC.

Definition 2.1 An ILC law is causal if and only if the value of the input uk+1(p) at
time p on trial k + 1 is computed only using data in the time interval [0, p] from the
current and previous trials.

For standard linear systems at sample instant p the use of information at future sam-
ples p + 1, p + 2, . . . is non-causal and therefore any resulting control law cannot
be implemented. The use of non-causal along the trial information in ILC laws is
arguably the most important feature.

8 2 Iterative Learning Control—An Overview

Consider the ILC control laws

uk+1(p) = uk(p) + K pek(p + 1) (2.8)

and
uk+1(p) = uk(p) + K pek(p) (2.9)

where the first is ILC non-causal and the second is causal. Also let q denote the for-
ward time shift operator acting on, e.g., x(p) asqx(p) = x(p+1).Then the dynamics
of (2.1) can be written as

yk(p) = G(q)uk(p) + d(p) (2.10)

where d(p) = CApx0 and this term can be extended to represent exogenous system
disturbances that enter on trial k.Moreover, this disturbance term influences the error
on trial k as

ek(p) = r(p) − G(q)uk(p) − d(p) (2.11)

Hence the non-causal ILC law (2.8) anticipates the disturbance dk+1 and uses the
input uk+1(p) to preemptively compensate for its effects. This feature is not present
in the causal ILC law (2.9).

Causal ILC laws can be shown to be equivalent to a feedback control, i.e., an equiv-
alent control action can be obtained directly from the ILC law and it has been asserted
that causal ILC algorithms have little merit. See the discussion, with supporting ref-
erences, in Bristow et al. (2006) that counters this argument but in any case the vast
majority of implemented ILC laws are non-causal.

The finite trial length in ILC allows non-causal signal processing to be used. For
many implementations, this is exploited in the form of zero-phase filtering of the pre-
vious trial error prior to the computation of the next trial input.An experimental exam-
ple where zero-phase filtering is used is the gantry robot based results reported in
Hladowski et al. (2010, 2012). Essentially, zero-phase filtering between trials can be
used to remove unwanted effects, e.g., noise from the measured signals.

A commonly used ILC law is given by

uk+1(p) = Q(q) [uk(p) + L(q)ek(p + 1)] (2.12)

where Q(q) is termed the Q-filter and L(q) is the learning function, but these desig-
nations are not universally used in the literature. The Q-filter and learning function L
can be non-causal, in the ILC sense, with impulse responses

Q(q) = . . . + q−2q2 + q−1q + q0 + q1q−1 + q2q−2 + . . .

L(q) = . . . + l−2q2 + l−1q + l0 + l1q−1 + l2q−2 + (2.13)

2.3 ILC for Linear Systems 9

This algorithm has many variations, including phase-lead

uk+1(p) = uk(p) + lek(p + h) (2.14)

where the designation ‘phase-lead’ arises from the shifted term lek(p + h), h > 0.
An ILC law of the form (2.12) can also be written in lifted form as

uk+1 = Q(uk + Lek) (2.15)

The matrices G of (2.6), Q and L are Toeplitz and when the ILC law is causal Q
and L are lower triangular. Other forms of Q and L , such as the fully populated case,
correspond to non-causal ILC. Possibilities considered in the literature include time-
varying functions, nonlinear functions and trial-to-trial (in k) functions. Imposing
a band-diagonal structure results in Finite-Impulse Response (FIR) Q(q) and L(q)

operators that can be causal or non-causal. The liftedmodel description is not applica-
ble to differential dynamics and hence to applications where design by emulation is
the only or preferred option. The repetitive process/2D system approach extends to
this case.

2.3.2 Control Law Design

As in other control systemdesign areas, the objectivesmust be specified, startingwith
stability. Consider applying the ILC law (2.12) to the system (2.10). Asymptotic sta-
bility in the SISO case then requires the existence of a real number û > 0 such that
|uk(p)| ≤ û for all p ∈ [0, T] and k ≥ 0, and for all p ∈ [0, T], limk→∞ uk(p)

exists and the learned control is u∞(p) = limk→∞ uk(p).

Using the lifted form, the controlled dynamics resulting from applying (2.12) to
(2.10) can be written as

uk+1 = Q(I − LG)uk + QL(r − d) (2.16)

and stability holds if and only if all eigenvalues of thematrix Q(I −LG) havemodulus
strictly less than unity, where I denotes the identitymatrix of compatible dimensions.
Matrix Q(I − LG) is lower triangular and Toeplitz when the Q filter and learning
function L are causal and all eigenvalues are equal and of value q0(1− l0 p1). Hence
stability requires |q0(1− l0 p1)| < 1 and this property cannot hold if the first Markov
parameter p1 = 0 as discussed previously in this chapter. Consult the references in
Ahn et al. (2007), Bristow et al. (2006) for alternative settings to analyze the stability
properties of this form of ILC.

Performance of an ILC system is different from the standard linear systems case
as it is necessary to consider trial-to-trial and along the trial dynamics. In the former
case, if the system considered above is asymptotically stable, the converged error in
k is

e∞(p) = lim
k→∞ ek(p) = r(p) − G(q)u∞(p) − d(p) (2.17)

10 2 Iterative Learning Control—An Overview

and again there is a z transform version of this result. Performance from trial-to-
trial can, of course, be compared in many ways, where one measure is the difference
between the final and initial trial errors, i.e., e∞(p) and e0(p). Theorem 3 in Bristow
et al. (2006) gives the conditions for convergence to zero error in the case when G
and L are not identically zero. These conditions comprise asymptotic stability plus
the requirement that Q(q) = 1.As discussed previously, in many cases it will also be
necessary to design for acceptable transient dynamics along the trials.

Robustness is also an issue in ILC. Early research on the use of an H∞ setting
is given in Amann et al. (1996a), with other work referenced in the survey papers
(Ahn et al. 2007; Bristow et al. 2006), and is largely based on assuming an uncertainty
model to represent the unmodeled dynamics, such as norm-bounded. More recent
work, such as Hladowski et al. (2010, 2012), uses Linear Matrix Inequalities (LMIs)
to compute the robust control law with experimental verification on a gantry robot.

In applications terms, the core task in ILC design is to construct an open-loop sig-
nal that approximately inverts the plant’s dynamics, tracks the reference and rejects
repeating disturbances. In the ideal scenario ILC would only learn repeating distur-
bances and ignore noise and non-repeating disturbances. Four general control law
design methods are now discussed in turn, starting with Proportional plus Derivative
(PD)-type designs with tuning that can be applied to a systemwithout extensivemod-
eling and analysis.

2.3.3 Proportional Plus Derivative-Type ILC

Arimoto’s original algorithm (2.7) can be expanded for SISO systems to form a PD-
type ILC law, which can be written as

uk+1(p) = uk(p) + kpek(p + 1) + kd [ek(p + 1) − ek(p)]. (2.18)

In the lifted setting, (2.18) corresponds to the choice Q = I and

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

kp + kd 0 . . . 0

−kd kp + kd . . . 0

0 −kd . . . 0
...

...
. . .

...

0 0 . . . kp + kd

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2.19)

An alternative is to use ek(p) instead of ek(p+1) in the second term on the right-hand
side of (2.18). Also the generalization to MIMO systems is immediate.

Unlike Proportional plus Integral plus Derivative (PID) (or three term) control for
standard systems, auto-tuning rules are not available for ILC design. Also monotonic
trial-to-trial error convergence is not always possible with ILC PD-type laws and an

2.3 ILC for Linear Systems 11

often used approach to approximately achieve this property is to include a low-pass
Q filter in the control law, i.e., as in (2.12), pre-multiply the right-hand side of the
control law by Q(p). This filter can be used to block learning at high frequencies and
also has other benefits, such as increased robustness and filtering of high-frequency
noise.

In tuning-based design, one approach is to first select the Q filter type, such as But-
terworth or Chebyshev, and order and then use the filter bandwidth as the tuning vari-
able. This approach is extensively covered in the literature and, e.g., Bristow et al.
(2006) gives intuitive guidelines for tuning to achieve good learning transients and
low error. Again, the survey papers (Ahn et al. 2007; Bristow et al. 2006) are a start-
ing point for the many methods available for ILC PD design.

2.3.4 Inverse ILC

Plant inversion, or inverse, ILC designs use models of the inverse plant dynamics as
the learning function. For discrete systems the control law has the form

uk+1(p) = uk(p) + Ĝ−1(q)ek(p) (2.20)

or

uk+1(p) = uk(p) + q−1Ĝ−1(q)ek(p + 1) (2.21)

where, since the exact inversewill not oftenbe computable, Ĝ−1(q)denotes the approx-
imate inverse of G(q). The learning function is

L(q) = q−1Ĝ−1(q) (2.22)

which is causal and of zero relative degree, i.e., has the same number of zeros as poles.

2.3.5 Gradient Descent ILC

As in other areas, a natural approach to model based ILC is to minimize a suitable
cost function. The gradient descent algorithm for ILC (Furuta and Yamakita 1987)
considers the following cost-function for the discrete lifted model

J (uk+1) = ‖ek+1‖2, ek+1 = r − Guk+1 (2.23)

during each trial. Suppose also that the ILC law used is

uk+1 = uk + εk+1δk+1 (2.24)

12 2 Iterative Learning Control—An Overview

where εk+1 is a scaling factor and δk+1 is the vector that determines the direction of
the update vector. Then the tracking error on trial k + 1 is

J (uk+1) = J (uk + εk+1δk+1) = ‖ek+1‖2
= ‖ek‖2 − 2εk+1δ

T
k+1GT ek + ε2k+1δ

T
k+1GT Gδk+1 (2.25)

and hence

‖ek+1‖2 − ‖ek‖2 = −2εk+1δ
T
k+1GT ek + ε2k+1δ

T
k+1GT Gδk+1. (2.26)

Monotonic trial-to-trial error convergence occurs when the right-hand side in
(2.26) is negative. One option is choosing δk+1 = GT ek , resulting in the control law

uk+1 = uk + εk+1GT ek (2.27)

which corresponds to the choice Q = I and L = εk+1GT in the lifted setting.

2.3.6 Norm Optimal ILC

Norm Optimal ILC (NOILC) is a gradient-based update law that includes: (a) auto-
matic choice of step size, and (b) potential for improved robustness through use of
causal feedback (current trial error data) and feedforward of data from previous tri-
als. The results below are from Amann et al. (1996b), see also papers cited in Ahn
et al. (2007), Bristow et al. (2006) for other versions of this law.

The current trial input is chosen to minimize a cost function involving norms of
the trial error and the difference between successive trial control inputs. A general
treatment of the cost function and the problem solution in a Hilbert space setting can
be found in Amann et al. (1996b). The cost function used for discrete dynamics in the
ILC setting described by (2.1) is

J (uk+1) =
T −1∑
i=0

(ek+1(i) − ek(i))
T Q(ek+1(i) − ek(i))

+
T −1∑
i=0

(uk+1(i) − uk(i)
T R(uk+1(i) − uk(i)) (2.28)

where Q and R are symmetric positive definiteweightingmatrices to be selected. Use
of this cost function optimally reduces the trial-to-trial error and ensures that the con-
trol input on the next trial does not deviate too much from that used on the previous
trial.

Following Amann et al. (1996b) the control input on trial k + 1 is given by

2.3 ILC for Linear Systems 13

uk+1(p) = uk(p) − [{
BT K (p)B + R

}−1
BT K (p)

× A {xk+1(p) − xk(p)}] + R−1BT ξk+1(p) (2.29)

where K (p) is the solution of the algebraic Riccati equation

K (p) = AT K (p + 1)A + CT QC − [
AT K (p + 1)B

×
{

BT K (p + 1)B + R
}−l

BT K (p + 1)A
]

(2.30)

with terminal boundary condition K (T) = 0. The feedforward predictive term
ξk+1(p) is generated after each trial as

ξk+1(p) =
{

I + K (p)B R−1BT
}−1 {

AT ξk+1(p + 1) + CT Qek(p + 1)
}

(2.31)

with terminal boundary condition ξk+1(T) = 0. Moreover, NOILC can also be
applied to the lifted model representation of the dynamics.

2.4 Nonlinear Model ILC

Nonlinear ILC has received substantial attention in the literature, especially trial-to-
trial error convergence proofs. In this section the background on onemethod, Newton
ILC, which has been used in the stroke rehabilitation research reported in this mono-
graph, is given.

Nonlinear systems can, in general terms, be split into two groups; those that are
affine in the control and those that are not. The former are assumed to be of the form

ẋ(t) = f (x(t)) + B(x(t))u(t)

y(t) = h(x(t)) (2.32)

where x is the state vector, u is the input and y is the output. A special case is the
following model generally used to express the dynamics of robotic systems

Mr (x(t))ẍ(t) − Cr (x(t), ẋ(t))ẋ(t) − gr (x(t)) − dr (x(t), ẋ(t)) = τ(u(t)) (2.33)

where the vectors x(t), ẍ(t), ẋ(t) are the joint positions, velocities and accelerations,
τ(u(t)) is the actuator torque generated using a control input u(t), Mr (x) is the sym-
metric positive-definite inertial matrix, Cr (x, ẋ) is the Coriolis and centripetal accel-
erationmatrix, gr (x) is the gravitational force vector anddr (x, ẋ) is the friction torque
vector.

The application of ILC to affine nonlinear systems uses awide variety of laws but a
critical common assumption is that the nonlinear system is smooth. This requirement

14 2 Iterative Learning Control—An Overview

is often expressed as a global Lipschitz assumption on each of the functions in (2.32)
of the form

| f (x1) − f (x2)| ≤ f0|x1 − x2|
|B(x1) − B(x2)| ≤ b0|x1 − x2|
|h(x1) − h(x2)| ≤ h0|x1 − x2| (2.34)

The constants f0, b0 and h0 are used in a contraction mapping setting to obtain (suf-
ficient) conditions for trial-to-trial error convergence and ILC law design. Non-affine
systems have the form

ẋ(t) = f (x(t)) + B(x(t), u(t))

y(t) = h(x(t)) (2.35)

In the rehabilitation setting, control design is primarily undertakenusing adiscrete-
time system representation. Obtaining discrete-time models for nonlinear systems is
sometimes non-trivial but, e.g., trial-to-trial error convergence proofs are simpler and
the final design is directly compatible with digital implementation. One other way to
study and design ILC for nonlinear systems is to treat the nonlinearities as perturba-
tions to a linearized system model.

2.4.1 Newton ILC

Newton ILC was proposed by Lin et al. (2006) and uses the full model in the compu-
tation of the next trial input. It is based on a general discrete-time state-space model
of the form

xk(p + 1) = f (xk(p), uk(p))

yk(p) = h(xk(p)) (2.36)

which can be obtained via discretization of its continuous-time counterpart. As in the
linear case p = 0, 1, . . . , T is the sample number, xk(p) is the state vector, and in
lifted form the output and input vectors are given by

yk = [
yT

k (0) yT
k (1) . . . yT

k (T)
]T

uk = [
uT

k (0) uT
k (1) . . . uT

k (T)
]T

(2.37)

and the reference vector by

yd = [
yT

d (0) yT
d (1) . . . yT

d (T)
]T

(2.38)

2.4 Nonlinear Model ILC 15

The Newton ILC law takes the form

uk+1 = uk + g′(uk)
−1ek (2.39)

where ek = r − yk is the tracking error. The term g′(uk) is equivalent to linearizing
the system dynamics around uk , with the system ỹ = g′(uk)ũ corresponding to the
following linear time-varying state-space model

x̃(p + 1) = A(p)x̃(p) + B(p)ũ(p)

ỹ(p) = C(p)x̃(p)
(2.40)

over p = 0, 1, . . . , T , with

A(p) =
(

∂ f

∂x

)

uk (p),xk (p)

, B(p) =
(

∂ f

∂uk

)

uk (p),xk (p)

C(p) =
(

∂h

∂x

)

uk (p),xk (p)

(2.41)

The term g′(uk)
−1 in (2.39) is computationally expensive and may be singular or

contain excessive amplitudes and high frequencies. To overcome this difficulty, intro-
duce

ek = g′(uk)Δuk+1 (2.42)

and then Δuk+1 = uk+1 − uk equals the input that forces the system (2.40) to track
the error ek . This is also an ILC problem and can be solved in between experimental
trials using any ILC law that converges globally. In this monograph NOILC is used.

References

Ahn H-S, Chen YQ, Moore KL (2007) Iterative learning control: brief survey and characterization.
IEEE Trans Syst Man Cybern 37(6):1099–1121

Amann N, Owens DH, Rogers E, Wahl A (1996a) An H∞ approach to iterative learning control
design. Int J Adapt Control Signal Process 10(6):767–781

Amann N, Owens DH, Rogers E (1996b) Iterative learning control for discrete-time systems with
exponential rate of convergence. Proc Inst Elect Eng, Part D, Control Theory Appl 143(2):217–
224

Arimoto S, Kawamura S, Miyazaki F (1984) Bettering operation of robots by learning. J Robot Syst
2(1):123–140

BristowDA, Tharayil M, Alleyne AG (2006) A survey of iterative learning control: a learning based
method for high performance tracking control. IEEE Control Syst Mag 26(3):96–114

Furuta K, Yamakita M (1987) The design of a learning control system for multivariable systems.
In: Proceedings of the IEEE international symposium on intelligent control, pp 371–376

Hladowski L, Galkowski K, Cai Z, Rogers E, Freeman CT, Lewin PL (2010) Experimentally sup-
ported 2D systems based iterative learning control law design for error convergence and perfor-
mance. Control Eng Pract 18(4):339–348

16 2 Iterative Learning Control—An Overview

Hladowski L, Galkowski K, Cai Z, Rogers E, Freeman CT, Lewin PL (2012) Output based iterative
learning control design with experimental verification. J Dyn Syst Meas Control 134:021012-1–
021012-10

Lin T, Owens DH, Hatonen J (2006) Newton method based iterative learning control for discrete
non-linear systems. Int J Control 79(10):1263–1276

Wallen J, Gunnarsson S, Norrloff M (2013) Analysis of boundary effects in iterative learning con-
trol. Int J Control 86(3):410–415

Wang Y, Gao F, Doyle III FJ (2009) Survey on iterative learning control, repetitive control, and
run-to-run control. J Process Control 19:1589–1600

http://www.springer.com/978-1-4471-6725-9

	2 Iterative Learning Control---An Overview
	2.1 Introduction
	2.2 The Origins of ILC
	2.3 ILC for Linear Systems
	2.3.1 Control Laws and Structural/Performance Issues
	2.3.2 Control Law Design
	2.3.3 Proportional Plus Derivative-Type ILC
	2.3.4 Inverse ILC
	2.3.5 Gradient Descent ILC
	2.3.6 Norm Optimal ILC

	2.4 Nonlinear Model ILC
	2.4.1 Newton ILC

	References

