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Abstract. The advent of large of multi-modal imaging databases opens
up the opportunity to learn how local intensity patterns covariate
between multiple modalities. These models can then be used to describe
expected intensities in an unseen image modalities given one or mul-
tiple observations, or to detect deviations (e.g. pathology) from the
expected intensity patterns. In this work, we propose a template-based
multi-modal generative mixture-model of imaging data and apply it
to the problems of inlier/outlier pattern classification and image syn-
thesis. Results on synthetic and patient data demonstrate that the
proposed method is able to synthesise unseen data and accurately
localise pathological regions, even in the presence of large abnormali-
ties. It also demonstrates that the proposed model can provide accurate
and uncertainty-aware intensity estimates of expected imaging patterns.

1 Introduction

Neuroimaging studies have become increasingly multimodal, as different imag-
ing techniques (e.g. CT, T1- and T2-weighted MRI, FLAIR, DWI, etc.) contain
complementary information about the underlying anatomy, its microstructure
and/or its function. However, different modalities also share a large amount of
information. As an example, it is possible to predict how a T2 MRI image of a
subject should look like given the subject’s T1 MRI and a model of image forma-
tion [1]. This process, known in the medical image community as image/modality
synthesis, has been recently exploited for the purpose of improving multimodal
image registration and tissue segmentation [1], synthesising DTI-FA images [2]
and PET attenuation-map reconstruction [3], using techniques such as nearest-
neighbour patch propagation [1], iterative region-restricted patch-search [2], local
similarity-weighted voting [3] and sparse patch-match [4].

One limitation of current synthesis strategies is the lack of knowledge
about the uncertainty of the generative process. By generating only one single
image estimate, one is assuming that the process of image synthesis is deter-
ministic, or at least that it’s uncertainty is non-spatially variant. This is an
erroneous assumption that can overestimate the confidence in the synthesis
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process, possibly propagating large errors to other steps of the image processing
pipeline. These uncertainty estimates are especially important in regions where
there is no one-to-one intensity correspondence between medical images, e.g.
skull/sinus/brain/eye region in CT synthesis from MRI data [3]. In these spe-
cific regions, the sinus and skull have highly distinguishable intensities, making
the CT probability density function multi-modal. The process of sample aver-
aging seen in [1–4], equivalent to estimating the expectation of the probability
density function, is not a good approximation of the MAP estimate, thus pro-
ducing unrealistic and improbable estimates of the target intensities.

Another limitation of image synthesis methodologies is that one can only
reproduce a target modality from a source modality if they share common infor-
mation or if the missing information can be obtained a priori from a population.
For example, if a lesion visible in a T2-FLAIR MRI is not visible in a T1 MRI,
then this lesion will not appear if one tries to synthesise a T2-FLAIR from a T1
MRI. This limitation has been exploited in the context of pathology detection
by synthesising a T2-FLAIR MRI from an observed T1-weighted MRI [2,4], as
the pathology is hardly visible in the T1 image. By subtracting the real T2 MRI
with a tumour from the T1-derived synthetic T2 MRI, one can obtain a region
of interest localising the pathological areas. However, as the synthesis process
is considered deterministic (i.e. no estimates of uncertainty), this subtraction
process has the same limitations as above - the subtraction process generates
edge effects, mis-localising pathological areas when the model does not fit.

From a generative model point-of-view, another strategy to localise intensity
outliers in an image is through the process of image clustering [5]. This class of
models assume an underlying number of healthy brain tissue classes, normally
white-matter (WM), grey-matter and cerebrospinal fluid (CSF), and detects
deviations from them. However, any intensity pattern that deviates from these
three healthy tissue intensity distributions would be considered as an outlier,
even though they commonly appear in healthy brains (e.g. T2 hypo-intensity due
to accumulation of cysteine-iron complex in the globus pallidus and substantia
nigra). This requires extra empirical pathology-specific post-processing to select
a subset of the outliers [5].

With the problem in mind, this work proposes a template-based generative
model of brain data and applies it to both the problem image synthesis and
inlier/outlier pattern classification for the localisation of image abnormalities.
We build on the preliminary idea of [2] but instead of applying a deterministic
method, the proposed model describes the full joint probability distribution of
a pair of observed images given a set of previously observed templates, making
the algorithm robust to edge effects and uncertainty in the model. Furthermore,
by describing the process probabilistically, it becomes trivial to further extend
the proposed model to an hierarchical segmentation approach.

2 Methods

Image synthesis can be seen as the process of generating an expected image E[ỹ]
given an observed image x̃ from a different imaging modality and a database
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of N previously observed image pairs X = {yn, xn}, indexed by n. Note that
the technique can be easily extended to more than 2 modalities. The process
of collapsing all the available information from X into one single estimate E[ỹ]
ignores both the fact that generating ỹ is an uncertain process an that p(ỹ) can
be multimodal. Thus, contrary to [2,4], where only the expected image E[ỹ] is
generated, we characterise p(ỹ, x̃|X , θ), i.e. the joint probability of observing the
image pair {ỹ, x̃} given a set of N previously observed templates X and the
model parameters θ = {σ2

x, σ2
y, Σjn

, μjn
, G,w}.

From an intuitive point of view, the main difference between the proposed
method and previous approaches pertains with the idea that the process of image
synthesis is uncertain. Thus, rather than trying to find the expected observation y
from an observation x, we estimate what is the probability of observing different
values of y when observing x.

2.1 The Observation Model

In order to estimate p(ỹ, x̃|X , θ) one has to first note that, due to the presence
of pathology or imaging artefacts, not all intensity pairs {ỹ, x̃} will be likely
given a certain set of previously observed images. Thus, it is important to model
the possible presence of outliers - intensity pairs that deviate from previous tem-
plates. This does not mean that one would be able to predict unseen pathological
intensity pairs. Instead, the model assumes that imaging data can fall outside
the predictable intensity patterns.

With this aim in mind, the proposed generative model assumes that the
observed data is generated from a mixture of K = 2 classes labeled by lki , i.e.
an inlier class, derived from previous observations, and an outlier class, mod-
elled by a uniform distribution. The probability p(ỹi, x̃i, j, li|,X , θ) of observing
an intensity pair {ỹi, x̃i}, a transformation j and label l at location i, is then
defined as

p(ỹi, x̃i, j|li,X , θ)p(lki ) = w p(ỹi, x̃i, j|lIi ,X , θ)p(lIi )
︸ ︷︷ ︸

inlier model

+(1 − w) p(ỹi, x̃i|lOi )p(lOi )
︸ ︷︷ ︸

outlier model

In this model, the distribution of the pair {ỹ, x̃} for the outlier class (lO) is given
by an uniform distribution p(ỹi, x̃i|lOi ) = U , an inlier class (lI) describing the
similarity between the observed pair {ỹi, x̃i} and the previously observed pairs
X = {yn, xn}, a coordinate mapping jn, a prior distribution p(lIi ) and p(lOi ) over
the labelling lki , and a global mixing weight w.

In this work, given N previously observed images, the inlier model is defined
as a mixture model given by

p(ỹi, x̃i, j|lIi ,X , θ) =
1
N

N
∑

n=1

p(ỹi, x̃i|lIi , jn,Xn, θ)p(jn|lIi , θ).

i.e., the probability of observing a certain pair of intensities {ỹi, x̃i} is a equally-
weighted mixture of the N probabilities of observing the pair given a previously
observed pair Xn.
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As in the Non-Local STAPLE algorithm [6], we assume that jn is unknown,
or at least uncertain, as the coordinate mapping problem is ill posed [7]. As in
Simpson et al. [7], p(jn|lIi , θ) is a multivariate Gaussian distribution with para-
meters θ = {μn

j , Σj}. Here, the expectation of the mapping jn, i.e. μn
j , is esti-

mated using a multimodal pairwise b-spline parameterised registration between
the observed image pair and the n-th image pair. A multichannel locally nor-
malised cross correlation is used as an image similarity for registration purposes.
In addition, the precision matrix Σ−1

ji at location i, represents the inverse of the
local directional estimate of registration uncertainty as described in [7]. In this
work, Σ−1

ji is approximated using the local second-moment matrix, also known
as the structure tensor [8], of the observed image x̃ in a cubic convolution region
of size s × s × s (empirically set to s = 7 voxels). This covariance uncertainty
approximation assumes that the registration in more uncertain along the edges
of the image than across them. Thus, jn is less likely if it deviates from μn

j in a
direction orthogonal to the image edges. In future work, this approximation will
be replaced by a local covariance estimate as provided by Simpson et al. [7].

Similarly to [6], as jn is unknown, p(ỹi, x̃i|lIi , jn,X , θ)p(jn|lIi , θ) is approxi-
mated by its expected value given a multivariate Gaussian distribution on the
patch L2 norm and a multivariate Gaussian distribution over the mapping jn

p(ỹi, x̃i|lIi , jn,X , θ)p(jn|lIi , θ) ≈ E[p(ỹi, x̃i|lIi , jn,X , θ)p(jn|lIi , θ)]

=
∑

j∗∈Ns

p(ỹi, x̃i|lIi , j∗
n,X , θ)p(j∗

n|lIi , θ). (1)

Under this approximation and under the assumption of conditional independence
between ỹ and x̃, then p(ỹi, x̃i|lIi , j∗

n,X , θ) is defined as

p(ỹi, x̃i|lIi , j∗
n,X , θ) = p(x̃i|lIi , j∗

n,X , θ)p(ỹi|lIi , j∗
n,X , θ)

= e
−

||Np(yi)−Np(ynj∗
n

)||22
σ2

yin

−
||Np(xi)−Np(xnj∗

n
)||22

σ2
xin (2)

under the assumption of conditional independence between x and y, and

p(j∗
n|lIi , θ) =

1
Zj∗

e−DΣ−1
j DT

(3)

In Eq. (1), Ns is an integration neighbourhood of size s×s×s (again with s = 7
voxels) of an image similarity component (Eq. 2) and the registration uncertainty
distance component (Eq. 3). In Eq. 2, Np(κ) is a patch of size p × p × p (with
p = 5 voxels) centred at location κ, and in Eq. 3, D = j∗

n − μn is a 1 × 3 vector
characterising the 3-dimensional components of a displacement from μn. Both
the parameters σ2

yn
and σ2

xn
denote the sum of a local and a global normally

distributed noise model (iid) between the observation ỹ and the template yn,
defined as

σ2
yin

= σ(y − ynμn
)2 + σ(Ns(yi) − Ns(ynμn

))2
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and equivalently for σ2
xin

, with σ(κ) representing the standard deviation of κ.
Note that the L2 of the patch can here be used as all images X have been
histogram matched to {ỹi, x̃i} using a 3rd order polynomial fit after non-rigid
registration. Finally, Zxj∗ is a partition function enforcing

∑

j∗∈Ns

p(x̃i, j
∗
n|l2i , xn, θ) = 1.

The generative model is depicted in Fig. 1. Also of note is the fact that the model
extends naturally to more imaging modalities by converting the intensity pairs
to K dimensional vectors. In this scenario, the extension of Eq. 2 provides extra
complementary information.

N

Ω

outlier model

inlier model

ỹ

x̃

{jn}

{xn}

{yn}

{μn}

Σj

{σ2
yin}

{σ2
xin

}

L
G

π
Uw

Fig. 1. Generative model of the observed data, with the observed values represented
by shaded circles, parameters by shaded rounded-rectangles, and hidden/integrated
variables as white circles. Boxes represent replication plates, while the dashed-line
boxes annotates the components of the inlier and outlier models.

2.2 Outlier Mixing-Coefficient Prior Estimates

Given the above observation model, one can then estimate the most probable
label L, characterising if a certain location belongs to the inlier or outlier class,
given by

L̂ ≈ argmax
L

p(l|ỹ, x̃, j,X , θ)

∝ argmax
L

p(ỹ, x̃, j|l,X , θ)p(l|θ)p(θ)

= argmax
L

∏

i∈Ω

p(ỹi, x̃i, j|li,X , θ)p(li|θ)p(θ),
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where p(θ) is the prior distribution of the parameters θ, here assumed to be
non-informative, and

p(lki |θ) = πk
1

ZMRF
e−βUMRF (lki ,G)

is the combination of a population prior given the location of the brain and
smoothness prior given by a probabilistic extension of a Potts-model-based
Markov Random Field (MRF), optimised using a mean field theory approxi-
mation, as described in [9]. As we are only interested in outliers within the
brain, then

πO = 0.5 ∗ (πGM + πWM ) πI = 1 − πO,

i.e. a voxel has a prior probability of 0.5 to be an outlier if it is located within
the brain region, defined by non-rigidly registered πWM and πGM ICBM SPM
priors (www.fil.ion.ucl.ac.uk/spm/). In the MRF, β=0.5, G is a matrix with the
diagonal equal to 0 and the off diagonal equal to 1 and ZMRF is a normalising
partition function. The expectation-maximisation algorithm is used to optimise
the MRF and the other only free parameter w. The value of w is initialised to
0.9, as a large percentage of the brain should be part of the inlier model, and
optimised using the following closed-form update equation

wt
I =

1
|Ω|

∑

i

(

wt−1
I p(ỹi, x̃i|lIi ,X , μjn

, θ)p(lIi )
∑K

k wt−1
k p(ỹi, x̃i|lki ,X , μjn

, θ)p(lki )

)

with t representing the current iteration. After optimisation, the voxel-wise esti-
mate of p(li|ỹi, x̃i, j,X , θ) provides information about the location of outlier
regions as it represents the probability that the voxel in the patch centred at i
belong to either the inlier p(In)i or outlier p(Out)i classes. This probability can
then be used as an estimate of the prior probability that voxel i is an outlier.

2.3 Outlier Segmentation

Given a pair of observed images {ỹ, x̃} and the estimate of p(li|ỹi, x̃i, j,X , θ),
a voxel-wise segmentation of the outliers of an image can be obtained using a
multivariate Gaussian mixture model approach [9] where

πi = {πWMi
.p(In)i, πGMi

.p(In)i, πCSFi
.p(In)i, p(Out)i}

is a prior distribution for K = 4 classes at location i, with πWMi
, πGMi

and
πCSFi

representing the healthy population’s prior probability to belong to white
matter, grey matter and cerebrospinal fluid respectively. Note that any other
probabilistic segmentation algorithm can be used at this stage.

www.fil.ion.ucl.ac.uk/spm/
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2.4 Modality Synthesis

While the proposed generative model enables one to segment and localise out-
of-model patterns, a simplified version of the model can also be used for image
synthesis. As the process of image synthesis cannot generate more information
than the one provided by the observed image x̃ and the priors, we can only look
at the inlier part of the described generative model

p(ỹi, x̃i, jn|lIi ,X , θ).

By integrating jn and assuming that x̃i is known but ỹi is unknown, one
obtains a mixture of mono-modal probability density functions. One can then
see this distribution p(ỹi|lIi ,X , θ) as a non-parametric probabilistic estimate of
ỹi using a Gaussian kernel support function, or conversely, a weighted kernel
density estimate with the weight given by the {x̃, xn} patch similarity. Under
this model, one can then:

– take random samples from p(ỹ|X , θ),
– estimate its expected value Eỹ[p(ỹ|X , θ)], which is approximately what is being

estimated in [3] but with a different local image similarity,
– calculate the most likely mode of the distribution (i.e. ŷ = argmaxỹ p(ỹ|X , θ)),

which provides the most likely intensity given the obtained distribution,
– or make use of the full distribution, providing estimates of the uncertainty of

the synthesis process,

all under the assumption of voxel-wise independence.

3 Experiments and Results

3.1 Quantitative Assessment of Image Synthesis in MRI-CT Data

Attenuation correction is an essential requirement for quantification of Positron
Emission Tomography (PET) data. In PET/CT acquisition systems, attenu-
ation maps are derived from Computed Tomography (CT) images. However,
in hybrid PET/MR scanners, Magnetic Resonance Imaging (MRI) images do
not directly provide a patient-specific attenuation map. Current state-of-the-art
techniques generate a synthetic CT image from MRI data, either by mapping
a tissue segmentation to specific attenuation values, or by directly synthesis-
ing the CT image from T1 MRI data [3]. Both these techniques assume that
the process of synthesis is deterministic. However, due to the lack of one-to-one
mapping between T1 and CT data, some regions can actually have more than
one possible cluster of intensities, i.e. the pseudoCT intensity distribution is
voxel-wise bimodal. In order to test the advantage of modelling the pseudoCT
distribution as a full mixture of Gaussians rather than generating a determin-
istic intensity, a set of T1-weighted MRI and CT pairs was acquired for 20
elderly subjects with multiple forms of dementia. We compared the state-of-the-
art method by Burgos et al. [3] to the proposed model. For the proposed model,
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Fig. 2. Top row, from left to right: the original T1-weighted MRI and the patient
CT, followed by the output of the method by Burgos et al. and the proposed model’s
expectation and mode. Bottom row, from left to right: the number of modes of p(ỹ|X , θ)
(1 mode = transparent, 2 modes = red, 3 modes = yellow), followed by four samples
of the same distribution. Note the sharp sinus region in the mode image. Also note
the number of modes of the distribution increases in uncertain or boundary regions
(Colour figure online).

we estimated the expected value Eỹ[p(ỹ|X , θ)], which should provide a result
similar to the averaging process of Burgos et al., and the mode of the distribu-
tion (i.e. ŷ = argmaxỹ p(ỹ|X , θ)), which should be beneficial in regions where the
pseudoCT distribution is bimodal. For the sake of completeness, we also estimate
voxel-wisely the number of modes of the estimated distribution, i.e. the number
of peaks in the distribution, and also took a few samples from the posterior pre-
dictive distribution to demonstrate that the samples vary more in regions with
more modes. Results are presented in Fig. 2. Note the sharper intensity in the
sinus region, an are which is prone to bimodal intensity distributions. Also note
that the four samples of p(ỹ|X , θ) are less compact in the sinus region. In order to
quantitatively assess the accuracy of the proposed methodology, we estimate the
mean squared error (MSE) between the real CT and the pseudo CT using [3], and
the per voxel expectation and the highest mode of p(ỹ|X , θ). The MSE is defined
as MSE = 1

|Ω|
∑

i(pseudoCTi − realCTi)2. The mean (std) MSE was found to
be 40767.4 (3118.3), 39205.9 (2884.1) and 37216.2 (2179.9) for [3], the expecta-
tion and the mode respectively. Due to the non Gaussian nature of the pairwise
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differences in MSE, a Wilcoxon Signed-Rank paired test was used for all statisti-
cal comparisons. The voxel-wise mode of p(ỹ|X , θ) performed statistically signif-
icant better (p < 0.05) in terms of MSE when compared to [3]. On the other side,
no significant different was found between the expectation Eỹ[p(ỹ|X , θ)] and [3].
Furthermore, to test the presence of bias in the synthesis process we also esti-
mated the mean error (ME), defined as ME = 1

|Ω|
∑

i(pseudoCTi − realCTi).
The mean (std) error for the proposed method was 3.2 (25.5) HU and did not
significantly differ from zero, supporting the idea that the current synthesis app-
roach is unbiased.

3.2 Quantitative Assessment of the Outlier Segmentation
Using Brainweb

The 3 multiple sclerosis (MS) datasets (mild, moderate and severe models) and
one normal anatomy dataset were generated using the BrainWeb MR image
simulator. Each dataset had both a simulated T1 and T2 MRI images, and for
the 3 MS datasets, an associated ground truth probabilistic lesion segmentation.
The simulated data was generated using a FLASH sequence with TR = 18ms,
TE = 10ms, α = 30◦ for the T1-weighted MRI, and using a spoiled DSE LATE
sequence with TR = 3300ms, TE = 35, 120ms, α = 90◦ for the T2-weighted
MRI, both with a 1-mm isotropic voxel size with simulated 3% noise [10].

As this experiment is solely testing the feasibility of the proposed method-
ology for the purpose of locating MS lesions under ideal conditions, the normal
anatomy T1 and T2 MRIs are used as a single pair X , i.e. N = 1. The method pro-

Fig. 3. Brainweb moderate MS model. Left to right) T1 and T2 MRI, groundtruth
lesion segmentation and the proposed lesion segmentation, folowed by the inlier obser-
vation model p(ỹi, x̃i, jn|lIi ,X , θ) and the outlier prior p(lOi |ỹi, x̃i, j,X , θ). Note that the
outlier prior combines p(ỹi, x̃i, jn|lIi ,X , θ) and the label priors.
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posed at the end of Sect. 2.2 is here compared to the classical EM-based outlier
segmentation method (OSM) [5] with κ = 3 as recommended. A representative
example of both the OSM and proposed methods’ results is presented in Fig. 3.
OSM obtained a Dice overlap of 3.8, 22.0 and 43.0, for the mild, moderate and
severe MS lesion loads respectively, and equivalently, a Dice overlap of 41.8,
51.6 and 65.5 for the proposed method. Note the dramatic increase in accuracy,
mainly for the mild MS model. No statistical comparison was performed for this
experiment because only three MS models are available in Brainweb.

3.3 Quantitative Assessment of the Outlier Segmentation
Using Diabetes Data

This validation aims to determine quantitatively the accuracy of type 2 diabetes
white matter lesion (WML) segmentation using the proposed segmentation algo-
rithm and the classical OSM method [5]. For this study, the 20 brain images from
the MRBrainS2013 challenge, comprised of both controls and Type 2 diabetes
patients (mean age 71 ± 4 years) with WML, were acquired on a 3T Philips
scanner with a 3D T1 (1 × 1 × 1mm), and fluid attenuated inversion recovery
(FLAIR) image (0.96 × 0.95 × 3 mm) were obtained. Further details about the
acquisition and data preprocessing (bias field correction and T1-FLAIR regis-
tration) is described in [11] and in the MRBrainS2013 website. Manual WML
segmentation was performed on FLAIR images.

Fig. 4. Subject 4 and 18 of the MRBrainS database. (From left to right) T1 and
FLAIR MRI, gold standard lesion segmentation, OMS segmentation, the proposed
segmentation and the outlier prior p(lOi |ỹi, x̃i, j,X , θ).

With the aim of segmenting only pathological FLAIR hyperintense WML
and not the non-pathology-related hyperintense choroid plexus, or the hypo-
intense iron accumulation in the globus pallidus (see the manual segmentation
in Fig. 4), the template observations X should contain some non-pathological
intensity outliers but no WML. This was achieved by lesion filling [12] the 20
datasets using the manual WML segmentations, which replaces the WML hyper
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intensities with normal WM intensities. A leave-one-out cross validation was then
used to segment the lesions, where for each one of the 20 subjects, the remaining
N = 19 lesion filled T1-FLAIR pairs were used as templates X , avoiding bias
due towards a subject’s morphology.

Example results are depicted in Fig. 4. Using both the Dice score and lesion
volume as accuracy measures, the proposed method obtained a Dice score of
0.45 and a volume R2 between estimated and the gold standard volume of 0.94,
while the OSM [5] method obtained a mean Dice score of 0.38 and a R2 of 0.55.
As the Dice score errors were Gaussian distributed (tested using the one-sample
Kolmogorov-Smirnov test on the residuals), a one-tailed T-test was chosen to
assess the presence of statistical significant differences in the Dice score. Under
this test statistic, the proposed method achieved statistically significantly higher
(p < 10−4) Dice overlap when compared to the OSM technique.

3.4 Proof-of-Concept Localisation of Anatomically Abnormal
Regions in Anatomical Oncology Data

In order to test the feasibility of the proposed algorithm to detect pathologies
with extreme presentation in anatomical imaging and to assess the robustness
of the algorithm to variations in image quality, structural contrast, and the
amount of outliers in the histogram matching approach, the proposed algorithm
was applied to the localisation of high grade tumours from the BRATS 2013
database. The 20 lesion filled T1 and FLAIR images from Sect. 3.3 were used
as the templates of non-pathological datasets X . As a proof-of-concept, results
for the first two subjects (0301 and 0302) of the training database are presented
in Fig. 5. Even with large differences in image contrast, the presence of large
lesions and large deformations and low contrast in both T1 and FLAIR images,

Fig. 5. Tumour localisation using MICCAI BRATS2013 data. Left to right) T1
and FLAIR MRI, synthetic FLAIR using the mode of p(ỹi, x̃i, jn|lIi ,X , θ) assum-
ing x̃ is observed, the inlier model p(ỹi, x̃i, jn|lIi ,X , θ) and outlier segmentation
p(lOi |ỹi, x̃i, j,X , θ).
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the proposed algorithm was able to localise the non-healthy regions of the image
without any pathology specific knowledge about a tumour appearance. Also, for
the sake of completeness, a synthetic image was generated using the mode of the
distribution. Note that even given a low quality T1 image, the synthetic image
is detailed in non-pathological areas.

3.5 Conclusions

This paper proposed a generative model of brain data based from a set of pre-
acquired templates. The algorithm enables not only a principled and extensible
solution to the problem of modality synthesis, but also a robust way to identify
abnormal patterns in medical images. As future work, the proposed framework
will be extended to more modalities, allowing it to make use of complemen-
tary imaging contrasts to jointly estimate the intensity distributions of multiple
modalities. We will also apply the algorithm to the localisation of inhomogeneous
pathologies, such as MS and vascular dementia, and other extreme abnormali-
ties, such as traumatic brain injury and cystic lesions. All software will be made
available at the time of publication.
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