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Abstract. In this paper we study the following problem, named Max-
imum Edges in Transitive Closure, which has applications in compu-
tational biology. Given a simple, undirected graph G = (V, E) and a
coloring of the vertices, remove a collection of edges from the graph such
that each connected component is colorful (i.e., it does not contain two
identically colored vertices) and the number of edges in the transitive
closure of the graph is maximized.

The problem is known to be APX-hard, and no approximation algo-
rithms are known for it. We improve the hardness result by showing that
the problem is NP-hard to approximate within a factor of |V |1/3−ε, for
any constant ε > 0. Additionally, we show that the problem is APX-
hard already for the case when the number of vertex colors equals 3. We
complement these results by showing the first approximation algorithm
for the problem, with approximation factor

√
2 · OPT.

1 Introduction

The Maximum Edges in Transitive Closure problem we consider in this paper
belongs to the framework of colorful components problems.

Colorful components framework: Given a simple, undirected graph G =
(V,E) and a coloring σ : V → C of the vertices with colors from a given set C,
remove a collection of edges E′ ⊆ E from G such that each connected component
in the resulting graph G′ = (V,E\E′) is a colorful component (i.e., it does not
contain two identically colored vertices). We want the graph G′ to be optimal
according to some fixed optimization measure.

In our problem, the optimization measure is the number of edges in the tran-
sitive closure. For a graph consisting of k connected components, each containing
respectively a1, a2, . . . , ak vertices, the number of edges in the transitive closure
of the graph is
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k∑

i=1

ai · (ai − 1)
2

.

Maximum Edges in Transitive Closure (MEC): Given a simple, undi-
rected graph G = (V,E) and a coloring σ : V → C of the vertices, remove
a collection of edges E′ ⊆ E from G such that each connected component in
the resulting graph G′ = (V,E\E′) is colorful, and the number of edges in the
transitive closure of G′ is maximum.

Motivation. The colorful components framework is motivated by applications in
comparative genomics [8,10], which is a fundamental branch of bioinformatics
studying the relationship of the genome structure between different biological
species. One of the key problems in this area, the multiple alignment of gene
orders, can be captured as a graph theoretical problem, using the colorful com-
ponents framework, where the colorful graphs represent similarity relationships
between genes from different homologous gene families. A partition into colorful
components corresponds then to a partition of genes into orthology sets, where
any two genes from the same genome belong to different orthology sets. We refer
the reader to [10] for a more detailed description of the connection between the
multiple alignment of gene orders and the graph theoretic framework considered.

The understanding of orthologous genes of two different genomes as originat-
ing from a single gene in the most recent common ancestor of the two species
leads to transitivity as a property of the orthology relation. This motivates the
study of MEC (see [10] for more details, and for a discussion why MEC yields
good results in practice).

Related Work. The Maximum Edges in Transitive Closure problem has been
introduced by Zheng et al. [10]. They present heuristic algorithms for the prob-
lem, without giving any worst-case approximation guarantee. They also conjec-
ture the problem to be NP-hard. Adamaszek and Popa [1] prove that MEC is
APX-hard, even in the case of 4 vertex colors.

The colorful components framework appeared first in the paper by Zheng
et al. [10] and has been formally defined by Adamaszek and Popa [1], although
problems which fit into this framework have already been studied earlier. We
now summarize known results for these problems.

In the problem named either Colorful Components [3,4] or Minimum Orthog-
onal Partition [5,10], the objective function is to minimize the number of edges
removed from G to obtain a graph in which all connected components are color-
ful. Bruckner et al. [4] show that the problem is NP -hard for three or more colors
and they study fixed-parameter algorithms for the problem. Their NP -hardness
reduction can be modified slightly to show the APX-hardness of the problem
(see [1]). Zheng et al. [10] and Bruckner et al. [3] study heuristic approaches
for the problem, and He et al. [5] present an approximation algorithm for some
special case of the problem. As the general problem is a special case of the
Minimum Multi-Multiway Cut problem, it admits a O(log |C|) approximation
algorithm [2].
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Zheng et al. [10] introduce the Minimum Singleton Vertices problem (MSV),
where the goal is to minimize the number of isolated vertices in the resulting
graph. Zheng et al. [10] present heuristic algorithms for the problem, without
giving any worst-case approximation guarantee. They also conjectured that the
problem is NP-hard. Tremblay-Savard and Swenson [9] consider a Maximum
Orthogonal Edge Cover problem (MAX-OREC), which is a dual problem to
MSV. There, the goal is to cover a maximum number of vertices of a graph
using vertex-disjoint, non-singleton connected colorful subgraphs. In [9], a 2/3-
approximation algorithm for MAX-OREC is presented. Adamaszek and Popa [1]
prove that MSV (and therefore also MAX-OREC) can be solved exactly in poly-
nomial time, thus disproving the conjecture in [10].

Adamaszek and Popa [1] introduce another problem, termed Minimum Col-
orful Components, in which the goal is to delete a subset of edges such that
the resulting graph has only colorful components and the number of connected
components is minimized. They show that this problem cannot be approximated
within a factor of |V |1/14−ε unless P = NP , and within a factor |V |1/2−ε unless
ZPP = NP .

Our Results. In this paper we improve the hardness results for the MEC problem,
and we present the first approximation algorithm.

First, we show that MEC is APX-hard even for the case when |C| = 3. This
settles the complexity of the problem when the number of colors is a constant,
as for |C| = 2 the MEC problem can be solved exactly in polynomial time by
using a maximum matching algorithm. Our proof is via a reduction from the
Maximum Bounded 3-Dimensional Matching problem (Max 3-DM-3).

For the general case, when the number of colors is arbitrary, we show that
MEC is NP-hard to approximate within a factor of |V |1/3−ε for any constant
ε > 0. This result holds even if the input graph is a tree and each color appears
at most twice in the graph. We use the same reduction from the Independent Set
as Rizzi and Sikora for proving hardness of approximation of the Graph Motif
problem [7].

We also show the first polynomial-time approximation algorithm for MEC,
which has a ratio of

√
2 · OPT. We use the exact polynomial time algorithm for

the Minimum Singleton Vertices problem [1] to obtain a partition into colorful
components and then we show that this partition has a big enough number of
edges in the transitive closure.

2 APX-hardness of MEC for |C| = 3

In this section, we prove that the MEC problem restricted to instances using
only 3 colors is APX-hard. The proof is via a reduction from the Maximum
Bounded 3-Dimensional Matching problem. This result strengthens the one pre-
sented in [1], which holds for problem instances using 4 colors.

Before we give the reduction, we first state the definition of Max 3-DM-3 and
the known hardness result for it.

Maximum Bounded 3-Dimensional Matching (Max 3-DM-3): The input
consists of pairwise disjoint sets X, Y , Z and a collection T ⊆ X × Y × Z of
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triples such that each element from X, Y and Z occurs in at least one and at
most three triples in T . The aim is to find a feasible subset of triples T ′ ⊆ T
(i.e., no two elements of T ′ agree on any coordinate) of maximum cardinality.

Theorem 1 (Theorem 4.4 in [6], Rephrased). There exists a constant ε > 0
such that it is NP-hard to distinguish between the instances of Max 3-DM-3 with
the following properties:
1. There is a feasible collection of triples T ′ ⊆ T such that every element of X,

Y and Z belongs to some triple in T ′.
2. For every feasible collection of triples T ′ ⊆ T less than (1 − ε) fraction of

elements from X ∪ Y ∪ Z belong to some triple of T ′.

Without loss of generality we can assume that |X| = |Y | = |Z| = n, since if |X|,
|Y | and |Z| are different, then the case 1 of Theorem 1 cannot hold. Also, define
N = |T |. It holds that N ≤ 3n, since each element of X ∪ Y ∪ Z appears in
at most three triples. In the rest of the section, we use OPT3DM to denote the
size of an optimal solution of a Max 3-DM-3 instance (the instance we refer to
will always be clear from the context), and OPTMEC to denote the value of an
optimal solution (i.e., the number of edges in the transitive closure of the graph)
of the MEC instance obtained via the reduction.

Reduction. Given an instance (X,Y,Z, T ) of Max 3-DM-3, we create an
instance (G = (V,E), σ) of the MEC problem in the following way. See Fig. 1 for
a partial illustration. We create the set of vertices V as follows.
1. For each triple tj ∈ T , we add six vertices {tXj , tYj , tZj , tXY

j , tXZ
j , tY Z

j }.
2. For each element xi ∈ X (resp. yi ∈ Y and zi ∈ Z), we add a corresponding

vertex xi (resp. yi and zi).

We have that |V | = 6 · |T | + |X| + |Y | + |Z| = 6N + 3n. Let us now define the
coloring σ : V → C of the vertices using the set of colors C = {1, 2, 3}.
1. For any 1 ≤ i ≤ n and 1 ≤ j ≤ N , σ(xi) = σ(tXY

j ) = σ(tZj ) = 1.
2. For any 1 ≤ i ≤ n and 1 ≤ j ≤ N , σ(yi) = σ(tY Z

j ) = σ(tXj ) = 2.
3. For any 1 ≤ i ≤ n and 1 ≤ j ≤ N , σ(zi) = σ(tXZ

j ) = σ(tYj ) = 3.

Finally, let us define the collection of edges E.
1. For each 1 ≤ j ≤ N , each of {tXj , tXY

j , tXZ
j }, {tYj , tXY

j , tY Z
j }, {tZj , tXZ

j , tY Z
j }

forms a clique of size three.
2. For each 1 ≤ i ≤ n and 1 ≤ j ≤ N , if xi (resp. yi and zi) appears in tj ,

connect xi (resp. yi and zi) to tXj (resp. tYj and tZj ).

Analysis. Informally, we show that an instance of Max 3-DM-3 where all the
vertices X ∪ Y ∪ Z can be covered by a feasible collection of triples T ′ corre-
sponds to an instance of MEC with a large optimal value, i.e., the graph can
be partitioned into colorful components inducing a large transitive closure. On
the other hand, we show that an instance of Max 3-DM-3 where no more than
(1 − ε) fraction of the vertices X ∪ Y ∪ Z can be covered by any feasible set of
triples corresponds to an instance of MEC with a much smaller optimal value.
We now analyze both cases.
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xi
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j
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j
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tZj

tY Z
j

Fig. 1. A subgraph corresponding to a triple tj = (xi, yk, zl). Colors of the vertices are
denoted using the line styles: solid, dotted and dashed lines respectively corresponds
to colors 1, 2 and 3.

Lemma 1. Let (X,Y,Z, T ) be an instance of Max 3-DM-3 where OPT3DM = n,
i.e., where all the vertices of X ∪ Y ∪ Z can be covered by a feasible collection
of triples. Then for the corresponding instance of MEC, we have OPTMEC ≥
6N + 3n.

Proof. The colorful components of the MEC instance are constructed as follows.
For each triple tj ∈ T ′ (there are n of them), we add three colorful components,
each component consisting of three vertices. Given a triple tj = (xi, yk, zl), the
colorful components are {xi, t

X
j , tXZ

j }, {yk, tYj , tXY
j } and {zl, t

Z
j , tY Z

j }. For each
triple tj′ ∈ T \T ′ (there are N −n of them), we create two colorful components,
each consisting of three vertices: {tXj′ , tXZ

j′ , tZj′} and {tXY
j′ , tYj′ , tY Z

j′ }. See Fig. 2 for
an illustration.

As T ′ is a feasible collection of triples, that is a set of triples such that no two
elements agree on any coordinate, we obtain a feasible partition of the graph into
colorful components. Clearly, the total number of edges in the transitive closure
equals 9n + 6(N − n) = 6N + 3n, since each of the n triples in T ′ induces three
colorful components of size three and each of the N − n other triples induces
two colorful components of size three. 	


Lemma 2. Let (X,Y,Z, T ) be an instance of Max 3-DM-3 where OPT3DM <
(1 − ε)n, i.e., where every feasible collection of triples covers less than a (1 − ε)
w of vertices X ∪ Y ∪ Z. Then, for the corresponding instance of MEC, we have
OPTMEC < 6N + 3n(1 − ε/2).

Proof. Let (G = (V,E), σ) be the instance of the MEC problem corresponding
to an instance of Max 3-DM-3 as defined in the lemma statement. For any triple
tj = (xi, yk, zl) ∈ T , let Gtj be a subgraph of G induced by the following set of
vertices {xi, yk, zl, t

X
j , tYj , tZj , tXY

j , tXZ
j , tY Z

j }, as shown in Fig. 1.
Let us fix an optimal solution S for the MEC problem for (G, σ). This solu-

tion defines a partition Γ of G into colorful components. First, notice that each
colorful component is contained within some subgraph Gt. Indeed, by construc-
tion, the only vertices which belong to multiple subgraphs Gtj are the vertices
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Fig. 2. Colorful components (defined by bold edges) for a triple from T ′ (left) and a
triple from T \ T ′ (right).

{xi, yi, zi | 1 ≤ i ≤ n}. Moreover, for 1 ≤ i ≤ n, each vertex xi (resp. yi and
zi) has only neighbours of color 2 (resp. 3 and 1) in G, and therefore is a leaf in
its colorful component. Finally, there are no edges between vertices (excluding
{xi, yi, zi | 1 ≤ i ≤ n}) belonging to different subgraphs Gtj and Gtj′ , with
1 ≤ j, j′ ≤ N .

We will now partition G into vertex-disjoint subgraphs G′
t for t ∈ T , such that

G′
t is a subgraph of Gt (possibly Gt itself), and each colorful component from our

fixed partition Γ is contained within a single graph G′
t. We proceed as follows.

Each vertex from {tXj , tYj , tZj , tXY
j , tXZ

j , tY Z
j } belongs to a single subgraph Gtj ,

therefore it belongs also to the subgraph G′
tj . We assign each vertex xi (resp.

yk and zl) to one subgraph G′
tj , in such a way that we do not split any colorful

component. That means that if xi (resp. yk and zl) is in the same colorful
component as tXj (resp. tYj and tZj ), we assign it to G′

tj . If the colorful component
containing xi (resp. yk and zl) is a singleton, we assign the vertex arbitrarily.

Now each subgraph G′
tj , with tj = (xi, yk, zl), contains 6, 7, 8 or 9 vertices

({tXj , tYj , tZj , tXY
j , tXZ

j , tY Z
j } and a possibly empty subset of {xi, yk, zl}). Let us

denote by g6, g7, g8 and g9 the number of subgraphs G′
t containing 6, 7, 8 and 9

vertices, respectively. We have g6+g7+g8+g9 = N . Moreover, g7+2·g8+3·g9 =
3n, since each vertex xi, yk and zl belongs to exactly one subgraph G′

t.
As we observed earlier, all colorful components from the partition Γ are

contained within the above-defined subgraphs G′
t. Therefore the solution S to

the MEC problem on (G, σ) is a union of solutions St for the MEC problem for
the graphs (G′

t, σ|G′
t
). Now observe the following.

1. The value of an optimal MEC solution for (G′
t, σ|G′

t
) for a subgraph G′

t on
6 vertices is at most 6 (value 6 is achieved when the solution consists of two
colorful components of 3 vertices each).

2. The value of an optimal MEC solution for (G′
t, σ|G′

t
) for a subgraph G′

t on
7 vertices is at most 6 (value 6 is achieved when the solution consists of two
colorful components of 3 vertices each, and one singleton).
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3. The value of an optimal MEC solution for (G′
t, σ|G′

t
) for a subgraph G′

t on
8 vertices is at most 7 (value 7 is achieved when the solution consists of two
colorful components of 3 vertices and one component of 2 vertices).

4. The value of an optimal MEC solution for (G′
t, σ|G′

t
) for a subgraph G′

t on 9
vertices is at most 9 (value 9 is achieved when the solution consists of three
colorful components of 3 vertices each).

Now, assume toward a contradiction that OPTMEC ≥ 6N +3n(1−ε/2), i.e., the
value of S is at least 6N + 3n(1 − ε/2). We just mentioned that each subgraph
G′

t (there are N of them in total) of size 6 (7,8,9) contributes at most a value of
6 (6,7,9, respectively) towards the value of S. Thus, we must have

g8 + 3 · g9 ≥ 3n(1 − ε/2). (1)

We already know that
2 · g8 + 3 · g9 ≤ 3n. (2)

Multiplying inequality (1) by 2 and inequality (2) by −1 and adding them
yields the inequality g9 ≥ n(1 − ε).

Notice that a subgraph G′
t on 9 vertices corresponds to a triple from T .

Moreover, any two such triples are disjoint. As g9 ≥ n(1−ε), in the corresponding
Max 3-DM-3 instance, we can cover at least a (1−ε) fraction of elements X∪Y ∪Z
by disjoint triples, which contradicts the lemma statement. Therefore, we must
have OPTMEC < 6N + 3n(1 − ε/2). 	

Let us now derive the APX-hardness of MEC for instances where vertices are
colored using 3 colors from the above lemmas.

Theorem 2. The Maximum Edges in Transitive Closure problem is APX-hard,
even for |C| = 3.

Proof. From Theorem 1, we know that it is NP-hard to distinguish between
instances of Max 3-DM-3 such that OPT3DM = n or OPT3DM < (1 − ε)n. From
Lemmas 1 and 2, it is NP-hard to distinguish between instances of MEC for which
OPTMEC ≥ 6N + 3n and instances for which OPTMEC < 6N + 3n(1 − ε/2).

Since N ≤ 3n, we get that it is NP-hard to approximate MEC within some
constant factor, i.e., MEC is APX-hard. As all MEC instances considered here
use only 3 colors, MEC is APX-hard already for |C| = 3. 	


3 Approximation of MEC for an Unbounded
Number of Colors

3.1 A Positive Result

In this section we show that the MEC problem for an unbounded number of
colors admits approximation within a factor of

√
2 · OPT. The algorithm is an
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exact polynomial time algorithm for the Minimum Singleton Vertices (MSV)
problem from [1]. Let us first restate the definition of the MSV problem.

Minimum Singleton Vertices: Given a simple, undirected graph G = (V,E)
and a coloring σ : V → C of the vertices, remove a collection of edges E′ ⊆ E
from the graph such that each connected component in G′ = (V,E \ E′) is
colorful and the number of isolated vertices is minimum.

Theorem 3 ([1]). The MSV problem can be solved exactly in polynomial time.

We are now ready to prove our result.

Theorem 4. The MEC problem admits a polynomial-time
√

2 · OPT approxi-
mation algorithm.

Proof. We show that the exact MSV algorithm is a
√

2 · OPT-approximation
algorithm for MEC. Let G = (V,E) be the input graph and let OPT be the
value of an optimal solution (i.e., the number of edges in the transitive closure)
of the MEC problem on G.

Let GMSV be the graph obtained by running the exact MSV algorithm on
G. Clearly, as each connected component of GMSV is colorful, GMSV is a feasible
solution for the MEC problem.

Let IMEC be the number of isolated vertices in an optimal solution of the
MEC problem, and let IMSV be the number of isolated vertices in GMSV. We
have IMSV ≤ IMEC.

We have OPT ≤ (|V |−IMEC
2

)
, since the largest possible value of OPT is

achieved when all the vertices that are not isolated are in the same connected
component.

Define ValMSV to be the number of edges in the transitive closure of GMSV.
We get that ValMSV ≥ (|V | − IMSV)/2. Thus, we have

OPT
ValMSV

≤
√

OPT · 1√
2
(|V | − IMEC)

1
2 (|V | − IMSV)

≤
√

2 · OPT ,

as |V | − IMEC ≤ |V | − IMSV. 	


3.2 A Negative Result

In this section, we show that the MEC problem is NP-hard to approximate
within a factor of |V |1/3−ε for any constant ε > 0. This result holds even if the
input graph is a tree and each color appears at most twice in the graph. We use
the same reduction as Rizzi and Sikora for proving hardness of approximation
of the Graph Motif problem [7].

Reduction. We make a reduction from the Maximum Independent Set problem
(MIS). Let G = (V,E) be a MIS instance, and let n = |V |. We create an instance
G′ = (V ′, E′) of MEC in the following way. See Fig. 3 for an illustration.

The set of vertices V ′ consists of the following vertices:
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vc1

vc36
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v1
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Fig. 3. Reduction from an instance G of MIS (left) to an instance G′ of MEC (right).
The only pairs of vertices in G′ sharing the same color are vertices vuw and vwu for
u, w ∈ {a, b, c, d, e, f}. An independent set in G corresponds to a colorful component
in G′ containing the root vertex r (gray vertices).

1. a special vertex r colored with a unique color cr,
2. for each edge uw ∈ E, vertices vuw and vwu colored with the same color cuw,
3. for each vertex u ∈ V , a collection of n2 vertices vu

1 , vu
2 , . . . , vu

n2 colored with
unique colors cu

1 , cu
2 , . . . , cu

n2 .

The resulting graph G′ will be a tree on the set of vertices V ′, rooted at r. For
each vertex u ∈ V , we add to G′ a path starting at r which visits all vertices
vuw (in an arbitrary order), and then all vertices vu

1 , vu
2 , . . . , vu

n2 .

Analysis

Lemma 3. If G = (V,E) has an independent set of size α, then there is a
solution for the corresponding instance G′ of the MEC problem with value at
least

(
αn2

2

)
.

Proof. Let VI ⊆ V be an independent set in G consisting of α vertices. We will
show that there is a colorful component in G′ consisting of at least α ·n2 vertices.

We construct the set V ′
C (see Fig. 3) in the following way. It consists of the

root vertex r, together with all vertices lying on the paths corresponding to
the vertices u ∈ VI (i.e., the vertices vuw where w ∈ V and uw ∈ E, and the
vertices vu

i for i = 1, . . . , n2). The subgraph of G′ induced by V ′
C is connected

and consists of at least α · n2 vertices. The subgraph is colorful, as from the
construction of G′ if two vertices lying on two paths of G′ have the same color,
then the vertices of G corresponding to these paths are connected by an edge,
and therefore they cannot belong to an independent set.
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The decomposition of G′ into a component induced by V ′
C and singletons is

a feasible partition into colorful components, and its transitive closure has at
least

(
αn2

2

)
edges. 	


Lemma 4. If there is a solution for the instance G′ of the MEC problem of
value at least n5/2 + α2 · n4, then G has an independent set of size at least α.

Proof. First, notice that any colorful component which does not contain the
root vertex r consists of less than n2 + n vertices. Now, consider the colorful
component V ′

C containing r. Let VI ⊆ V be the subset of vertices u of G for
which vu

1 ∈ V ′
C . From the construction of the graph G′, VI is an independent set

in G. We will, now, show a lower bound on |VI |.
For any vertex u ∈ V , if u /∈ VI , then V ′

C contains at most n vertices from the
path of G′ corresponding to u. If u ∈ VI , then V ′

C contains at most n+n2 vertices
from this path. We get that |V ′

C | ≤ n2 + |VI |n2. As |V ′| < n3 + n2, we have that
OPTMEC < (n3 + n2) · (n2 + n)/2 + |VI |2 · n4/2. We get that |VI | ≥ α. 	

Theorem 5. It is NP-hard to approximate the MEC problem within a factor of
|V |1/3−ε.

Proof. The MIS problem is NP-hard to approximate within a factor of n1−ε for
any constant ε > 0 [11]. In particular, it is NP-hard to distinguish whether a
graph G has a maximum independent set of size at most nε, or at least n1−ε.

In the first case, by Lemma 4, OPTMEC ≤ n5/2 + n4+2ε. In the second case,
by Lemma 3, OPTMEC ≥ n6−2ε/2. As the number of vertices of G′ is in Θ(n3),
we get that approximating MEC within a factor of |V |1/3−ε is NP-hard. 	


4 Conclusions and Future Work

In this paper we show several approximation and hardness results for the Max-
imum Edges in Transitive Closure Problem. First we prove that the problem is
NP-hard to approximate within a factor of |V |1/3−ε, for any constant ε > 0.
Additionally, we show that the problem is APX-hard already for the case when
the number of vertex colors equals 3. We complement these results by showing
the first approximation algorithm for the problem, with approximation factor√

2 · OPT.
There are several directions for future work. First, it would be interesting to

close the gap between the approximation upper and lower bounds by showing an
approximation algorithm with a better ratio or improving the hardness result.
Another way to extend the current set of results would be to also consider the
problem of maximizing the number of edges in the connected components and
to identify and highlight similarities and differences between the two variants.
Maximising the number of edges in the components has the same complexity
as problem which asks to delete the minimum number of edges (it is the dual
problem which is known to be NP-hard). Nevertheless, from the approximation
point of view, these two problems are different.
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Another direction would be to consider approximation guarantees that take
the number of colors into account. However, we believe that there is not much
room for improvement in this direction. The presented approximation algorithm
has a ratio of (C − 1)/4, where C is the number of colors and, due the hardness
results, we cannot hope for a much better approximation.
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