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Abstract Grind-hardening process has a history of almost 20 years. Since its 
introduction, numerous studies have been presented focusing on a number of 
aspects of the process such as the modelling of the process, the impact of the 
 process parameters, the grinding wheel importance, etc. In the present chapter, the 
relevant literature to grind-hardening process is classified and summarized. More 
than 100 papers have been reviewed.

2.1  Introduction

In conventional grinding of hardened steels, the thermal impact on the surface 
layer can result in surface layer damages due to structural alterations by annealing 
or re-hardening. By annealing, the surface layer hardness can be reduced signifi-
cantly, which causes a decrease of the wear resistance and rolling contact strength. 
Due to the extreme hard and brittle martensitic structure at the surface and an 
annealed zone lying beneath, re-hardened layers are characterized by very steep 
hardness gradients. Combined with surface stresses, this can cause crack initiation 
and crack propagation. In contrast to this, in grind hardening the heat dissipated in 
the contact zone between grinding wheel and workpiece is used for the material’s 
surface layer austenitization. The critical cooling rate demanded for martensitic 
hardening of the austenitized surface layer is mainly achieved by self-quenching 
mechanism and supported by the ambient cooling lubricant. Due to the kinemati-
cal contact conditions in grinding, grind hardening is a short-time metallurgical 
process applying austenitization durations of splits of seconds.

Grind-hardening process is a relatively new one that was introduced by 
Brinksmeier and Brockhoff [1] in mid 1990s. However, the possibility of using the 
heat generated during grinding for changing the material’s structure had been already 
studied by Eda et al. [2], Shaw and Vyas [3], and Zhang and Mahdi [4]. Since the 
introduction of the process, the interest in the process has been increased internation-
ally as can be seen in Fig. 2.1 by the rising numbers of publications. Since 1995, 
112 relevant publications were collected through searching scientific paper databases 
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(such as Scopus, Web of Science, Google Scholar etc.) and scientific publishers’ 
archives. 30 % of these papers have been published in scientific journals whereas the 
rest were presented in scientific conferences after review. Two PhD theses and a pat-
ent on the grind-hardening process were also found. The present chapter highlights 
the state of the art with regards the grind-hardening process since its introduction in 
1995. In a recent study, Klocke et al. [104] introduced a systematic design method 
that suggests that grind-hardening process was developed in order to overcome and 
enhance the limits of today’s production technologies. 

2.2  Grind-Hardening Process Overview

In industry, a number of different heat treatment methods for the production of the 
required surface layer properties are used, as was discussed in Chap. 1. The prob-
lem is that these processes cannot simply be integrated into the production line 
thus causing economical disadvantages. Furthermore, the manufacturing of high-
quality steel parts involves usually grinding processes. Grind hardening (Fig. 2.2) 
is a process combining the grinding and heat treatment processes into one. It uti-
lizes the friction-generated heat flow, in order to achieve high surface hardness. 
The surface hardness of the workpiece is increased by the dissipation of the heat 
into the workpiece. The heat dissipation increases the surface temperature of the 
workpiece in the austenitic range. Due to high heat flow rates and rapid advance-
ment of the grinding wheel, the workpiece area left behind the grinding wheel is 
subjected to rapid quenching, mainly due to heat absorption from inner cold areas 
of the workpiece. This self-quenching process induces martensitic transformation 
to the workpiece material, resulting in hardness improvement.

The main process parameters are the workpiece speed, the depth of cut, the cut-
ting speed, the workpiece material and the grinding-wheel type; while the result 

Fig. 2.1  Results of the 
literature research
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can be described from the hardness penetration depth (HPD) and the surface hard-
ness. Hardness quantitatively represents the degree to which a metal will resist 
cutting, abrasion, penetration, bending and stretching. HPD on the other hand is 
the depth beneath the workpiece surface where the hardness has decreased to 80 % 
of the nominal hardness value on the surface.

A first concern in grind hardening is the proper selection of process parameters, 
so as to produce enough heat at the contact zone enabling the heat treatment of 
the workpiece. Moreover, the proper parameter selection must allow for suitable 
conditions for the quenching of the material in order to achieve maximum surface 
hardness.

The surface hardness and the HPD are mainly influenced by the material type 
and the temperature distribution in the workpiece. The surface hardness depends 
on the carbon content of the workpiece and the cooling rate. On the other hand, 
the HPD depends on the temperature field in the workpiece.

2.3  Fundamental Mechanisms in Grind Hardening

Heat treatment methods are utilized in order to alter the technological properties 
such as the strength, wear resistance, fatigue strength, hardness, impact strength 
and tendency for brittleness. Steels can be heat treated to produce a great vari-
ety of microstructures and thus obtain desired surface properties. The hardening 
mechanism is based on the phase transformation of austenite to martensite.

The steel before any heat treatment process has ferrite–pearlite structure (face-
centred cubic). During grind hardening, heat flow from the contact zone dissipates 
in the steel, resulting in the increase of the surface temperature. There is a critical 
temperature at which the carbides in the lamellar pearlite begin to dissolve into 
iron. As the temperature is raised, more of the carbides are dissolved until the steel 
consists completely of a solid solution of carbon in iron called austenite (face-cen-
tred cubic lattice structure). These critical temperatures where the ferrite–pearlite 
transformations commences and finishes are depended on the carbon content of 
the steel and are derived from iron–carbon phase diagrams.

Fig. 2.2  Grind-hardening 
process outline

2.2 Grind-Hardening Process Overview
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If the austenite-structured steel was left to cool in quasi-state mode, the austen-
ite would be transformed back to ferrite–pearlite structure. Martensite is induced 
due to the rapid cooling or quenching in order to avoid the diffusion-dependent 
transformation that produces ferrite–pearlite. The exact cooling conditions that 
will result in martensite structure in any steel alloy are strongly dependent on car-
bon content, alloying and austenitic grain size.

The martensitic transformation is characterized by shearing of the austenite lat-
tice (face-centred cube) to the martensite lattice (tetragonal deformed) without dif-
fusion (Fig. 2.3), and therefore, the martensite has exactly the same composition 
as does its parent austenite, up to 2 % carbon, depending on the alloy composition. 
Since the diffusion is suppressed, the carbon atoms do not partition themselves 
between cementite and ferrite-pearlite but instead are trapped in the octahedral 
sites of the martensitic body-centred cubic structure.

The shear mechanism for the martensite formation is based on the simultaneous 
and cooperative movement of atoms in contrast to atom-by-atom movement across 
interfaces during diffusion-dependent transformation.

The critical cooling rate needed for martensite formation, for the case of grind 
hardening, is reached either by heat dissipation from the austenized surface layer to 
the cooler workpiece core or by using a coolant fluid. This immediate transformation 
due to self-quenching presents some advantages in comparison to through-hardening. 
Grind hardening along with laser hardening and induction hardening are categorized 
as short-time heat treatment processes due to the very short time required for heating 
and subsequently quenching. In contradiction to processes that require heating using 
furnaces and quenching in suitable mediums and are characterized as long-time pro-
cesses. The heating rate for grind hardening was estimated to be 107–108 C/s and 
the heat affecting time is normally less than one second, whereas through heat treat-
ment with all the process cycle times taken into consideration (heating, normalizing, 
quenching, tempering, etc.) may require up to 24 h processing.

Concerning their homogeneity, short-time austenized, hypoeutectoid steels differ 
just negligibly from long-time austenized steels, because the subsiding homogeni-
zation occurs very quickly (normalization). In short-time treatment of hypereutec-
toid steels containing higher carbon contents, the risk of overheating the material 
exists, that could lead to coarser martensite needles and more retained austenite 
within the hardened structure. In short-time heat treatment processes generally the 

Austenite (fcc-latice): 2 
neighbouring elementary 

cells.

A tetragonal lattice is 
virtually present in the 

fcc– lattice. 

By locating carbon in octahedral gaps 
of the austenite, the tetragonal 

distorted martensitic lattice arises.

Fig. 2.3  Martensite formation
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austenizing time is decreased with increasing energy density in the surface layer 
to avoid melting of the material. As a result, the achievable hardness penetration 
depth decreases. The thermal aftereffect on martensite is suppressed due to rapid 
self-quenching, whereby an extremely fine-grained martensitic structure remains.

2.4  Alternative Process Chains

Grind-hardening process makes possible the integration of surface heat treatment 
not only into the production line, but moreover into the machining process [5]. 
The result of such integration will be the shortening of the production sequences 
and the subsequent reduction of the cost. The reduction of cost is justified by the 
substitution of a number of process steps (less machine set-ups) such as clean-
ing and transportation to the heat treatment department (Fig. 2.4). Conventional 
heat treatment methods are not categorized as “eco-friendly” processes due to the 
excess use of chemical additives, salts and oil quenchants. On the contrary, grind 
hardening is based on the efficient energy usage philosophy, utilizing the heat gen-
erated during grinding to harden the surface layer of the machined part.

2.5  Fundamental Investigations—Feasibility Studies

A number of aspects need to be considered for the controlling of the grind-harden-
ing processes. Some of these aspects can be considered as system parameters and 
some as grinding process parameters. For example, the systems parameters include 
the grinding wheel, the grinding fluid, the workpiece material and geometry and the 
machine tool. On the other hand, the process parameters that need to be considered 
include the cutting speed, the depth of cut, the feed speed and the grinding fluid 
supply. Figure 2.5 summarizes the most influencing parameters on grind hardening.
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2.5.1  Workpiece Material

Fundamental investigations on the process indicate that the hardening result is 
dependent on the chemical composition and the microstructure of the material, 
the grinding wheel specification and the process parameters. Conventional heat 
treatment interrelations are evidenced for grind hardening as well. Generally, mar-
tensitic hardenable steels can be ground-hardened. The most applicable metals 
for grind hardening are the heat-treatable and ball-bearing steels (Table 2.1). The 
hardening result is determined by the carbon content and the content of alloying 
elements. The maximum surface hardness that can be obtained is approximately 
60 HRC. The comprehensive literature review has shown that research has been 
conducted on all possible materials (Table 2.2). However, most of the researchers 
have focused on AISI 52100, AISI 1045, AISI 1065, AISI 4140 and AISI 5140.

AISI 5120 was possibly the first material to be investigated for grind-harden-
ing process [1]. AISI 52100 is a high-carbon, chromium containing low alloy steel 
and is considered a typical bearing steel alloy. The maximum hardness that can be 
achieved is usually close to 800 HV with a hardness penetration depth exceeding 
300 μm [1, 6]. In a number of studies, though hardness penetration depths close 
to 1 mm when using lower feed speeds have been reported (indicative sources:  
[6–8]). In most cases the resulting residual stress profile exhibits compressive 
stresses close to the surface and can be controlled by careful consideration of the 
grinding parameters [9].

AISI 1045 is a medium-tensile steel used for a range of different applica-
tions such as gears, axles and rolls that require local hardening. It has low 
 through-hardening capability, but can be hardened locally up to hardness levels 
of 54–60 HRc (400–550 HV). Usually, this hardening takes place through flame 
or induction hardening. As can be seen in Table 2.2, a number of investigations 
on grind hardening of this alloy that have been published were reported success-
ful operations. Zurita et al. [10] reported quite lower achievable hardness (up to 
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250 HV); however, Nguyent et al. [11, 12] reported hardness up to 700 HV under 
dry grind hardening conditions and almost 1,000 HV when assisting the cooling 
with liquid nitrogen. The typical hardness penetration depth achieved is approxi-
mately 0.5 mm (in almost all studies reviewed). The residual stresses profile can 
be controlled in order to achieve compressive stresses close to the surface of the 
workpiece [11, 13, 14].

AISI 1065 is a high-carbon steel. Grind hardening of such workpiece materials 
can result in (close to surface) hardness in the range of 810–870 HV [15, 16]. The 
achievable hardness penetration can reach up to 2.0 mm as has been reported by 
Liu et al. [15]. No studies were reported on the residual stresses profile.

AISI 4140 was also among the first workpiece materials to be investigated for 
grind-hardening process [1, 5]. The maximum achievable hardness is close to 800 
HV [1, 5] and the hardness penetration depth that can be achieved is up to 1.0 mm 
[5]. Fricker et al. [17] presented experimental results of hardness penetration depth 
values close to 2.0 mm. Compressive residual stresses can be achieved in the white 
etching areas and the following area of etchable martensite.

Grind hardening of AISI 5140 has been extensively investigated as can be seen 
in Table 2.2. Hardness can be increased up to 750 HV, with a hardness penetration 
depth of 1.6 mm [18–20]. Compressive residual stresses can be achieved at the 
surface of the workpiece material [21, 22].

AISI D2 is a high-carbon, high-chromium tool steel. It can be heat-treated and 
the hardness can be increased in the range 55-62 HRC. Typically, it is used for 
manufacturing dies, punches and rolls. Successful grind hardening of such mate-
rial has been investigated in few studies [23–25]. Finally, one study per AISI 1060, 
1066 and 4340 workpiece materials has been presented, and thus no strong con-
clusions can still be drawn for these alloys.

One of the prerequisites for hardening is sufficient carbon and alloy content. 
The materials that can be hardened with grind-hardening process usually have at 
least 0.3 % carbon content. Nevertheless, few papers have been published where 
successfully grind-hardening alloys of less than 0.3 % carbon content (such as 
AISI 1020 [26]) is reported.

Table 2.2  Grind hardening studies presented classified per material

Alloy steel designation Equivalent designation  
used in the studies

Relevant studies

AISI 1020 [35]

AISI 1045 C45E4, #45 [10–14, 26, 36–48]

AISI 1060 [49]

AISI 1065 65Mn [15, 16, 50–55]

AISI 1066 [56]

AISI 4140 42CrMo4 [1, 5, 17, 48, 57–60]

AISI 4340 [61]

AISI 5140 40 Cr, 41Cr4, 48MnV [18–22, 45, 47, 62–72]

AISI 52100 100Cr6 [1, 4–9, 27, 29–33, 48, 73–78]

AISI D2 SKD-11 [23–27]



21

Furthermore, the initial microstructure (pre-treatment) of the material is critical 
for the hardening result. In grind hardening, steels in annealed or tempered initial 
state are hardened. Due to finer dispersion of carbon, tempered initial states lead 
to reduced diffusion ways and advantageous conditions during austenitization. 
Deeper hardness penetration depths can be achieved for a tempered material than 
for an annealed material as pointed out by Brockoff [5] for the case of AISI 52100. 
Furthermore, the transition from the maximum hardness down to the hardness of 
the bulk material appears much steeper as for the tempered steel. The tempered 
material transforms to austenite at lower temperatures, which is equivalent to 
greater depths beneath the surface in grind hardening. This, furthermore, enables 
the faster homogenization compared to the austenite formed from the annealed 
structure.

2.5.2  Workpiece Geometry

Grind-hardening process can be used for selectively heat-treating the surface of 
both cylindrical and prismatic parts. Most of the papers reviewed focus on the 
 surface grind-hardening process. The key challenge for using this process in com-
plex geometries is the tempering of the already heat-treated surface when the 
grinding wheel has to pass more than once from the same vicinity. For this reason, 
the grinding wheel to be used ideally should be wide enough to process all the 
area. This can be achieved for the case of narrow prismatic parts, as shown by 
Salonitis et al. [27] for the case of a V-shaped guide.

For the case of cylindrical parts, overlapping is unavoidable as can be seen in 
Fig. 2.6. This results in tempering of the material, since when the grinding wheel 
“returns” to the entering point, the already quenched area is reheated in the mar-
tensitic range of temperatures. A number of different techniques have been inves-
tigated to overcome this problem, such as adaptive control of the grinding wheel 
rotation speed, modification of the workpiece material (altering the depth of cut) 
to name few. A recent patent [28] has been granted that attempts to control the 
overlapping through tangential plunging of the grinding wheel in the workpiece 
material.

Grinding 
wheel 
entrance

Grinding 
wheel exit

Overlapping 
area

Fig. 2.6  Cylindrical grind-hardening challenge: overlapping area

2.5 Fundamental Investigations—Feasibility Studies
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2.5.3  Grinding Wheel

In grind hardening, the grinding wheel specification influences the heat dissipation 
and thus the hardening result decisively. In the papers reviewed, 38 reported to 
have used corundum (aluminium oxide) grinding wheels, and only 4 CBN wheels 
(Table 2.3). The preference to corundum wheels is due to their lower heat conduc-
tivity, allowing thus for more heat to directed in the workpiece material.

Most of the researchers are using fine-grained, resin-bonded corundum wheels 
of high bond hardness and closed structure. Salonitis et al. documented the effect 
of the corundum grinding wheel specifications (grain size, hardness and structure) 
on process forces [29] and hardness penetration depth [30]. Utilization of softer 
wheels was shown to result in reduced process forces since grain and bonding 
fracture occurs more easily, and consequently, fewer grains interact with the grind-
ing wheel. Additionally, the hardness penetration depth is increased; this may be 
attributed to the fact that softer grinding wheels can be more easily deformed and 
thus, more grains are likely to interact with the workpiece material. The structure 
number of a grinding wheel represents its porosity; denser grinding wheels were 
shown to induce higher process forces. The grain size had the smallest effect on 
the process forces. Grinding wheels with finer grits resulted in higher process 
forces since more grains are involved in the process, and therefore, more chips 
are formed, while the cutting forces are increased. However, the hardness penetra-
tion depth is reduced since more grains are involved in the process, removing thus 
more material and thus more heat is removed from the grinding area.

Compared to resin bonded, the use of vitrified bonded wheels can result in 
heavy loading of the grinding wheel leading to high forces, increased wheel wear 
and unstable process [5].

CBN and corundum present great differences in terms of the thermal con-
ductivity of the abrasives. Aluminium oxide grains direct the heat towards the 
workpiece material, whereas the CBN abrasive is able to remove a significant 
 proportion of heat from the grinding zone by heat transfer through the abrasive 
segments into the steel hub of the wheel [17, 31]. However, CBN can be used for 
grind hardening, although it has been shown experimentally [17] that there is an 
upper limit on the workpiece surface speed that can be used.

Table 2.3  Grind hardening studies classified per grinding wheel (listed only the papers where 
the grinding wheel type is explicitly stated)

Grinding wheel types References

Corundum [1, 5–8, 10–15, 19–21, 26, 27, 29–33, 35, 40, 43, 45, 47, 49, 50, 
52, 54, 56, 58, 61, 63, 69, 73–75]

CBN [17, 57, 76, 79, 91]
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2.5.4  Process Parameters

Grind hardening process occurs within a small window of process parameters 
combinations. A number of studies have been published that are focused in defin-
ing this process window. Indicatively, Fricker et al. [17] presented a process 
map (Fig. 2.7) for the case of dry CBN grind hardening of AISI 4140. Salonitis  
[7, 32] presented process maps for the case of both dry and wet grind hardening of 
AISI 52100 with corundum wheel (Fig. 2.8). The available maps can be used for 
selecting the process parameters based on the design requirements (such as hard-
ness penetration depth) and the limitations set by the grinding machine. Salonitis 
et al. [27] used these process maps for selecting the process parameters for the 
grind hardening of a V-shaped guide. The process for deriving these process maps 
is described in detail in the Chap. 3 of the present book.

An interesting theoretical process limitation is the maximum achievable hard-
ness penetration depth. Salonitis and Chryssolouris [33] estimated the maximum 

Fig. 2.7  Process map for 
the occurrence of grind 
hardening of AISI 4140  
using a CBN grinding 
wheel (based on the results 
presented in [17])
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depth based on the assumption that this will occur when the surface temperature 
reaches the melting temperature. This limit is depicted in the process maps devel-
oped as can be seen in Fig. 2.8.

It is thus obvious that the hardening result can be controlled by the process parame-
ters with most important ones being the depth of cut and the feed speed. Furthermore, 
the cutting speed (grinding wheel speed) can be used for controlling the process. 

•	 Depth of cut
 In surface grinding with constant feed speed, the depth of cut is proportional to 

the specific material removal rate as well to the equivalent chip thickness. For 
constant specific material removal rate, an increase of the depth of cut results 
in deeper HPD (Fig. 2.9). The maximum HPD is achieved in the transition area 
between the pendulum and creep feed grinding. A further increase of the depth 
of cut leads to decreasing HPD in the area of creep feed grinding.

To maximize the HPD in grind hardening, high depths of cut have to be applied. 
On the other hand, such a procedure will be limited by the spindle power of the 
machine tool and the required accuracy of the workpiece. Furthermore, too high 
energy inputs to the workpiece could lead to undesired alterations in the material 
like hardening cracks or tempered zones at the surface. For industrial applications, 
the depth of the cut needs to be optimized for each component considering its spe-
cial demands and operational loadings.

•	 Feed speed
 The feed speed is directly affecting the heat entering the part. For very low 

feed speeds, the generated grinding power and thus the generated heat is too 
low for the austenitization. When increasing feed speed, the generated heat and 
the HPD increases (Fig. 2.9). A further increase of the feed speed results in 
shorter contact times leading to decreasing HPDs. Thus, maximum HPD can be 
achieved in for medium feed speeds.

Fig. 2.9  Depth of cut and workpiece speed effect on hardness penetration depth (based on the 
experimental data presented in [33] for AISI 52100)
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•	 Cutting speed
 The influence of the cutting speed is quite complex. The increased cutting speeds 

lead to partly decreasing cutting powers, while in some ranges the opposite occurs.

In a number of studies the effect of the process parameters on the surface quality 
of the processed workpiece has been presented as well.  Indicatively, the impact on 
burr formation has been discussed [94, 106, 107].  Chamfer is also of interest with 
regards the impact it has to the achievable hardness distribution [107, 108].

2.6  Simulation of the Grind-Hardening Process

Modeling and simulation of grinding processes has been thoroughly reviewed 
[34]. Grind-hardening process modelling, being an abrasive process, was based 
on the models presented for relevant grinding processes. 50 papers out of the 112 
reviewed presented models for predicting one or more aspects of the grind-hard-
ening process. Most of the models presented for the estimation of temperature 
distribution within the workpiece material and the subsequent estimation of hard-
ness penetration depth and/or residual stresses are based on finite element method. 
However, estimation of the heat generated between the grinding wheel and the 
workpiece material is in most cases either calculated empirically or using analyti-
cal models.

In the following Table 2.4, the classification of the papers based on the type of 
analysis (FEA or analytical), modelling dimensions, modelled attribute response 

Table 2.4  Grind hardening simulation-modelling studies

Modelled attribute

Modelling 
method

Process 
forces

Temperature Phase 
transformation

Surface 
hardness

HPD Residual 
stresses

FEA—2D – [4, 6, 7, 9, 
12–14, 21, 22, 
27, 30–33, 35, 
38, 39, 64–66, 
69, 74, 76, 78, 
80–87, 111]

[4, 9, 12, 65, 76, 
82, 110]

[35, 57, 74, 
76, 82, 85]

[6, 7, 27, 
30–33, 35, 
66, 74, 99, 
100]

[4, 9, 13, 
14, 21, 22, 
76, 82, 
85]

FEA—3D – [8, 27, 32, 37, 
40, 41, 43, 47, 
67, 68, 75, 78, 
88, 89]

[8, 32, 40, 43, 
75, 78]

[32, 40, 43, 
78]

[27, 32, 40, 
67, 68]

[89]

Analytical [8, 29, 
30, 32, 
42, 69, 
73]

[17, 36, 96–98] [17, 20, 32, 78] – – –

Empirical [6, 31] [102] [7, 32, 33, 105, 
112]

[7, 32, 33, 
109]

[90, 95] –

2.5 Fundamental Investigations—Feasibility Studies
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(temperature, forces, HPD, residual stresses, etc.). In the following chapter that 
focusses on the grind-hardening process modelling, these models are reviewed in 
more detail.

Further to the modelling and simulation of the process mechanics, a number of 
studies have been focused also on the environmental impact of the grind-harden-
ing and the benefits gained by combining heat treatments with grinding. Chapter 
4 will present in detail the state of the art, however for the sake of completeness, 
a brief overview will be given here as well. The benefits with regards the resource 
efficiency have been highlighted by Reinhart et al. [103]. Salonitis et al. in a num-
ber of studies focused on the environmental impact assessment using both life 
cycle assessment [93] and energy audits [77, 101]. Few other studies on the eco-
logical merits of grind-hardening have been presented as well [92]. 

2.7  Challenges for Future

Although, grind hardening is a highly innovative process, industrial introduction 
is restricted by a number of factors. One of the main open issues of today’s state 
of the art of grind-hardening technology is the formation of overlapping areas. 
Overlapping areas which can also occur in induction hardening are generated in 
cylindrical grinding after one revolution of the workpiece when an area which 
was already grind hardened is again thermally influenced by the grinding process. 
Particularly, in cylindrical grind hardening, improper junction of the hardened sur-
face layer is generated in overlapping areas. In the overlapping area, the hardened 
surface layer material is annealed, resulting in reduced hardness and decreased 
hardness penetration depth. Thus grind-hardening technology today is limited to 
applications where overlapping areas are not generated like surface grinding appli-
cations or where the occurrence of overlapping areas can be accepted; for exam-
ple, in the area of bearing fits or runways for packing rings. An important task 
of the proposed research project is the further development of such strategies and 
application in grinding tests.

A general limiting factor of grind hardening is the HPD, which is technologi-
cally restricted to about 2.5 mm due to high grinding forces and physical proper-
ties of the material. Furthermore, grind-hardening technology is restricted by the 
wear of the grinding wheel resulting in relative low G-ratios (grinding ratio) and 
decreased cost savings.

During the last years, the research on grind hardening has been focused on vari-
ous aspects of the process such as the use of liquid nitrogen for the quenching of 
the part. The modelling of the process using hybrid analytical and finite element 
analysis methods was first introduced by Salonitis in a number of studies [7, 13, 
14, 27, 30, 32, 33] and similar attempts have been presented recently by Zhang 
et al. and Kolkwitz et al. However, a number of issues have not yet been modelled 
such as residual stresses formation and geometry deformation.

http://dx.doi.org/10.1007/978-3-319-19372-4_4
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