
An Algorithm Selection Benchmark
of the Container Pre-marshalling Problem

Kevin Tierney1(B) and Yuri Malitsky2

1 Decision Support and Operations Research Lab,
University of Paderborn, Paderborn, Germany

tierney@dsor.de
2 IBM T.J Watson Research Center, Yorktown Heights, USA

ymalits@us.ibm.com

Abstract. We present an algorithm selection benchmark based on
optimal search algorithms for solving the container pre-marshalling prob-
lem (CPMP), an NP-hard problem from the field of container terminal
optimization. Novel features are introduced and then systematically
expanded through the recently proposed approach of latent feature analy-
sis. The CPMP benchmark is interesting, as it involves a homogeneous set
of parameterized algorithms that nonetheless result in a diverse range of
performances. We present computational results using a state-of-the-art
portfolio technique, thus providing a baseline for the benchmark.

1 Introduction

The container pre-marshalling problem (CPMP) is a well-known NP-hard prob-
lem in the container terminals and stacking literature [2,7,10], first introduced
in [6]. The CPMP deals with the sorting of containers in a set of stacks (called
a bay) of intermodal containers based on their exit times from the stacks, such
that containers that must leave the stacks first are placed on top of containers
that must leave later. This prevents mis-overlaid containers from blocking the
timely exit of other containers. The goal of the CPMP is to find the minimal
number of container movements necessary to ensure that all of the stacks are
sorted by the exit time of each container without exceeding the maximum height
of each stack. Solving the CPMP assists container terminals in reducing delays
and increasing the efficiency of their operations.

A recent approach for solving the CPMP to optimality [11] presents two state-
of-the-art approaches, based on A* and IDA*. We use parameterized versions
of these approaches to form a benchmark for algorithm selection. We introduce
22 novel features to describe CPMP instances and show how the approach of
latent feature analysis (LFA) [8] can assist domain experts in developing useful
features for algorithm selection approaches. Finally, we augment the existing
CPMP instances with extra instances from a new instance generator1.

1 An extended version of this paper is available at https://bitbucket.org/eusorpb/
cpmp-as/downloads/asl pm extended.pdf.

c© Springer International Publishing Switzerland 2015
C. Dhaenens et al. (Eds.): LION 9 2015, LNCS 8994, pp. 17–22, 2015.
DOI: 10.1007/978-3-319-19084-6 2

https://bitbucket.org/eusorpb/cpmp-as/downloads/asl_pm_extended.pdf
https://bitbucket.org/eusorpb/cpmp-as/downloads/asl_pm_extended.pdf

18 K. Tierney and Y. Malitsky

Fig. 1. An example solution to the CPMP with mis-overlays highlighted (Reproduced
from [11]).

2 The Container Pre-marshalling Problem

Given an initial layout of a bay with a fixed number of stacks and tiers (stack
height), the goal of the CPMP is to find the minimal number of container move-
ments (or rehandles) necessary to eliminate all mis-overlays in the bay. Every con-
tainer is assigned a group that indicates when it must leave the bay. A mis-overlaid
container is defined as a container with a group that is higher than the group of
any container underneath it, or a container above a mis-overlaid container.

Consider the simple example of Fig. 1, which shows a bay composed of three
stacks of containers in which containers can be stacked at most four tiers high.
Each container is represented by a box with its corresponding group2. This is not
an ideal layout as the containers with groups 2, 4 and 5 will need to be relocated
in order to retrieve the containers with higher groups (1 and 3). That is, contain-
ers with groups 2, 4 and 5 are mis-overlaid. Consider a container movement (f, t)
defining the relocation of the container on top of the stack f to the top position of
the stack t. The containers in the initial layout of Fig. 1 can reach the final layout
(d) with three relocation moves: (2, 3) reaching layout (b), (2, 3) reaching layout
(c) and (1, 2) reaching layout (d) where no mis-overlays occur.

Pre-marshalling is important both in terms of operational and tactical goals
at a container terminal. In particular, effective pre-marshalling of containers can
help reduce delays moving containers from the terminal yard onto vessels, as
well as from the yard onto trucks or trains. We refer to [11] for more information
and a discussion of related work.

3 Latent Feature Analysis (LFA)

Given a set of solvers for a problem and a set of instance, algorithm selection
is the study of finding the best performing solver for each instance. There are a
variety of approaches that can be used to make this decision, including machine
learning techniques as well as scheduling algorithms. For an overview of this area,
2 We note that multiple containers may have the same group, but in order to make

containers easily identifiable, in this example we have assigned a different group to
each container.

An Algorithm Selection Benchmark for the CPMP 19

we refer the reader to a recent survey [5]. Although there are many algorithm
selection approaches, they are not the only important component in a selection
approach. The quality of features in differentiating instances is critical to the
success or failure of any algorithm selection strategy.

Features are normally created based on the knowledge of domain experts.
In [8], the authors theorize how latent features gathered from a matrix decom-
position can systematically help domain experts augment a set of features with
more effective ones. Specifically, [8] shows that latent features can be determined
using an existing set of structural features. Features that assist algorithm selec-
tion techniques in making correct predictions can then be identified, thus guiding
a domain expert towards the features that work best on his or her problem.

The idea proposed by [8] uses singular value decomposition (SVD) to find the
latent features that best describe the changes in the actual performance of solvers
on instances. SVD is a method for identifying and ordering the dimensions along
which data points exhibit the most variation, which is mathematically represented
by the following equation: M = UΣV T , where M is the m × n matrix of solver
performance. In our case, we consider an M where there are m instances each
described by the performance of n solvers. This means that the m×n orthonormal
columns of U can be interpreted as a latent feature that describes that instance.
The columns of the V T matrix refer to each solver, with each row presenting how
active, or important a particular feature is for that solver.

If for a given instance it were possible to predict the latent features, using
this decomposition we could multiply the feature vectors by the existing Σ and
V T matrices to get back the performance of each solver. While this is of course
impossible in practice, we can use an existing set of structural features to pre-
dict these latent features. By then studying these predictions, we can identify
exactly which latent features are currently difficult to predict accurately and
even identify which latent feature we should focus on getting right to maximize
the quality of the resulting prediction.

It is assumed that if we are unable to accurately predict a latent feature using
our existing features, then our feature set is missing something critical about the
underlying structure of an instance. By computing the correct value for this latent
feature and sorting all training instances based on it, we assume that there must
be something different for the instances where the latent feature value is large
and those instances where the value is small. It is then up to a domain expert to
try to analyze this difference and propose a new, expanded set of features for the
algorithm selection approach to take advantage of.

4 Algorithm Selection Benchmark

We now describe our benchmark in detail3. Four optimal parameterizations of the
A* and IDA* approaches in [11] form the basis of the benchmark. Due to space
limits, we refer interested readers to [11] for the algorithm and heuristic details.
3 This benchmark is available in the algorithm selection library (www.aslib.net) under

the name “PREMARSHALLING-ASTAR-2013”.

www.aslib.net

20 K. Tierney and Y. Malitsky

1. Number of stacks
2. Number of tiers
3. Tiers/stacks ratio
4. Container density
5. Empty stack percentage

6,7. Percent of all {slots, stacks} that are mis-overlaid
8. Bortfeldt & Forster lower bound

9–12. Min/max/mean/stdev container group counts
13–16. Min/max/mean/stdev group of top non-mis-overlaid

container in each stack

17. Container density in stacks 1 through #Stacks/3
18. Tier-weighted groups
19. Largest group L1 distance from top left (average)
20. Pct. contiguous empty space including one empty stack

21. Mis-overlaid stack (≥ 2 containers) percentage
22. Low-group containers near stack tops (percentage)

Fig. 2. Features for the CPMP.

Insts. Source
Training set (Total: 527)
267 BF [1]
260 CV [3]
Testing set (Total: 547)
257 Expo. (Gen.) [4]
163 BF-like*
127 CV-like

Fig. 3. Instances used.

An interesting aspect of the pre-marshalling benchmark in relation to other bench-
marks, such as those based on SAT, CSP, QBF, etc. is that the portfolio of
algorithms is not particularly diverse (very similar algorithm parameterizations),
but performance variations are nonetheless significant.

We create a set of training and test instances out of existing pre-marshalling
instances from [1] (BF) and from [3] (CV) as well as instances we generated.
We filter out instances where all algorithms timeout/memout or are too easy.
An overview is provided in Fig. 3. Our BF-generated instances are not exactly
the same as in [1] because their instance generation is not completely described.

The features used in our dataset are given in Fig. 2, split into three categories.
Features 1 through 16 were designed before performing latent feature analysis.
Features 17 through 20 were created based on our first iteration of latent feature
analysis, and features 21 and 22 using our second iteration. All of the features can
be computed quickly. Our feature generation code (and instance generator) is
available at https://bitbucket.org/eusorpb/cpmp-as. We note that other features
are certainly possible, such as probing features.

Original features are created in the standard way for algorithm selection
benchmarks, based on domain knowledge. The first 5 features address the prob-
lem size and density of containers. Feature 6 counts the number of mis-overlaid
containers, a naive lower bound to the problem, whereas Feature 7 counts how
many stacks contain mis-overlaid containers. Feature 8 provides the lower bound
from [1], analyzing indirect container movements in addition to the mis-overlays
present in feature 7. Features 9 through 12 offer information on how many con-
tainers belong to each group. Features 12 through 15 attempt to uncover the
structure of the groups of the top non-mis-overlaid container on each stack.

LFA features are constructed based on the suggestions of the latent fea-
tures. Feature 17 is the density of containers on the “left” side of the instance.
We note that this feature is likely “overtuned” to the algorithms in our bench-
mark. Feature 18 measures whether containers with high group values are on high

https://bitbucket.org/eusorpb/cpmp-as

An Algorithm Selection Benchmark for the CPMP 21

or low tiers by multiplying the tier of a container by its group, summing these
values together and dividing by the maximum this value could take (namely if
the highest group container was in each slot). Feature 19 measures the L1 (man-
hattan) distance from the top left of a problem to each container in the latest
exit time, averaging these distances if there are multiple containers in the latest
exit group. The final feature from iteration 1 computes the percentage of empty
space in the instance in which an area of contiguous empty space includes at
least one empty stack. Features 21 and 22 come from LFA iteration 2. Feature
21 counts how many stacks with more than two containers are mis-overlaid, and
Feature 22 counts “low” (≤max -group/4) valued containers on the top of stacks.

5 Computational Results

We evaluate our features using the cost-sensitive hierarchical clustering (CSHC)
approach from [9]. Table 1 provides the performances4 of a CSHC based portfolio
when trained on the three datasets versus the best single solver (BSS) and the
virtual best solver (VBS), which is a portfolio that always picks the correct solver.
CSHC using just the initial arbitrary features already performs significantly
better than the BSS, indicating even the original features have descriptive value.

When a CSHC portfolio is trained on the first iteration of features, the per-
formance improves not only in the number of instances solved, but also on the
average time taken to solve each instance. This shows that by utilizing the latent
feature analysis, a researcher is able to develop a richer set of features to describe
the instances. Furthermore, the process can be repeated, as is evidenced by the
performance of CSHC on the second iteration of features. Note that the over-
all performance is again improved not only in the number of instances solved,
but the time taken to solve them on average. Thus, multiple iterations of the
latent feature analysis process can lead to even better features, although there
are clearly diminishing returns.

Table 1. Performance of CSHC trained on the three feature sets.

Solver Avg. PAR-10 Solved

BSS 78.6 5,923 458

Original Features 51.6 3,469 495

LFA Iteration 1 Features 46.6 2,741 506

LFA Iteration 2 Features 45.4 2,543 509

VBS 12.8 12.8 547

4 All runtime data was generated on an AMD Opteron 2425 HE processor running at
2.1 GHz with a 1 h timeout.

22 K. Tierney and Y. Malitsky

6 Conclusion

We presented an algorithm selection benchmark for the container pre-marshalling
problem, a well-known problem from the container terminals literature. Our
benchmark includes novel features and instances. We further showed that latent
feature analysis can help in augmenting problem features. We hope that this
benchmark will help further algorithm selection research on real-world problems.
For future work, the latent feature analysis process could be more formalized.
A number of open questions remain, such as what criteria to use to gauge the per-
formance of a new feature during a single iteration of the latent feature analysis
process. Further challenges are to determine the number of iterations to perform
and what kind of performance/man-hour trade-off exists for each iteration past
the first.

References

1. Bortfeldt, A., Forster, F.: A tree search procedure for the container pre-marshalling
problem. Eur. J. Oper. Res. 217(3), 531–540 (2012)

2. Carlo, H., Vis, I., Roodbergen, K.: Storage yard operations in container terminals:
literature overview, trends, and research directions. Eur. J. Oper. Res. 235(2),
412–430 (2014)

3. Caserta, M., Voß, S.: A corridor method-based algorithm for the pre-marshalling
problem. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Ekárt, A.,
Esparcia-Alcázar, A.I., Farooq, M., Fink, A., Machado, P. (eds.) EvoWorkshops
2009. LNCS, vol. 5484, pp. 788–797. Springer, Heidelberg (2009)

4. Expósito-Izquierdo, C., Melián-Batista, B., Moreno-Vega, M.: Pre-marshalling
problem: heuristic solution method and instances generator. Expert Syst. Appl.
39(9), 8337–8349 (2012)

5. Kotthoff, L.: Algorithm selection for combinatorial search problems: a survey. AI
Mag. 35(3), 48–60 (2014)

6. Lee, Y., Hsu, N.: An optimization model for the container pre-marshalling problem.
Comput. Oper. Res. 34(11), 3295–3313 (2007)

7. Lehnfeld, J., Knust, S.: Loading, unloading and premarshalling of stacks in storage
areas: survey and classification. Eur. J. Oper. Res. 239(2), 297–312 (2014)

8. Malitsky, Y., O’Sullivan, B.: Latent features for algorithm selection. In: Symposium
on Combinatorial Search (2014)

9. Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algorithm portfolios
based on cost-sensitive hierarchical clustering. In: IJCAI (2013)

10. Stahlbock, R., Voß, S.: Operations research at container terminals: a literature
update. OR Spectrum 30(1), 1–52 (2008)

11. Tierney, K., Pacino, D., Voß, S.: Solving the pre-marshalling problem to optimal-
ity with A* and IDA*. Technical report WP#1401, DS&OR Lab, University of
Paderborn (2014)

http://www.springer.com/978-3-319-19083-9

	An Algorithm Selection Benchmark of the Container Pre-marshalling Problem
	1 Introduction
	2 The Container Pre-marshalling Problem
	3 Latent Feature Analysis (LFA)
	4 Algorithm Selection Benchmark
	5 Computational Results
	6 Conclusion
	References

