
A New Method Based on Graph Transformation
for FAS Mining in Multi-graph Collections

Niusvel Acosta-Mendoza1,2(B), Jesús Ariel Carrasco-Ochoa2,
José Fco. Mart́ınez-Trinidad2, Andrés Gago-Alonso1,

and José E. Medina-Pagola1

1 Advanced Technologies Application Center (CENATAV), 7a � 21406 e/ 214
and 216, Siboney, Playa, CP: 12200 Havana, Cuba

{nacosta,agago,jmedina}@cenatav.co.cu
2 Instituto Nacional de Astrof́ısica, Óptica Y Electrónica (INAOE),

Luis Enrique Erro No. 1, Sta. Maŕıa Tonantzintla, CP: 72840 Puebla, Mexico
{nacosta,ariel,fmartine}@ccc.inaoep.mx

Abstract. Currently, there has been an increase in the use of frequent
approximate subgraph (FAS) mining for different applications like graph
classification. In graph classification tasks, FAS mining algorithms over
graph collections have achieved good results, specially those algorithms
that allow distortions between labels, keeping the graph topology. How-
ever, there are some applications where multi-graphs are used for data
representation, but FAS miners have been designed to work only with
simple-graphs. Therefore, in this paper, in order to deal with multi-graph
structures, we propose a method based on graph transformations for FAS
mining in multi-graph collections.

Keywords: Approximate graph mining · Approximate multi-graph
mining · Graph-based classification

1 Introduction

In Data Mining, frequent pattern identification has become an important topic
with a wide range of applications in several domains of science, such as: biology,
chemistry, social science and linguistics, among others [1]. Therefore different
techniques for pattern extraction, where frequent subgraph mining algorithms
have been developed.

From these techniques, in the last years, the most popular strategies are the
approximate approaches, because in practice there are specific problems where
exact matching is not applicable with a positive outcomes [2–4]. Therefore, it is
important to tolerate certain level of variability: semantic distortions, vertices or
edges mismatching during frequent pattern search it implies to evaluate the sim-
ilarity between graphs considering approximate matching. In this sense, several
algorithms have been developed for frequent approximate subgraph (FAS) mining,
which use different approximate graph matching techniques allowing the detection
c© Springer International Publishing Switzerland 2015
J.A. Carrasco-Ochoa et al. (Eds.): MCPR 2015, LNCS 9116, pp. 13–22, 2015.
DOI: 10.1007/978-3-319-19264-2 2

14 N. Acosta-Mendoza et al.

of frequent subgraphs when some minor (non-structural) variations in the sub-
graphs are permitted [3,5]. Different heuristics and graph matching approaches
have been used as basis for developing FAS mining algorithms, for example: edit
distance [6], heuristic over uncertain graphs [4,7], and heuristics based on semantic
substitutions [3,5,8–10], being this last approach the idea followed in this paper.
However, these algorithms perform FAS mining on simple-graph collections, and
they were not designed to deal with other structures as multi-graphs. Neverthe-
less, several authors argue that the nature of the phenomenon in some application
can be better modeled through multi-graphs [11–13].

Analyzing the aforementioned algorithms, some problems are detected: (1)
the reported algorithms for mining FASs from graph collections, which allow
semantic distortions and keep the graph topology, were not designed to deal
with multi-graphs; (2) the algorithms reported in [4,7], the sub-isomorphism
tests are computationally expensive because the occurrences of the candidates
in the collection are not stored. These tests are more expensive when approx-
imate matching is used than for exact matching; (3) the algorithms proposed
in [5,7], which compute representative patterns, were not designed to deal with
semantic distortions between vertex and edge label sets in graph collections; (4)
the algorithms introduced in [8–10] were not designed for dealing with graph
collections. Thus, in this paper, we focus on the approximate graph mining app-
roach, which allows semantic distortions between vertex and edge label sets,
keeping the graph topology, over multi-graph collections.

The organization of this paper is the following. In Sect. 2, some basic concepts
and notations are provided. Our proposed method for processing multi-graphs is
introduced in Sect. 3. Several experiments are presented in Sect. 4. Finally, our
conclusions and future work directions are discussed in Sect. 5.

2 Background

In this section, the background and notation needed to understand the following
sections, as well as the FAS mining problem are presented. Notice that most
of definitions are presented in a way that they allow treating both types of
undirected graphs: simple-graphs and multi-graphs.

Definition 1 (Labeled Graph). A labeled graph with the domain of labels L =
LV ∪LE , where LV and LE are the label sets for vertices and edges respectively,
is a 5-tuple, G = (V,E, φ, I, J), where V is a set whose elements are called
vertices, E is a set whose elements are called edges, φ : E → V × V is the
incidence function (the edge e, through the function φ(e), connects the vertices
u and v if φ(e) = {u, v}), I : V → LV is a labeling function for assigning labels
to vertices and J : E → LE is a labeling function for assigning labels to edges.

Definition 2 (Subgraph and Supergraph). Let G1 = (V1, E1, φ1, I1, J1) and
G2 = (V2, E2, φ2, I2, J2) be two graphs, G1 is a subgraph of G2 if V1 ⊆ V2,
E1 ⊆ E2, φ1 is a restriction of φ2 to V1, I1 is a restriction of I2 to V1, and J1 is

A New Method Based on Graph Transformation for FAS Mining 15

a restriction of J2 to E1 (a restriction of a function is the result of trimming its
domain). In this case, the notation G1 ⊆ G2 is used, and it is also said that G2

is a supergraph of G1.

Definition 3 (Multi-edge and Loop). An edge e ∈ E, where φ(e) = {u, v}
and u �= v, is a multi-edge if there is e′ ∈ E such that e �= e′ and φ(e) = φ(e′);
otherwise, e is a simple-edge. If |φ(e)| = 1, e is called a loop, i.e. φ(e) = {u} = {v}.

In this way, the set of edges E of a graph can be partitioned into three disjoint
subsets E(s), E(m), and E(l) containing simple-edges, multi-edges, and loops,
respectively.

Definition 4 (Simple-graph and Multi-graph). A graph is a simple-graph
if it has no loops and no multi-edges, i.e. it has only simple-edges, E = E(s),
being E(m) = ∅ and E(l) = ∅; otherwise, it is a multi-graph.

Definition 5 (The Operator ⊕). Let G1 = (V1, E1, φ1, I1, J1) and G2 =
(V2, E2, φ2, I2, J2) be two graphs, where for each v ∈ V1

⋂
V2 I1(v) = I2(v),

and for each e ∈ E1

⋂
E2 φ1(e) = φ2(e) and J1(e) = J2(e). In this case, it is said

that G1 and G2 are mutually compatible graphs. Thus, the sum of G1 and G2

is a supergraph of G1 and G2 denoted by G1 ⊕ G2 = (V3, E3, φ3, I3, J3), where
V3 = V1

⋃
V2; E3 = E1

⋃
E2; for each v ∈ V1 I3(v) = I1(v) and for each v ∈ V2

I3(v) = I2(v); for each e ∈ E1 φ3(e) = φ1(e) and J3(e) = J1(e), and for each
e ∈ E2 φ3(e) = φ2(e) and J3(e) = J2(e). We will use the notation

⊕
i Gi for

denoting the successive sum of several graphs Gi.

Definition 6 (Isomorphism). Given two graphs G1 and G2, a pair of func-
tions (f, g) is an isomorphism between these graphs if f : V1 → V2 and g : E1 →
E2 are bijective functions, where:

1. ∀u ∈ V1 : f(u) ∈ V2 and I1(u) = I2(f(u))
2. ∀e1 ∈ E1, where φ1(e1) = {u, v}: e2 = g(e1) ∈ E2, and φ2(e2) = {f(u), f(v)}

and J1(e1) = J2(e2).

If there is an isomorphism between G1 and G2, it is said that G1 and G2 are
isomorphic.

Definition 7 (Sub-isomorphism). Given three graphs G1, G2 and G3. If G1

is isomorphic to G3 and G3 ⊆ G2, then it is said that there is a sub-isomorphism
between G1 and G2, denoted by G1 ⊆s G2, and it is also said that G1 is sub-
isomorphic to G2.

Definition 8 (Similarity). Let Ω be the set of all possible labeled graphs in
L, the similarity between two graphs G1, G2 ∈ Ω is defined as a function sim :
Ω × Ω → [0, 1]. The higher the value of sim(G1, G2) the more similar the graphs
are, and if sim(G1, G2) = 1 then there is an isomorphism between these graphs.

Definition 9 (Approximate Isomorphism and Approximate Sub–
isomorphism). Let G1, G2 and G3 be three graphs, let sim(G1, G2) be a sim-
ilarity function among graphs, and let τ be a similarity threshold, there is an

16 N. Acosta-Mendoza et al.

approximate isomorphism between G1 and G2 if sim(G1, G2) ≥ τ . Also, if there
is an approximate isomorphism between G1 and G2, and G2 ⊆ G3, then there
is an approximate sub-isomorphism between G1 and G3, denoted as G1 ⊆A G3.

Definition 10 (Maximum Inclusion Degree). Let G1 and G2 be two graphs,
let sim(G1, G2) be a similarity function among graphs, since a graph G1 can be
enough similar to several subgraphs of another graph G2, the maximum inclusion
degree of G1 in G2 is defined as:

maxID(G1, G2) = max
G⊆G2

sim(G1, G), (1)

where maxID(G1, G2) means the maximum value of similarity at comparing G1

with all of the subgraphs G of G2.

Definition 11 (Approximate Support). Let D = {G1, . . . , G|D|} be a graph
collection, let sim(G1, G2) be a similarity function among graphs, let τ be a sim-
ilarity threshold, and let G be a graph. Thus, the approximate support (denoted
by appSupp) of G in D is obtained through equation (2):

appSupp(G,D) =

∑
{Gi|Gi∈D,G⊆AGi} maxID(G,Gi)

|D| (2)

Using (2), G is a FAS in D if appSupp(G,D) ≥ δ, for a given support
threshold δ, a similarity function among graphs sim(G1, G2) and a similarity
threshold τ . The values of δ and τ are in [0, 1] because the similarity is defined
in [0, 1].

FAS mining consists in, given a support threshold δ and a similarity threshold
τ , finding all the FAS in a collection of graphs D, using a similarity function sim.

3 Method Based on Transformation for Processing
Multi-graphs

Following the idea used in [11,14] for transforming a multi-graph into a simple-
graph1, we propose a method for transforming a multi-graph collection into a
simple-graph collection without losing any topological or semantic information.

The proposed method for transforming a multi-graph into a simple-graph
comprises two steps: (1) transforming each loop into a simple-edge, and (2)
transforming each edge (simple-edge or multi-edge) into two simple-edges. Then,
each loop is changed by adding a new vertex with an special label (κ) and a
simple-edge with the loop label. Later, each edge e which connects two vertices
u �= v is changed by a new vertex with a special label (�) and two simple-
edges (e1 and e2) both with the label of e. The simple-edge e1 connects the new
vertex with u and e2 connects the new vertex with v. The transformation from
a multi-graph into a simple-graph is formally defined in Definition 12.
1 It is important to highlight that in [11,14] the transformation is different to the one

introduced in this paper. Furthermore, these transformations were not proposed for
mining frequent patterns in multi-graphs.

A New Method Based on Graph Transformation for FAS Mining 17

Definition 12 (Multi-graph Simplification). Let G = (V,E, φ, I, J) be a
connected multi-graph, and let κ and � be two different vertex labels that will be
used in two kind of vertices for representing all loops and all edges, respectively.
The multi-graph simplification of G is a graph defined as:

G′ =
⊕

e∈E

G′
e, (3)

where the graph G′
e is defined as follows:

– If e is an edge and φ(e) = {u, v}, the graph G′
e is defined as G′

e = (V1, E1, φ1,
I1, J1), where V1 = {u, v, w}, E1 = {e1, e2}, E1 ∩ E = ∅, φ1(e1) = {u,w},
φ1(e2) = {w, v}, I1 is a restriction of I to V1 with I1(w) = �, J1(e1) =
J1(e2) = J(e), and w /∈ V is a new vertex.

– If e is a loop and φ(e) = {v}, the graph G′
e is defined as G′

e = (V2, E2, φ2, I2, J2),
where V2 = {v, w}, E2 = {e′}, e′ /∈ E, φ2(e′) = {v, w}, I2 is a restriction of I
to V2 with I2(w) = κ, J2(e′) = J(e), and w /∈ V is a new vertex.

Based on Definition 12, an algorithm for transforming a multi-graph into a
simple-graph, called M2Simple, can be introduced. First, by traversing the edges
in the input multi-graph, for each edge e, according to Definition 12, the graph
G′

e can be calculated and added to G′. Thus, the complexity of this algorithm
is O(k ∗n2 ∗d), where k is the largest number of edges between two vertices, n is
the number of vertices in the graph with the largest amount of vertices, and d is
the number of graphs. Notice that for building simplifications only vertices with
label κ and � were added, including the simple-edges connecting such vertices.

For doing compatible a simple-graph with the original multi-graph collection,
a reversing process is required. Then, there is a transformation from a simple-
graph to a multi-graph. In Definition 13, the required condition that a simple-
graph must fulfill in order to be transformed to a multi-graph is introduced.

Definition 13 (Returnable Graph). Let κ and � be the special labels used
in the Definition 12. The simple-graph G′ = (V ′, E′, φ′, I ′, J ′) is returnable to a
multi-graph if it fulfills the following conditions:

1. Each vertex v ∈ V ′ with I ′(v) = � has exactly two incident edges e1 and e2,
such that J ′(e1) = J ′(e2), and

2. Each vertex v ∈ V ′ with I ′(v) = κ has exactly one incident edge.

The transformation from a simple-graph into a multi-graph is formally defined
in the Definition 14.

Definition 14 (Graph Generalization). Let G′ = (V ′, E′, φ′, I ′, J ′) be a
returnable connected graph and let κ and � be the special labels used in the
Definitions 12 and 13. Let V ′

� be the set of all of v ∈ V ′ such that I ′(v) = �, and
let V ′

κ be the set of all of v ∈ V ′ such that I ′(v) = κ. Thus, the generalization
of G′ is a graph defined as:

G =
⊕

w∈V ′
�∪V ′

κ

Gw, (4)

18 N. Acosta-Mendoza et al.

where the graph Gw is defined as follows:

– If I ′(w) = �, by the first returnable condition there are exactly two incidents
edges e1 and e2, such that φ′(e1) = {u,w} and φ′(e2) = {w, v}, then Gw is
defined as Gw = (V1, E1, φ1, I1, J1), where V1 = {u, v}, E1 = {e}, e /∈ E′,
φ1(e) = {u, v}, I1 is a restriction of I ′ to V1, and J1(e) = J ′(e1) = J ′(e2).

– If I ′(w) = κ, by the second returnable condition there is exactly one incident
edge e2, such that φ′(e2) = {v, w}, then Gw is defined as Gw = (V2, E2, φ2,
I2, J2), where V2 = {v}, E2 = {e}, e /∈ E′, φ2(e) = {v}, I2 is a restriction of
I ′ to V2, and J2(e) = J ′(e2).

An algorithm for transforming a returnable simple-graph into a multi-graph,
called S2Multi can be introduced. Based on Definition 14, this algorithm com-
prises two steps: first, the algorithm traverses the vertices with label � for adding
edges to G. Then, the algorithm traverses the vertices with label κ for adding
loops to G. Taking into account the way in which G is built, through the pro-
posed simplification process (see Definition 12), the complexity of this algorithm
is O((n + k ∗ n2) ∗ d), where n, k and d are the same as used for complexity of
the M2Simple algorithm. Notice that, for building generalizations, only vertices
with label κ and � were removed, including the simple-edges connecting such
vertices.

The correctness of our method, which is based on transformations, is proved
trough the following theorems. The proofs of these theorems were omitted due
to space limitations.

Theorem 1. Let G1 = (V1, E1, φ1, I1, J1) and G2 = (V2, E2, φ2, I2, J2) be two
isomorphic connected (returnable) graphs. Then, the graphs, G′

1 = (V ′
1 , E

′
1, φ

′
1,

I ′
1, J

′
1) and G′

2 = (V ′
2 , E

′
2, φ

′
2, I

′
2, J

′
2), obtained from the simplifications (general-

izations) of G1 and G2 are also isomorphic.

Theorem 2. Let G = (V,E, φ, I, J) be the simplification (generalization) of the
connected graph G1 = (V1, E1, φ1, I1, J1), and let κ and � be the special labels;
then G1 is isomorphic to the generalization (simplification) of G.

Theorem 3. Let G′
1 = (V ′

1 , E
′
1, φ

′
1, I

′
1, J

′
1) and G′

2 = (V ′
2 , E

′
2, φ

′
2, I

′
2, J

′
2) be two

multi-graphs, and let G1 = (V1, E1, φ1, I1, J1) and G2 = (V2, E2, φ2, I2, J2) be two
simple-graphs, such that G1 and G2 are simplifications of G′

1 and G′
2, respec-

tively; then G′
2 is sub-isomorphic to G′

1 ⇔ G2 is sub-isomorphic to G1.

Corollary 1. Let D = {G1, . . . , GN} be a collection of N simple-graphs, let
D′ = {G′

1, . . . , G
′
N} be a collection of N multi-graphs, where Gi is the simplifi-

cation of G′
i, for each 1 ≤ i ≤ N . Let G be the simplification of a multi-graph

G′. Thence, the support of G in D is the same that the support of G′ in D′.

Corollary 2. Let D and D′ be the collections of simple-graphs and multi-graphs,
respectively used in Corollary 1. Let G be the simplification of a multi-graph G′.
Thence, if G is FAS in D ⇔ G′ is FAS in D′.

Finally, it is important to highlight that the transformation process of multi-
graph collections into simple-graph collections allows us applying any algorithm
for traditional FAS mining.

A New Method Based on Graph Transformation for FAS Mining 19

4 Experiments

In this section, with the aim of studying the performance of the proposed method
as well as its usefulness for image classification tasks, two experiments are per-
formed. All our experiments were carried out using a personal computer with
an Intel(R) Core(TM) i7 with 64 GB of RAM. The M2Simple and S2Multi algo-
rithms was implemented in python and executed on GNU/Linux (UBUNTU).

In our first experiment, the performance of our transformation algorithms
(M2Simple and S2Multi) is evaluated. For this evaluation, three kinds of syn-
thetic multi-graph collections were used. These synthetic collections were gener-
ated using the PyGen2 graph emulation library. For building these collections,
first, we fix |D| = 5000 and |E| = 800, varying |V | from 100 to 500, with incre-
ments of 100 (see Table 1(a)). Next, we fix |V | = 500 and |D| = 5000 varying |E|
from 600 to 1000, with increments of 100 (see Table 1(b)). Finally, we vary |D|
from 10000 to 50000, with increments of 10000, keeping |V | = 500 and |E| = 800
(see Table 1(c)). Notice that, we assign a descriptive name for each synthetic
collection, for example, D5kV 600E2k means that the collection has |D| = 5000,
|V | = 600 and |E| = 2000.

In Table 1, the performance results, in terms of runtime, of both proposed
transformation algorithms (M2Simple and S2Multi) is shown. These results were
achieved by transforming each multi-graph collection into a simple-graph collec-
tion using M2Simple. Then, each obtained simple-graph collection was trans-
formed into a multi-graph using S2Multi. In this table, the first column shows
the collection and the other two columns show the runtime in seconds of both
proposed transformation algorithms.

According to the complexity of the proposed transformation processes pre-
sented in Sect. 3, remarked by the results shown in Table 1, we can conclude that
our transformation algorithms are more sensitive to the number of edge variations

Table 1. Runtime results in seconds of our transformation algorithms over several
synthetic collections.

2 PyGen is available in http://pywebgraph.sourceforge.net.

http://pywebgraph.sourceforge.net

20 N. Acosta-Mendoza et al.

than to the number of vertex variations in this kind of experiments. This is because
the required runtime grows faster when the amount of edges increases than increas-
ing the number of vertices. Furthermore, M2Simple receives many more vertices
and edges than S2Multi for the same multi-graph collection, since S2Multi creates
an additional vertex and an additional edge for each transformed edge or loop.
On the other hand, the number of graph of the collection is an important vari-
able to take into account, because it affects the performance of both proposed
algorithms when it has high values. Finally, the most important fact to take into
account is that the transformations are performed in a runtime less than 5 min
over collections with high dimensions.

In addition, three graph collections representing images generated with the
Random image generator of Coenen3 are used. For obtaining the Coenen image
collections, we randomly generate 1000 images with two classes. These images
were randomly divided into two sub-sets: one for training with 700 (70%) images
and another for testing with 300 (30%) images. The first two collections, denoted
by C-Angle and C-Distance, are represented as simple-graph collections, using a
quad-tree approach [15] and the angles and the distances between regions as edge
labels, respectively. These two collections have 21 vertex labels, 24 edge labels
and 135 as the average graph size. The last collection, denoted by C-Multi, was
also built using a quad-tree approach, but it uses both (angles and distances)
values as labels for two multi-edges, respectively. This collection comprises 21
vertex labels, 48 edge labels and the average graph size is 270, where all edges
are multi-edges. These collections are used for assessing the performance of our
method based on graph transformation and also for showing the usefulness of the
identified patterns on a multi-graph collection. The algorithm for FAS mining
used in our method is VEAM [3].

In order to show the usefulness of the patterns computed in multi-graphs
through our proposed method, in Table 2 we show the classification results by
using the patterns computed after applying our method in the multi-graph collec-
tions. For these experiments, the classifier J48graft taken from Weka v3.6.6 [16]
using the default parameters, was used. This table shows the results of the accu-
racy and F-measure achieved over the three graph collections representing the
image collection. The first column shows the used support threshold values. The
other three consecutive columns show the accuracy results using the collection
specified in the top of these columns, and in the other three consecutive columns
the F-measure results are shown. The results achieved using VEAM over C-Angle
and C-Distance collections represent the solution to the problem if our proposal
were not available since for applying VEAM the images would be represented as
simple-graphs using only one edge between vertices as in C-Angle or C-Distance.

The classification results achieved (see Table 2) over the image collection
show the usefulness of the patterns computed by our proposal, where in most
of these cases, the best classification results are obtained by using our method.
Furthermore, the representation of the images as multi-graphs allows us to obtain
better classification results than using simple-graphs.

3 www.csc.liv.ac.uk/∼frans/KDD/Software/ImageGenerator/imageGenerator.html.

www.csc.liv.ac.uk/~frans/KDD/Software/ImageGenerator/imageGenerator.html

A New Method Based on Graph Transformation for FAS Mining 21

Table 2. Classification results (%) achieved over the different graph collection rep-
resenting the image collection using the J48graft classifier with similarity threshold
τ = 0.4 and different support threshold values.

Support Accuracy F-measure

C-Angle C-Distance C-Multi C-Angle C-Distance C-Multi

0.8 78.33 78.33 78.33 68.90 68.90 68.90

0.7 77.67 76.33 78.67 74.13 72.37 77.46

0.6 79.67 91.33 92.33 77.15 90.85 91.76

0.5 89.00 93.33 93.33 88.17 92.59 93.00

0.4 89.67 91.27 91.65 89.27 90.13 91.59

Average 82.87 86.12 86.86 79.52 82.97 84.54

5 Conclusions

In this paper, a new method based on graph transformation for FAS mining in
multi-graph collections is proposed. In our method, we first transform a multi-
graph collection into a simple-graph collection, then the mining is performed over
this collection using a traditional FAS miner and later, an inverse transforma-
tion allow us returning the mining results (simple-graphs) to multi-graphs. This
process can be performed without losing any topological or semantic informa-
tion. The performance of the proposed transformation algorithms (M2Simple and
S2Multi) is evaluated over different synthetic multi-graph collections. Addition-
ally, the usefulness of the patterns identified after applying our method is also
shown.

As future work, we plan to develop a FAS miner allowing us to compute FASs
directly from multi-graph collections, without the transformation steps.

Acknowledgment. This work was partly supported by the National Council of
Science and Technology of Mexico (CONACyT) through the project grant CB2008-
106366; and the scholarship grant 287045.

References

1. Jiang, C., Coenen, F., Zito, M.: A survey of frequent subgraph mining algorithms.
Knowl. Eng. Rev. 28(1), 75–105 (2012)

2. Holder, L., Cook, D., Bunke, H.: Fuzzy substructure discovery. In: ML92: Pro-
ceedings of the Ninth International Workshop on Machine Learning, pp. 218–223.
Morgan Kaufmann Publishers Inc., San Francisco (1992)

3. Acosta-Mendoza, N., Gago-Alonso, A., Medina-Pagola, J.: Frequent approximate
subgraphs as features for graph-based image classification. Knowl.-Based Syst. 27,
381–392 (2012)

4. Li, J., Zou, Z., Gao, H.: Mining frequent subgraphs over uncertain graph databases
under probabilistic semantics. VLDB J. 21(6), 753–777 (2012)

5. Jia, Y., Zhang, J., Huan, J.: An efficient graph-mining method for complicated and
noisy data with real-world applications. Knowl. Inf. Syst. 28(2), 423–447 (2011)

22 N. Acosta-Mendoza et al.

6. Song, Y., Chen, S.: Item sets based graph mining algorithm and application in
genetic regulatory networks. In: IEEE International Conference on Data Mining,
pp. 337–340 (2006)

7. Zou, Z., Li, J., Gao, H., Zhang, S.: Finding top-k maximal cliques in an uncertain
graph. In: IEEE 26th International Conference on Data Engineering (ICDE 2010),
pp. 649–652 (2010)

8. Chen, C., Yan, X., Zhu, F., Han, J.: gApprox: mining frequent approximate pat-
terns from a massive network. In: Seventh IEEE International Conference on Data
Mining (ICDM 2007), pp. 445–450 (2007)

9. Flores-Garrido, M., Carrasco-Ochoa, J., Mart́ınez-Trinidad, J.: AGraP: an algo-
rithm for mining frequent patterns in a single graph using inexact matching. Knowl.
Inf. Syst., pp. 1–22 (2014)

10. Flores-Garrido, M., Carrasco-Ochoa, J., Mart́ınez-Trinidad, J.: Mining maximal
frequent patterns in a single graph using inexact matching. Knowl.-Based Syst.
66, 166–177 (2014)

11. Whalen, J.S., Kenney, J.: Finding maximal link disjoint paths in a multigraph. In:
IEEE Global Telecommunications Conference and Exhibition. ‘Communications:
Connecting the Future’, GLOBECOM 1990, pp. 470–474. IEEE (1990)

12. Björnsson, Y., Halldórsson, K.: Improved heuristics for optimal pathfinding on
game maps. In: American Association for Artificial Intelligence (AIIDE). pp. 9–14
(2006)

13. Morales-González, A., Garćıa-Reyes, E.B.: Simple object recognition based on spa-
tial relations and visual features represented using irregular pyramids. Multimedia
Tools Appl. 63(3), 875–897 (2013)

14. Boneva, I., Hermann, F., Kastenberg, H., Rensink, A.: Simulating multigraph
transformations using simple graphs. In: Proceedings of the Sixth International
Workshop on Graph Transformation and Visual Modeling Techniques, Braga,
Portugal. Electronic Communications of the EASST, vol. 6, EASST (2007)

15. Finkel, R., Bentley, J.: Quad trees: a data structure for retrieval on composite keys.
Acta Informatica 4, 1–9 (1974)

16. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The
WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1),
10–18 (2009)

http://www.springer.com/978-3-319-19263-5

	A New Method Based on Graph Transformation for FAS Mining in Multi-graph Collections
	1 Introduction
	2 Background
	3 Method Based on Transformation for Processing Multi-graphs
	4 Experiments
	5 Conclusions
	References

