
Chapter 2
Distributed Cooperative Optimization

2.1 Introduction

In this chapter, we consider a general multi-agent optimization problem where the
goal is to minimize a global objective function, given as a sum of local objective
functions, subject to global constraints, which include an inequality constraint, an
equality constraint, and a (state) constraint set. Each local objective function is con-
vex and only known to one particular agent. On the other hand, the inequality (resp.
equality) constraint is given by a convex (resp. affine) function and known to all
agents. Each node has its own convex constraint set, and the global constraint set is
defined as their intersection. This problem is motivated by others in distributed esti-
mation [1, 2], distributed source localization [3], network utility maximization [4],
optimal flow control in power systems [5, 6], and optimal shape changes of mobile
robots [7]. An important feature of the problem is that the objective and (or) con-
straint functions depend upon a global decision vector. This requires the design of
distributed algorithms where, on one hand, agents can align their decisions through
a local information exchange and, on the other hand, the common decisions will
coincide with an optimal solution and the optimal value.

More precisely, we study two cases: one in which the equality constraint is absent,
and the other in which the local constraint sets are identical. For the first case,
we adopt a Lagrangian relaxation approach, define a Lagrangian dual problem and
devise theDistributed Lagrangian Primal- Dual Subgradient Algorithm
based on the characterization of the primal-dual optimal solutions as the saddle
points of the Lagrangian function. The Distributed Lagrangian Primal- Dual
Subgradient Algorithm involves each agent updating its estimates of the saddle
points via a combination of an average consensus step, a subgradient (or supgradient)
step, and a primal (or dual) projection step onto its local constraint set (or a compact
set containing thedual optimal set). TheDistributed Lagrangian Primal- Dual
Subgradient Algorithm is shown to asymptotically converge to a pair of primal-
dual optimal solutions under Slater’s condition and the periodic strong connectivity
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22 2 Distributed Cooperative Optimization

assumption. Furthermore, each agent asymptotically agrees on the optimal value by
implementing a Distributed Dynamic Averaging Algorithm (1.4), which
allows a multi-agent system to track time-varying average values.

For the second case, to dispense with the additional equality constraint, we adopt
a penalty relaxation approach, while defining a penalty dual problem and devising
the Distributed Penalty Primal- Dual Subgradient Algorithm. Unlike
the first case, the dual optimal set of the second case may not be bounded, and thus
the dual projection steps are not involved in the Distributed Penalty Primal-
Dual Subgradient Algorithm. It renders that dual estimates and thus (primal)
subgradients may not be uniformly bounded. This challenge is addressed by a more
careful choice of step-sizes. We show that the Distributed Penalty Primal-
Dual Subgradient Algorithm asymptotically converges to a primal optimal
solution and the optimal value under Slater’s condition and the periodic strong con-
nectivity assumption.

2.2 Problem Formulation

Consider a network of agents labeled by V � {1, . . . , N } that can only interact with
each other through local communication.

[Objective]We aim to synthesize distributed algorithmswhich allow themulti-agent group to
cooperatively solve the following optimization problem (Fig. 2.1):

min
x∈Rn

N∑

i=1

fi (x), s.t. g(x) ≤ 0, h(x) = 0, x ∈ ∩N
i=1Xi , (2.1)

where fi : Rn → R is the convex objective function of agent i , Xi ⊆ R
n is the compact and

private convex constraint set of agent i , and x is a global decision vector.

Here we assume that the projection onto the set Xi is easy to compute. Assume
that fi and Xi are private information of agent i , and probably different across agents.
The function g : Rn → R

m is known to all the agents with each component g�, for
� ∈ {1, . . . , m}, being convex. The inequality g(x) ≤ 0 is understood component
wise; i.e., g�(x) ≤ 0, for all � ∈ {1, . . . , m}, and represents a global inequality
constraint. The function h : Rn → R

ν , defined as h(x) � Ax − b with A ∈ R
ν×n ,

represents a global equality constraint, and is known to all the agents. We denote
X � ∩N

i=1Xi , f (x) �
∑N

i=1 fi (x), and Y � {x ∈ R
n | g(x) ≤ 0, h(x) = 0}.

We assume that the set of feasible points is nonempty; i.e., X ∩ Y �= ∅. Since X is
compact and Y is closed, then we can deduce that X ∩ Y is compact. The convexity
of fi implies that of f and thus f is continuous. In this way, the optimal value p∗
of the problem (2.1) is finite and X∗, the set of primal optimal points, is nonempty.
Throughout this chapter, we suppose the following Slater’s condition holds:

http://dx.doi.org/10.1007/978-3-319-19072-3_1
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Fig. 2.1 A graphical illustration of problem (2.1)

Assumption 2.1 (Slater’s Condition) There exists a vector x̄ ∈ X such that g(x̄) <

0 and h(x̄) = 0. And there exists a relative interior point x̃ of X such that h(x̃) = 0
where x̃ is a relative interior point of X ; i.e., x̃ ∈ X and there exists an open sphere
S centered at x̃ such that S ∩ aff(X) ⊂ X with aff(X) being the affine hull of X .

In this chapter, we will study two particular cases of Problem (2.1): one in which
the global equality constraint h(x) = 0 is not included, and the other in which all
the local constraint sets are identical. For the case where the constraint h(x) = 0 is
absent, the Slater’s condition2.1 reduces to the existence of a vector x̄ ∈ X such that
g(x̄) < 0. Our techniques rely on duality theory in Sect. 1.3.

2.2.1 Subgradient Notions and Notations

In this chapter, we do not assume the differentiability of the problem functions. At
the points where functions are not differentiable, the subgradient plays the role of the
gradient. For a given convex function F : Rr → R and a point x ∈ R

r , a subgradient
of the function F at x is a vector DF(x) ∈ R

r such that the following subgradient
inequality holds for any y ∈ R

r : DF(x)T (y − x) ≤ F(y) − F(x). Similarly, for
a given concave function G : R

s → R and a point μ ∈ R
s , a supgradient of

the function G at μ is a vector DG(μ) ∈ R
s such that the following supgradient

inequality holds for any λ ∈ R
s : DG(μ)T (λ − μ) ≥ G(λ) − G(μ).

http://dx.doi.org/10.1007/978-3-319-19072-3_1
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2.3 Case (i): Absence of Equality Constraint

In this section, we study the case of problem (2.1) where the equality constraint
h(x) = 0 is absent; i.e.,

min
x∈Rn

N∑

i=1

fi (x), s.t. g(x) ≤ 0, x ∈ ∩N
i=1Xi . (2.2)

In the following,we first provide some preliminary results, including aLagrangian
saddle point characterization of the problem (2.2) and a superset containing the
Lagrangian dual optimal set of the problem (2.2). After this, the Distributed
Lagrangian Primal- Dual Subgradient Algorithm will be presented along
with a summary of its convergence properties.

Overall Strategy and Lagrangian Saddle Point Characterization

First, the problem (2.2) is equivalent to

min
x∈Rn

f (x), s.t. Ng(x) ≤ 0, x ∈ X,

with associated Lagrangian dual problem given by

max
μ∈Rm

qL(μ), s.t. μ ≥ 0.

Here, the function qL : Rm≥0 → R, is defined as qL(μ) � infx∈X L (x, μ), where
L : Rn × R

m≥0 → R is the Lagrangian L (x, μ) = f (x) + NμT g(x). We denote
the Lagrangian dual optimal value of the Lagrangian dual problem by d∗

L and the
set of Lagrangian dual optimal points by D∗

L . As is well-known, under the Slater’s
condition2.1, the property of strong duality holds; i.e., p∗ = d∗

L , and D∗
L �= ∅.

As explained in Theorem1.7, saddle points of the Lagrangian correspond to
min-max solutions of the primal and dual problems. Assume for simplicity that
the Lagrangian is differentiable and there are no other constraints than the ones
included already in the Lagrangian. Then, one can define an associated saddle point
dynamics (gradient descent in one argument and gradient ascent in the other) as
follows. Let Lμ : Rn −→ R be the function Lμ(x) := L (x, μ), for μ fixed, and
Lx : R

n −→ R be Lx (μ) := L (x, μ), for x fixed. Then, the continuous-time
saddle point dynamics is given as:

ẋ(t) = −∇Lμ(t)(x(t), μ(t)),

μ̇(t) = ∇Lx(t)(x(t), μ(t)). (2.3)

IfLμ(t) is convex andLx(t) is concave, these dynamics converge to a saddle point
of the Lagrangian from any initial and see [8]. The discrete-time counterpart can be

http://dx.doi.org/10.1007/978-3-319-19072-3_1
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generalized for nondifferentiable Lagrangians and to include additional projections
over x ∈ X [9].

We would like to use a distributed discrete-time version of (2.3) for the multi-
agent system by defining related and separated problems for each agent, which then
are globally coordinated through a consensus algorithm. To do this, note that, while
Lx is naturally separable as a sum of factors fi (x) + g(x) for each agent, the dual
function qL is not. Then, our strategy will be to define certain sets Mi for each agent
that contain the dual solution set, and, which used with a projection operation on Mi ,
can converge to a saddle point and a min-max solution.

This following lemma presents some preliminary analysis of saddle points toward
this objective.

Lemma 2.1 (Preliminary results on saddle points) Let M be any superset of D∗
L .

(a) If (x∗, μ∗) is a saddle point of L over X ×R
m≥0, then (x∗, μ∗) is also a saddle

point of L over X × M.
(b) There is at least one saddle point of L over X × M.
(c) If (x̌, μ̌) is a saddle point of L over X × M, then L (x̌, μ̌) = p∗ and μ̌ is

Lagrangian dual optimal.

Proof (a) It just follows from the definition of saddle point of L over X × M .
(b) Observe that

sup
μ∈Rm≥0

inf
x∈X

L (x, μ) = sup
μ∈Rm≥0

qL (μ) = d∗
L , inf

x∈X
sup

μ∈Rm≥0

L (x, μ) = inf
x∈X∩Y

f (x) = p∗.

Since the Slater’s condition2.1 implies zero duality gap, the Lagrangian minimax
equality holds. From Theorem1.7 it follows that the set of saddle points of L over
X × R

m≥0 is the Cartesian product X∗ × D∗
L . Recall that X∗ and D∗

L are nonempty,
so we can guarantee the existence of the saddle point ofL over X × R

m≥0. Then by
(a), we have that (b) holds.
(c) Pick any saddle point (x∗, μ∗) of L over X × R

m≥0. Since the Slater’s condi-
tion2.1 holds, from Theorem1.7 one can deduce that (x∗, μ∗) is a pair of primal and
Lagrangian dual optimal solutions. This implies that

d∗
L = inf

x∈X
L (x, μ∗) ≤ L (x∗, μ∗) ≤ sup

μ∈Rm≥0

L (x∗, μ) = p∗.

From Theorem1.7, we have d∗
L = p∗. Hence, L (x∗, μ∗) = p∗. On the other

hand, we pick any saddle point (x̌, μ̌) ofL over X × M . Then for all x ∈ X andμ ∈
M , it holds thatL (x̌, μ) ≤ L (x̌, μ̌) ≤ L (x, μ̌). By Theorem1.7, thenμ∗ ∈ D∗

L ⊆
M . Recall x∗ ∈ X , and thus we have L (x̌, μ∗) ≤ L (x̌, μ̌) ≤ L (x∗, μ̌). Since
x̌ ∈ X and μ̌ ∈ R

m≥0, we have L (x∗, μ̌) ≤ L (x∗, μ∗) ≤ L (x̌, μ∗). Combining
the above two relations gives that L (x̌, μ̌) = L (x∗, μ∗) = p∗. From Remark1.3
we see that L (x̌, μ̌) ≤ inf x∈X L (x, μ̌) = qL(μ̌). Since L (x̌, μ̌) = p∗ = d∗

L ≥
qL(μ̌), then qL(μ̌) = d∗

L and thus μ̌ is a Lagrangian dual optimal solution. �

http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
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Remark 2.1 Despite that (c) holds, the reverse of (a) may not be true in general. In
particular, x∗ may be infeasible; i.e., g�(x∗) > 0 for some � ∈ {1, . . . , m}. •

An Upper Estimate of the Lagrangian Dual Optimal Set

In what follows, we will find a compact superset of D∗
L . To do that, we define the

following primal problem for each agent i :

min
x∈Rn

fi (x), s.t. g(x) ≤ 0, x ∈ Xi .

Due to the fact that Xi is compact and the fi are continuous, the primal optimal value
p∗

i of each agent’s primal problem is finite and the set of its primal optimal solutions
is nonempty. The associated dual problem is given by

max
μ∈Rm

qi (μ), s.t. μ ≥ 0.

Here, the dual function qi : R
m≥0 → R is defined by qi (μ) � infx∈Xi Li (x, μ),

where Li : R
n × R

m≥0 → R is the Lagrangian function of agent i and given by
Li (x, μ) = fi (x) + μT g(x). The corresponding dual optimal value is denoted by
d∗

i . In this way, L is decomposed into a sum of local Lagrangian functions; i.e.,

L (x, μ) = ∑N
i=1Li (x, μ).

Define now the set-valued map Q : R
m≥0 → 2(Rm≥0) by Q(μ̃) = {μ ∈

R
m≥0 | qL(μ) ≥ qL(μ̃)}. Additionally, define a function γ : X → R by

γ (x) = min�∈{1,...,m}{−g�(x)}. Observe that if x is a Slater-vector, then γ (x) > 0.
The following lemma is a direct result of Lemma 1 in [10].

Lemma 2.2 (Boundedness of dual solution sets) The set Q(μ̃) is bounded for any
μ̃ ∈ R

m≥0, and, in particular, for any Slater-vector x̄ , it holds that maxμ∈Q(μ̃) ‖μ‖ ≤
1

γ (x̄)
( f (x̄) − qL(μ̃)). �

Notice that D∗
L = {μ ∈ R

m≥0 | qL(μ) ≥ d∗
L}. Picking any Slater-vector x̄ ∈ X ,

and letting μ̃ = μ∗ ∈ D∗
L in Lemma2.2 gives that

max
μ∗∈D∗

L

‖μ∗‖ ≤ 1

γ (x̄)
( f (x̄) − d∗

L). (2.4)

Define the function r : X×R
m≥0 → R∪ {+∞}by r(x, μ) � N

γ (x)
maxi∈V { fi (x)−

qi (μ)}. By the property of weak duality, it holds that d∗
i ≤ p∗

i and thus fi (x) ≥ qi (μ)

for any (x, μ) ∈ X × R
m≥0. Since γ (x̄) > 0, r(x̄, μ) ≥ 0 for any μ ∈ R

m≥0.
With this observation, we pick any μ̃ ∈ R

m≥0 and the following set is well-defined:

M̄i (x̄, μ̃) � {μ ∈ R
m≥0 | ‖μ‖ ≤ r(x̄, μ̃) + θi } for some θi ∈ R>0. Observe that for

all μ ∈ R
m≥0:
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qL(μ) = inf
x∈∩m

i=1Xi

N∑

i=1

( fi (x) + μT g(x)) ≥
N∑

i=1

inf
x∈Xi

( fi (x) + μT g(x)) =
N∑

i=1

qi (μ).

(2.5)

Since d∗
L ≥ qL(μ̃), it follows from (2.4) and (2.5) that

max
μ∗∈D∗

L

‖μ∗‖ ≤ 1

γ (x̄)
( f (x̄) − qL(μ̃)) ≤ 1

γ (x̄)

(
f (x̄) −

N∑

i=1

qi (μ̃)

)

≤ N

γ (x̄)
max
i∈V

{ fi (x̄) − qi (μ̃)} = r(x̄, μ̃).

Hence, we have D∗
L ⊆ M̄i (x̄, μ̃) for all i ∈ V .

Note that in order to compute M̄i (x̄, μ̃), all the agents have to agree on a com-
mon Slater-vector x̄ ∈ ∩N

i=1Xi which should be obtained in a distributed fashion.
To handle this difficulty, we now propose a distributed algorithm, namely Distrib-
uted Slater- Vector Computation Algorithm, which allows each agent i to
compute a superset of M̄i (x̄, μ̃).

Initially, each agent i chooses a common value μ̃ ∈ R
m≥0; e.g., μ̃ = 0, and

computes two positive constants bi (0) and ci (0) such that bi (0) ≥ supx∈Ji
{ fi (x) −

qi (μ̃)} and ci (0) ≤ min1≤�≤m infx∈Ji {−g�(x)} where Ji � {x ∈ Xi | g(x) < 0}.
At every time k ≥ 0, each agent i updates its estimates by:

bi (k + 1) = max
j∈Ni (k)∪{i}

b j (k), ci (k + 1) = min
j∈Ni (k)∪{i}

c j (k).

We denote b∗ � max j∈V b j (0), c∗ � min j∈V c j (0) for all k ≥ (N − 1)B, and
M [i](μ̃) � {μ ∈ R

m≥0 | ‖μ‖ ≤ Nb∗
c∗ + θi }, J � {x ∈ X | g(x) < 0}.

Lemma 2.3 (Convergence of the Distributed Slater- Vector Computation
Algorithm) Assume that the periodical strong connectivity Assumption1.3 holds.
Consider the sequences of {bi (k)} and {ci (k)} generated by the Distributed
Slater- Vector Computation Algorithm. It holds that after at most (N −1)B
steps, all the agents reach the consensus, i.e., bi (k) = b∗ and ci (k) = c∗ for all
k ≥ (N − 1)B. Furthermore, we have M [i](μ̃) ⊇ M̄i (x̄, μ̃) for i ∈ V .

Proof It is not difficult to verify achieving max-consensus by the periodical strong
connectivity Assumption1.3. Note that J ⊆ Ji , ∀i ∈ V . Hence, we have

max
i∈V

sup
x∈J

{ fi (x) − qi (μ̃)} ≤ max
i∈V

sup
x∈Ji

{ fi (x) − qi (μ̃)} ≤ b∗,

inf
x∈J

min
1≤�≤m

{−g�(x)} ≥ min
i∈V

inf
x∈Ji

min
1≤�≤m

{−g�(x)} ≥ c∗.

http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
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Since x̄ ∈ J , then the following estimate on r(x̄, μ̃) holds:

r(x̄, μ̃) ≤ N supx∈J maxi∈V { fi (x) − qi (μ̃)}
infx∈J min1≤�≤m{−g�(x)} ≤ Nb∗

c∗ .

The desired result immediately follows. �

From Lemma2.3 and the fact that D∗
L ⊆ M̄i (x̄, μ̃), we can see that the set of

M(μ̃) � ∩N
i=1M [i](μ̃) contains D∗

L . In addition, M [i](μ̃) and M(μ̃) are nonempty,
compact, and convex. To simplify the notations, we will use the shorthands Mi �
M [i](μ̃) and M � M(μ̃).

Convexity of the Lagrangian Function

For each μ ∈ R
m≥0, we define the function Liμ : Rn → R as Liμ(x) := Li (x, μ).

Note thatLiμ is convex since it is a nonnegative weighted sum of convex functions.
For each x ∈ R

n , we define the functionLi x : Rm≥0 → R asLi x (μ) := Li (x, μ). It
is easy to check thatLi x is a concave (actually affine) function. Then the Lagrangian
function L is the sum of a collection of convex–concave local functions.

2.3.1 The DISTRIBUTED LAGRANGIAN PRIMAL-DUAL

SUBGRADIENT ALGORITHM

Here, we introduce the Distributed Lagrangian Primal- Dual Subgradient
Algorithm to find a saddle point of the Lagrangian functionL over X × M and the
optimal value. This saddle point will coincide with a pair of primal and Lagrangian
dual optimal solutions which is not always the case; see Remark2.1.

Through the algorithm, at each time k, each agent i maintains the estimate of
(xi (k), μi (k)) to the saddle point of the Lagrangian functionL over X × M and the
estimate of yi (k) to p∗. To produce xi (k +1) (resp.μi (k +1)), agent i takes a convex
combination vi

x (k) (resp. vi
μ(k)) of its estimate xi (k) (resp.μi (k)) with the estimates

sent from its neighboring agents at time k, makes a subgradient (resp. supgradient)
step to minimize (resp. maximize) the local Lagrangian function Li , and takes a
primal (resp. dual) projection onto the local constraint Xi (resp. Mi ). Furthermore,
agent i generates the estimate yi (k + 1) by taking a convex combination vi

y(k) of its
estimate yi (k) with the estimates of its neighbors at time k and taking one step to
track the variation of the local objective function fi .More precisely, theDistributed
Lagrangian Primal- Dual Subgradient Algorithm is described as follows:

Initially, each agent i picks a common μ̃ ∈ R
m≥0 and computes the set Mi with

some θi > 0 by using the Distributed Slater-vector Computation Algorithm. Agent i
then chooses any initial state xi (0) ∈ Xi , μi (0) ∈ R

m≥0, and yi (1) = N fi (xi (0)).
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At every k ≥ 0, each agent i generates xi (k+1),μi (k+1) and yi (k+1) according
to the following rules:

vi
x (k) =

N∑

j=1

ai
j (k)x j (k), vi

μ(k) =
N∑

j=1

ai
j (k)μ j (k), vi

y(k) =
N∑

j=1

ai
j (k)y j (k),

xi (k + 1) = PXi [vi
x (k) − α(k)D i

x (k)], μi (k + 1) = PMi [vi
μ(k) + α(k)D i

μ(k)],
yi (k + 1) = vi

y(k) + N ( fi (xi (k)) − fi (xi (k − 1))),

where PXi (resp. PMi ) is the projection operator onto the set Xi (resp. Mi ), the scalars
ai

j (k) are nonnegative weights and the scalars α(k) > 0 are step-sizes.1 We use the

shorthands D i
x (k) ≡ DLivi

μ(k)(v
i
x (k)), and D i

μ(k) ≡ DLivi
x (k)(v

i
μ(k)).

The following theorem summarizes the convergence properties of the Distrib-
uted Lagrangian Primal- Dual Subgradient Algorithm where it is guar-
anteed that agents asymptotically agree upon a pair of primal-dual optimal solutions.

Theorem 2.1 (Convergence of the Distributed Lagrangian Primal- Dual
Subgradient Algorithm)Consider the optimization problem (2.2). Let the nonde-
generacy Assumption1.1, the double stochasticity Assumption1.2, and the periodic
strong connectivity Assumption1.3 hold. Consider the sequences of {xi (k)}, {μi (k)}
and {yi (k)} of the Distributed Lagrangian Primal- Dual Subgradient

Algorithm with the step-sizes {α(k)} satisfying lim
k→+∞ α(k) = 0,

+∞∑

k=0

α(k) = +∞,

and
+∞∑

k=0

α(k)2 < +∞. Then, there is a pair of primal and Lagra-

ngian dual optimal solutions (x∗, μ∗) ∈ X∗×D∗
L such that lim

k→+∞ ‖xi (k) − x∗‖ = 0

and lim
k→+∞ ‖μi (k) − μ∗‖ = 0, for all i ∈ V . Furthermore, lim

k→+∞ ‖yi (k) − p∗‖ = 0,

for all i ∈ V .

2.3.2 A Numerical Example for the DISTRIBUTED

LAGRANGIAN PRIMAL-DUAL SUBGRADIENT

ALGORITHM

In order to illustrate the performance of the Distributed Lagrangian Primal-
Dual Subgradient Algorithm, we here study a numerical example of network
utility maximization, e.g., in [4]. Consider five agents and one link where each agent
sends data through the link at a rate of zi , and the link capacity is 5. The global decision
vector x := (z1 z2 z3 z4 z5)T ∈ R

5 is the resource allocation vector. Each agent
i is associated with a concave utility function fi (zi ) := √

zi , representing the utility

1Each agent i executes the update law of yi (k) for k ≥ 1.

http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
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agent i obtained through sending data at a rate of zi . Agents aim to maximize the
network utility and it can be formulated as follows:

min
x∈R5

∑

i∈V

−√
zi s.t. z1 + z2 + z3 + z4 + z5 ≤ 5, x ∈ ∩i∈V Xi , (2.6)

where local constraint sets Xi are given by:

X1 := [0.5, 5.5] × [0.5, 5.5] × [0.5, 5.5] × [0.5, 5.5] × [0.5, 5.5],
X2 := [0.55, 5.25] × [0.55, 5.25] × [0.55, 5.25] × [0.55, 5.25] × [0.55, 5.25],
X3 := [0.5, 6] × [0.5, 6] × [0.5, 6] × [0.5, 6] × [0.5, 6],
X4 := [0.5, 5] × [0.5, 5] × [0.5, 5] × [0.5, 5] × [0.5, 5],
X5 := [0.525, 5.75] × [0.525, 5.75] × [0.525, 5.75] × [0.525, 5.75] × [0.525, 5.75].

One can verify that the optimal solution is [1 1 1 1 1]T . We use the Dis-
tributed Lagrangian Primal- Dual Subgradient Algorithm to solve prob-
lem (2.6) by choosing step-size α(k) = 1

k+1 . Figures2.2 and 2.3 show the simulation
results of the Distributed Lagrangian Primal- Dual Subgradient Algo-
rithm, demonstrating that the agents take 104 iterates to agree upon value 1 for z1
and z2.

Fig. 2.2 The estimates on z1 generated by different agents in the Distributed Lagrangian
Primal- Dual Subgradient Algorithm (DLPDS)
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Fig. 2.3 The estimates on z2 generated by different agents in the Distributed Lagrangian
Primal- Dual Subgradient Algorithm (DLPDS)

2.4 Case (ii): Identical Local Constraint Sets

In the previous section, we study the case where the equality constraint is absent in
problem (2.1). Here, we turn our attention to another case of problem (2.1), where
h(x) = 0 is taken into account but we require that local constraint sets are identical;
i.e., Xi = X for all i ∈ V .We first adopt a penalty relaxation formulation and provide
a penalty saddle point characterization of the primal problem (2.1) with Xi = X . We
then introduce the Distributed Penalty Primal- Dual Subgradient Algo-
rithm, followed by its convergence properties.

Overall Strategy and a Penalty Saddle Point Characterization

As in the previous section, our strategy will be to define an appropriate dynamics
to converge to a saddle point or a min-max solution of the problem. However, to
deal with the equality constraint, we will employ a penalty function, which includes
positive terms penalizing the violation of the equality and inequality constraints. The
identical local constraint sets will also help in guaranteeing the convergence of the
method. More precisely, consider the following.

The primal problem (2.1) with Xi = X is trivially equivalent to the following:

min
x∈Rn

f (x), s.t. Ng(x) ≤ 0, Nh(x) = 0, x ∈ X, (2.7)

with associated penalty dual problem given by

max
μ∈Rm ,λ∈Rν

qP (μ, λ), s.t. μ ≥ 0, λ ≥ 0. (2.8)
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Here, the penalty dual function, qP : Rm≥0 × R
ν≥0 → R, is defined by

qP (μ, λ) � inf
x∈X

H (x, μ, λ),

where H : Rn × R
m≥0 × R

ν≥0 → R is the penalty function given by H (x, μ, λ) =
f (x) + NμT [g(x)]+ + NλT |h(x)|. We denote the penalty dual optimal value by
d∗

P and the set of penalty dual optimal solutions by D∗
P . We define the penalty func-

tionHi (x, μ, λ) : Rn ×R
m≥0×R

ν≥0 → R for each agent i as follows:Hi (x, μ, λ) =
fi (x)+μT [g(x)]+ + λT |h(x)|. In thisway,wehave thatH (x, μ, λ) = ∑N

i=1Hi (x,

μ, λ). As proven in the next lemma, the Slater’s condition2.1 ensures zero duality
gap and the existence of penalty dual optimal solutions.

Lemma 2.4 (Strong duality and nonemptiness of the penalty dual optimal set) The
values of p∗ and d∗

P coincide, and D∗
P is nonempty.

Proof Consider the auxiliary Lagrangian functionLa : Rn ×R
m≥0 ×R

ν → R given
byLa(x, μ, λ) = f (x) + NμT g(x) + NλT h(x), with the associated dual problem
defined by

max
μ∈Rm ,λ∈Rν

qa(μ, λ), s.t. μ ≥ 0. (2.9)

Here, the dual function, qa : Rm≥0 × R
ν → R, is defined by

qa(μ, λ) � inf
x∈X

La(x, μ, λ).

The dual optimal value of problem (2.9) is denoted by d∗
a and the set of dual optimal

solutions is denoted D∗
a . Since X is convex, f and g�, for � ∈ {1, . . . , m}, are convex,

p∗ is finite and the Slater’s condition2.1 holds, it follows from Proposition5.3.5
in [11] that p∗ = d∗

a and D∗
a �= ∅. We now proceed to characterize d∗

P and D∗
P . Pick

any (μ∗, λ∗) ∈ D∗
a . Since μ∗ ≥ 0, then

d∗
a = qa(μ∗, λ∗) = inf

x∈X
{ f (x) + N (μ∗)T g(x) + N (λ∗)T h(x)}

≤ inf
x∈X

{ f (x) + N (μ∗)T [g(x)]+ + N |λ∗|T |h(x)|} = qP (μ∗, |λ∗|) ≤ d∗
P .

(2.10)

On the other hand, pick any x∗ ∈ X∗. Then x∗ is feasible, i.e., x∗ ∈ X , [g(x∗)]+ = 0
and |h(x∗)| = 0. It implies that qP (μ, λ) ≤ H (x∗, μ, λ) = f (x∗) = p∗ holds for
any μ ∈ R

m≥0 and λ ∈ R
ν≥0, and thus d∗

P = supμ∈Rm≥0,λ∈Rν≥0
qP (μ, λ) ≤ p∗ = d∗

a .

Therefore, we have d∗
P = p∗.

To prove the emptiness of D∗
P , we pick any (μ∗, λ∗) ∈ D∗

a . From (2.10) and
d∗

a = d∗
P , we can see that (μ∗, |λ∗|) ∈ D∗

P and thus D∗
P �= ∅. �
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The following is a slight extension of Theorem1.7 to penalty functions.

Theorem 2.2 (Penalty Saddle point Theorem) The pair of (x∗, μ∗, λ∗) is a saddle
point of the penalty function H over X × R

m≥0 × R
ν≥0 if and only if it is a pair

of primal and penalty dual optimal solutions and the following penalty minimax
equality holds:

sup
(μ,λ)∈Rm≥0×R

ν≥0

inf
x∈X

H (x, μ, λ) = inf
x∈X

sup
(μ,λ)∈Rm≥0×R

ν≥0

H (x, μ, λ).

Proof The proof is analogous to that of Proposition 6.2.4 in [12], and for the sake of
completeness, we provide the details here. It follows from Proposition 2.6.1 in [12]
that (x∗, μ∗, λ∗) is a saddle point of H over X × R

m≥0 × R
ν≥0 if and only if the

penalty minimax equality holds and the following conditions are satisfied:

sup
(μ,λ)∈Rm≥0×R

ν≥0

H (x∗, μ, λ) = min
x∈X

{ sup
(μ,λ)∈Rm≥0×R

ν≥0

H (x, μ, λ)}, (2.11)

inf
x∈X

H (x, μ∗, λ∗) = max
(μ,λ)∈Rm≥0×R

ν≥0

{ inf
x∈X

H (x, μ, λ)}. (2.12)

Notice that infx∈X H (x, μ, λ) = qP (μ, λ); and if x ∈ Y , then the following holds:

sup
(μ,λ)∈Rm≥0×R

ν≥0

H (x, μ, λ) = f (x),

otherwise, sup(μ,λ)∈Rm≥0×R
ν≥0

H (x, μ, λ) = +∞. Hence, the penalty minimax

equality is equivalent to d∗
P = p∗. Condition (2.11) is equivalent to the fact that

x∗ is primal optimal, and condition (2.12) is equivalent to (μ∗, λ∗) being a penalty
dual optimal solution. �

Convexity of the Penalty Function

Since g� is convex and [·]+ is convex and nondecreasing, [g�(x)]+ is convex in x for
each � ∈ {1, . . . , m}. Denote A � (aT

1 , . . . , aT
ν )T . Since | · | is convex and aT

� x − b�

is an affine mapping, then |aT
� x − b�| is convex in x for each � ∈ {1, . . . , ν}.

We denote w � (μ, λ). For each w ∈ R
m≥0 × R

ν≥0, we define the function Hiw :
R

n → R asHiw(x) := Hi (x, w). Note thatHiw(x) is convex in x by using the fact
that a nonnegative weighted sum of convex functions is convex. For each x ∈ R

n ,
we define the function Hix : Rm≥0 × R

ν≥0 → R as Hix(w) := Hi (x, w). It is easy
to check that Hix(w) is concave (actually affine) in w. Then the penalty function
H (x, w) is the sum of convex–concave local functions.

Remark 2.2 The Lagrangian relaxation does not fit into our approach here since the
Lagrangian function is not convex in x by allowing λ entries to be negative. •

http://dx.doi.org/10.1007/978-3-319-19072-3_1
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2.4.1 The DISTRIBUTED PENALTY PRIMAL-DUAL

SUBGRADIENT ALGORITHM

We now proceed to devise the Distributed Penalty Primal- Dual Subgra-
dient Algorithm, which is based on the penalty saddle point Theorem2.2, to find
the optimal value and a primal optimal solution to the primal problem (2.1) with
Xi = X . The main steps of the Distributed Penalty Primal- Dual Subgra-
dient Algorithm are described as follows.

Initially, agent i chooses any initial state xi (0) ∈ X , μi (0) ∈ R
m≥0, λ

i (0) ∈ R
ν≥0,

and yi (1) = N fi (xi (0)). After this, at every k ≥ 0, agent i computes the following
convex combinations:

vi
x (k) =

N∑

j=1

ai
j (k)x j (k), vi

y(k) =
N∑

j=1

ai
j (k)y j (k),

vi
μ(k) =

N∑

j=1

ai
j (k)μ j (k), vi

λ(k) =
N∑

j=1

ai
j (k)λ j (k),

and generates xi (k+1), yi (k+1),μi (k+1), andλi (k+1) according to the following:

xi (k + 1) = PX [vi
x (k) − α(k)S i

x (k)],
yi (k + 1) = vi

y(k) + N ( fi (xi (k)) − fi (xi (k − 1))),

μi (k + 1) = vi
μ(k) + α(k)[g(vi

x (k))]+, λi (k + 1) = vi
λ(k) + α(k)|h(vi

x (k))|,

where PX is the projection operator onto the set X , the scalars ai
j (k) are nonnegative

weights, and the positive scalars {α(k)} are step-sizes.2 The vector

S i
x (k) � D fi (v

i
x (k)) +

m∑

�=1

vi
μ(k)�D[g�(v

i
x (k))]+ +

ν∑

�=1

vi
λ(k)�D |h�|(vi

x (k))

is a subgradient of Hiwi (k)(x) at x = vi
x (k) where wi (k) � (vi

μ(k), vi
λ(k)).

Given a step-size sequence {α(k)}, we define the sum over [0, k] by s(k) �∑k
�=0 α(�), which should satisfy the following; see Remark2.4 on how to define

such a sequence.

Assumption 2.2 (Step-size assumption) The step-sizes satisfy

lim
k→+∞ α(k) = 0,

+∞∑

k=0

α(k) = +∞,

+∞∑

k=0

α(k)2 < +∞,

2Each agent i executes the update law of yi (k) for k ≥ 1.
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lim
k→+∞ α(k + 1)s(k) = 0,

+∞∑

k=0

α(k + 1)2s(k) < +∞,

+∞∑

k=0

α(k + 1)2s(k)2 < +∞.

The following theorem is the main result of this section, characterizing the con-
vergence properties of the Distributed Penalty Primal- Dual Subgradient
Algorithm, where an optimal solution and the optimal value are asymptotically
achieved.

Theorem 2.3 (Convergence of the Distributed Penalty Primal- Dual Sub-
gradient Algorithm) Consider the problem (2.1) with Xi = X. Let the non-
degeneracy Assumption1.1, the double stochasticity Assumption1.2, and the peri-
odic strong connectivity Assumption1.3 hold. Consider the sequences of {xi (k)} and
{yi (k)} of theDistributed Penalty Primal- Dual Subgradient Algorithm,
where the step-sizes {α(k)} satisfy the step-size Assumption2.2. Then there exists a
primal optimal solution x̃ ∈ X∗ such that lim

k→+∞ ‖xi (k) − x̃‖ = 0, for all i ∈ V .

Furthermore, we have lim
k→+∞ ‖yi (k) − p∗‖ = 0, for all i ∈ V .

Remark 2.3 Observe that μi (k) ≥ 0, λi (k) ≥ 0 and vi
x (k) ∈ X (due to the

fact that X is convex). Furthermore, ([g(vi
x (k))]+, |h(vi

x (k))|) is a supgradient of
Hivi

x (k)(w
i (k)); i.e., the following penalty supgradient inequality holds for any

μ ∈ R
m≥0 and λ ∈ R

ν≥0:

([g(vi
x (k))]+)T (μ − vi

μ(k)) + |h(vi
x (k))|T (λ − vi

λ(k))

≥ Hi (v
i
x (k), μ, λ) − Hi (v

i
x (k), vi

μ(k), vi
λ(k)). (2.13)

•
Remark 2.4 A step-size sequence that satisfies the step-size Assumption2.2 is the

harmonic series {α(k) = 1
k+1 }k∈Z≥0 . It is obvious that lim

k→+∞
1

k + 1
= 0, and well-

known that
∑+∞

k=0
1

k+1 = +∞ and
∑+∞

k=0
1

(k+1)2
< +∞. We now proceed to check

the property of lim
k→+∞ α(k + 1)s(k) = 0. For any k ≥ 1, there is an integer n ≥ 1

such that 2n−1 ≤ k < 2n . It holds that

s(k) ≤ s(2n) = 1 + 1

2
+

(
1

3
+ 1

4

)
+ · · · +

(
1

2n−1 + 1
+ · · · + 1

2n

)

≤ 1 + 1

2
+

(
1

3
+ 1

3

)
+ · · · +

(
1

2n−1 + 1
+ · · · + 1

2n−1 + 1

)

≤ 1 + 1 + 1 + · · · + 1 = n ≤ log2 k + 1.

http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
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Then we have lim sup
k→+∞

s(k)

k + 2
≤ lim

k→+∞
log2 k + 1

k + 2
= 0. Obviously, lim inf

k→+∞
s(k)

k + 2
≥ 0. Then we have the property of lim

k→+∞ α(k + 1)s(k) = 0. Since log2 k ≤
(log2 k)2 < (k + 2)

1
2 , then

+∞∑

k=0

α(k + 1)2s(k)2 ≤
+∞∑

k=0

(log2 k + 1)2

(k + 2)2
=

+∞∑

k=0

(
(log2 k)2

(k + 2)2
+ 2 log2 k

(k + 2)2
+ 1

(k + 2)2

)

≤
+∞∑

k=0

1

(k + 2)
3
2

+
+∞∑

k=0

2

(k + 2)
3
2

+
+∞∑

k=0

1

(k + 2)2
< +∞.

Additionally, we have
∑+∞

k=0 α(k + 1)2s(k) ≤ ∑+∞
k=0 α(k + 1)2s(k)2 < +∞. •

2.4.2 A Numerical Example for the DISTRIBUTED PENALTY

PRIMAL-DUAL SUBGRADIENT ALGORITHM

Consider a network with five agents and their objective functions are defined as

f1(x) := 1

5

(
(a − 5)2 + (b − 2.5)2 + (c − 5)2 + (d + 2.5)2 + (e + 5)2

)
,

f2(x) := 1

5

(
(a − 2.5)2 + (b − 5)2 + (c + 2.5)2 + (d + 5)2 + (e − 5)2

)
,

f3(x) := 1

5

(
(a − 5)2 + (b + 2.5)2 + (c + 5)2 + (d − 5)2 + (e − 2.5)2

)
,

f4(x) := 1

5

(
(a + 2.5)2 + (b + 5)2 + (c − 5)2 + (d − 2.5)2 + (e − 5)2

)
,

f5(x) := 1

5

(
(a + 5)2 + (b − 5)2 + (c − 2.5)2 + (d − 5)2 + (e + 2.5)2

)
,

where the global decision vector x := [a b c d e]T ∈ R
5. The global equality

constraint function is given by h(x) := a + b + c + d + e − 5, and the global
constraint set is as follows: X := [−5, 5] × [−5, 5] × [−5, 5] × [−5, 5] ×
[−5, 5]. Consider the optimization as follows:

min
x∈R5

∑

i∈V

fi (x), s.t. h(x) = 0, x ∈ X.

One can verify that the optimal solution is [1 1 1 1 1]T . We employ the
Distributed Penalty Primal- Dual Subgradient Algorithm to solve the
above optimization problem with the step-size α(k) = 1

k+1 . Its simulation results
are included in Figs. 2.4 and 2.5. Observe that the estimates of a and b generated by
different agents asymptotically achieve value 1.
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Fig. 2.4 The estimates on a generated by different agents in theDistributed Penalty Primal-
Dual Subgradient Algorithm
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Fig. 2.5 The estimates on b generated by different agents in theDistributed Penalty Primal-
Dual Subgradient Algorithm
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2.5 Appendix

Wenext provide the proofs for themain results, Theorems2.1 and 2.3, of this chapter.
Before doing that, let us state an instrumental result as follows.Consider the following
distributed projected subgradient algorithmproposed in [13]: xi (k+1) = PZ [vi

x (k)−
α(k)di (k)]. Denote by ei (k) := PZ [vi

x (k) − α(k)di (k)] − vi
x (k). The following is a

slight modification of Lemma 8 and its proof in [13].

Lemma 2.5 Let the nondegeneracy Assumption1.1, the double stochasticity
Assumption1.2, and the periodic strong connectivity Assumption1.3 hold. Suppose
Z ∈ R

n is a closed and convex set. Then there exist γ > 0 and β ∈ (0, 1) such that

‖xi (k) − x̂(k)‖ ≤ Nγ

k−1∑

τ=0

βk−τ {α(τ)‖di (τ )‖

+ ‖ei (τ ) + α(τ)di (τ )‖} + Nγβk−1
N∑

i=0

‖xi (0)‖.

Suppose {di (k)} is uniformly bounded for each i ∈ V , and
∑+∞

k=0 α(k)2 < +∞, then
we have

∑+∞
k=0 α(k)maxi∈V ‖xi (k) − x̂(k)‖ < +∞.

We start our analysis on Theorems2.1 and 2.3 by providing the properties of the
sequences weighted by {α(k)}.
Lemma 2.6 (Convergence of weighted sequences) Let K ≥ 0. Consider the

sequence {δ(k)} defined by δ(k) �
∑k−1

�=K α(�)ρ(�)
∑k−1

�=K α(�)
where k ≥ K + 1, α(k) > 0

and
∑+∞

k=K α(k) = +∞.

(a) If lim
k→+∞ ρ(k) = +∞, then lim

k→+∞ δ(k) = +∞.

(b) If lim
k→+∞ ρ(k) = ρ∗, then lim

k→+∞ δ(k) = ρ∗.

Proof (a) For any Π > 0, there exists k1 ≥ K such that ρ(k) ≥ Π for all k ≥ k1.
Then the following holds for all k ≥ k1 + 1:

δ(k) ≥ 1
∑k−1

�=K α(�)

⎛

⎝
k1−1∑

�=K

α(�)ρ(�) +
k−1∑

�=k1

α(�)Π

⎞

⎠

= Π + 1
∑k−1

�=K α(�)

(
k1−1∑

�=K

α(�)ρ(�) −
k1−1∑

�=K

α(�)Π

)
.

http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
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Take the limit on k in the above estimate and we have lim inf
k→+∞ δ(k) ≥ Π . Since

Π is arbitrary, then lim
k→+∞ δ(k) = +∞.

(b) For any ε > 0, there exists k2 ≥ K such that ‖ρ(k)−ρ∗‖ ≤ ε for all k ≥ k2+1.
Then we have

‖δ(k) − ρ∗‖ = ‖
∑k−1

τ=K α(τ)(ρ(τ) − ρ∗)
∑k−1

τ=K α(τ)
‖

≤ 1
∑k−1

τ=K α(τ)

⎛

⎝
k2−1∑

τ=K

α(τ)‖ρ(τ) − ρ∗‖ +
k−1∑

τ=k2

α(τ)ε

⎞

⎠ ≤
∑k2−1

τ=K α(τ)‖ρ(τ) − ρ∗‖
∑k−1

τ=K α(τ)
+ ε.

Take the limit on k in the above estimate and we have lim sup
k→+∞

‖δ(k) − ρ∗‖ ≤ ε.

Since ε is arbitrary, then lim
k→+∞ ‖δ(k) − ρ∗‖ = 0. �

2.5.1 Convergence Analysis of the DISTRIBUTED

LAGRANGIAN PRIMAL-DUAL SUBGRADIENT

ALGORITHM

We now proceed to show Theorem2.1. To do that, we first rewrite the Distributed
Lagrangian Primal- Dual Subgradient Algorithm into the following form:

xi (k + 1) = vi
x (k) + ei

x (k), μi (k + 1) = vi
μ(k) + ei

μ(k), yi (k + 1) = vi
y(k) + ui (k),

where ei
x (k) and ei

μ(k) are projection errors described by

ei
x (k) � PXi [vi

x (k) − α(k)D i
x (k)] − vi

x (k),

ei
μ(k) � PMi [vi

μ(k) + α(k)D i
μ(k)] − vi

μ(k),

and ui (k) � N ( fi (xi (k)) − fi (xi (k − 1))) is the local input which allows agent i to
track the variation of the local objective function fi . In this manner, the update law
of each estimate is decomposed in two parts: a convex sum to fuse the information
of each agent with those of its neighbors, plus some local error or input. With this
decomposition, all the update laws are put into the same form as the dynamic average
consensus algorithm in the Chap.1. This observation allows us to divide the analysis
of the Distributed Lagrangian Primal- Dual Subgradient Algorithm in
two steps. First, we show all the estimates asymptotically achieve consensus by
utilizing the property that the local errors and inputs are diminishing. Second, we
further show that the consensus vectors coincidewith a pair of primal and Lagrangian
dual optimal solutions and the optimal value.

http://dx.doi.org/10.1007/978-3-319-19072-3_1
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Lemma 2.7 (Lipschitz continuity of Li ) Consider Liμ and Li x . Then there are
L > 0 and R > 0 such that ‖DLiμ(x)‖ ≤ L and ‖DLi x (μ)‖ ≤ R for each pair of
x ∈ co(∪N

i=1Xi ) and μ ∈ co(∪N
i=1Mi ). Furthermore, for each μ ∈ co(∪N

i=1Mi ), the
functionLiμ is Lipschitz continuous with Lipschitz constant L over co(∪N

i=1Xi ), and
for each x ∈ co(∪N

i=1Xi ), the function Li x is Lipschitz continuous with Lipschitz
constant R over co(∪N

i=1Mi ).

Proof Observe that DLiμ = D fi + μTDg and DLi x = g. Since fi and g� are
convex, it follows from Proposition 5.4.2 in [11] that ∂ fi and ∂g� are bounded over
the compact co(∪N

i=1Xi ). Since co(∪N
i=1Mi ) is bounded, so is ∂Liμ, i.e., for anyμ ∈

co(∪N
i=1Mi ), there exists L > 0 such that ‖∂Liμ(x)‖ ≤ L for all x ∈ co(∪N

i=1Xi ).
Since g� is continuous (due to its convexity) and co(∪N

i=1Xi ) is bounded, then g and
thus ∂Li x are bounded, i.e., for any x ∈ co(∪N

i=1Xi ), there exists R > 0 such that
‖∂Li x (μ)‖ ≤ R for all μ ∈ co(∪N

i=1Mi ).
It follows from the Lagrangian subgradient inequality that

DLiμ(x)T (x ′ − x) ≤ Liμ(x ′) − Liμ(x), DLiμ(x ′)T (x − x ′) ≤ Liμ(x) − Liμ(x ′),

for any x, x ′ ∈ co(∪N
i=1Xi ). By using the boundedness of the subdifferentials, the

above two inequalities give that −L‖x − x ′‖ ≤ Liμ(x) − Liμ(x ′) ≤ L‖x − x ′‖.
This implies that ‖Liμ(x) − Liμ(x ′)‖ ≤ L‖x − x ′‖ for any x, x ′ ∈ co(∪m

i=1Xi ).
The proof of the Lipschitz continuity of Li x is analogous by using the Lagrangian
supgradient inequality. �

The following lemma provides a basic iteration relation used in the convergence
proof of the Distributed Lagrangian Primal- Dual Subgradient Algo-
rithm.

Lemma 2.8 (Basic iteration relation) Let the double stochasticity Assumption1.2
and the periodic strong connectivity Assumption1.3 hold. For any x ∈ X, any μ ∈ M
and all k ≥ 0, the following estimates hold:

N∑

i=1

‖ei
x (k) + α(k)D i

x (k)‖2 ≤ −
N∑

i=1

2α(k)(Li (v
i
x (k), vi

μ(k)) − Li (x, vi
μ(k)))

+
N∑

i=1

α(k)2‖D i
x (k)‖2 +

N∑

i=1

{‖xi (k) − x‖2 − ‖xi (k + 1) − x‖2}, (2.14)

N∑

i=1

‖ei
μ(k) − α(k)D i

μ(k)‖2 ≤
N∑

i=1

2α(k)(Li (v
i
x (k), vi

μ(k)) − Li (v
i
x (k), μ))

+
N∑

i=1

α(k)2‖D i
μ(k)‖2 +

N∑

i=1

{‖μi (k) − μ‖2 − ‖μi (k + 1) − μ‖2}. (2.15)

http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
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Proof By Lemma1.1 with Z = Mi , z = vi
μ(k) + α(k)D i

μ(k) and y = μ ∈ M , we
have that for all k ≥ 0

N∑

i=1

‖ei
μ(k) − α(k)D i

μ(k)‖2 ≤
N∑

i=1

‖vi
μ(k) + α(k)D i

μ(k) − μ‖2 −
N∑

i=1

‖μi (k + 1) − μ‖2

=
N∑

i=1

‖vi
μ(k) − μ‖2 +

N∑

i=1

α(k)2‖D i
μ(k)‖2

+
N∑

i=1

2α(k)D i
μ(k)T (vi

μ(k) − μ) −
N∑

i=1

‖μi (k + 1) − μ‖2

≤
N∑

i=1

α(k)2‖D i
μ(k)‖2 +

N∑

i=1

2α(k)D i
μ(k)T (vi

μ(k) − μ)

+
N∑

i=1

‖μi (k) − μ‖2 −
N∑

i=1

‖μi (k + 1) − μ‖2. (2.16)

One can show (2.15) by substituting the following Lagrangian supgradient inequality
into (2.16):

D i
μ(k)T (μ − vi

μ(k)) ≥ Li (v
i
x (k), μ) − Li (v

i
x (k), vi

μ(k)).

Similarly, the equality (2.14) can be shown by using the following Lagrangian sub-
gradient inequality: D i

x (k)T (x − vi
x (k)) ≤ Li (x, vi

μ(k)) − Li (vi
x (k), vi

μ(k)). �

The following lemma shows that the consensus is asymptotically reached.

Lemma 2.9 (Achieving consensus)Let the nondegeneracy Assumption1.1, the dou-
ble stochasticity Assumption1.2, and the periodic strong connectivity Assumption1.3
hold. Consider the sequences of {xi (k)}, {μi (k)}, and {yi (k)} of the Distrib-
uted Lagrangian Primal- Dual Subgradient Algorithm with the step-size
sequence {α(k)} satisfying lim

k→+∞ α(k) = 0. Then there exist x∗ ∈ X and μ∗ ∈ M

such that

lim
k→+∞ ‖xi (k) − x∗‖ = 0, lim

k→+∞ ‖μi (k) − μ∗‖ = 0, ∀i ∈ V,

lim
k→+∞ ‖yi (k) − y j (k)‖ = 0, ∀i, j ∈ V .

Proof Observe that vi
x (k) ∈ co(∪N

i=1Xi ) and vi
μ(k) ∈ co(∪N

i=1Mi ). Then it follows
from Lemma2.7 that ‖D i

x (k)‖ ≤ L . From Lemma2.8 it follows that

http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
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N∑

i=1

‖xi (k + 1) − x‖2 ≤
N∑

i=1

‖xi (k) − x‖2 +
N∑

i=1

α(k)2L2

+
N∑

i=1

2α(k)(‖Li (v
i
x (k), vi

μ(k))‖ + ‖Li (x, vi
μ(k))‖). (2.17)

Notice that vi
x (k) ∈ co(∪N

i=1Xi ), vi
μ(k) ∈ co(∪N

i=1Mi ) and x ∈ X are bounded.
SinceLi is continuous, thenLi (vi

x (k), vi
μ(k)) andLi (x, vi

μ(k)) are bounded. Since

{α(k)} diminishes, one can verify that lim
k→+∞

N∑

i=1

‖xi (k) − x‖2 exists for any x ∈ X .

On the other hand, taking limits on both sides of (2.14), we obtain

lim
k→+∞

N∑

i=1

‖ei
x (k) + α(k)D i

x (k)‖2 = 0,

and therefore we deduce that lim
k→+∞ ‖ei

x (k)‖ = 0 for all i ∈ V . It follows from

Theorem1.4 that lim
k→+∞ ‖xi (k) − x j (k)‖ = 0 for all i, j ∈ V . Combining this with

the property that lim
k→+∞ ‖xi (k) − x‖ exists for any x ∈ X , we deduce that there exists

x∗ ∈ R
n such that lim

k→+∞ ‖xi (k) − x∗‖ = 0 for all i ∈ V . Since xi (k) ∈ Xi and Xi

is closed, it implies that x∗ ∈ Xi for all i ∈ V and thus x∗ ∈ X . Similarly, one can
show that there is μ∗ ∈ M such that lim

k→+∞ ‖μi (k) − μ∗‖ = 0 for all i ∈ V .

Since lim
k→+∞ ‖xi (k) − x∗‖ = 0 and fi is continuous, then lim

k→+∞‖ui (k)‖ = 0. It

follows from Theorem1.4 that lim
k→+∞ ‖yi (k) − y j (k)‖ = 0 for all i, j ∈ V . �

From Lemma2.9, we know that the sequences of {xi (k)} and {μi (k)} of the
Distributed Lagrangian Primal- Dual Subgradient Algorithm asymp-
totically agree on some point in X and some point in M , respectively. Denote by
Θ ⊆ X × M the set of such limit points. Denote by the average of primal and
dual estimates x̂(k) � 1

N

∑N
i=1 xi (k) and μ̂(k) � 1

N

∑N
i=1 μi (k), respectively. The

following lemma further characterizes that the points in Θ are saddle points of the
Lagrangian function L over X × M .

Lemma 2.10 (Saddle point characterization ofΘ) Each point in Θ is a saddle point
of the Lagrangian function L over X × M.

Proof Denote by Δx (k) � maxi, j∈V ‖x j (k) − xi (k)‖ the maximum deviation of
primal estimates. Notice that

‖vi
x (k) − x̂(k)‖ = ‖

N∑

j=1

ai
j (k)x j (k) −

N∑

j=1

1

N
x j (k)‖

http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
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= ‖
∑

j �=i

ai
j (k)(x j (k) − xi (k)) −

∑

j �=i

1

N
(x j (k) − xi (k))‖

≤
∑

j �=i

ai
j (k)‖x j (k) − xi (k)‖ +

∑

j �=i

1

N
‖x j (k) − xi (k)‖ ≤ 2Δx (k).

Denote by the maximum deviation of dual estimates Δμ(k) � maxi, j∈V ‖μ j (k) −
μi (k)‖. Similarly, we have ‖vi

μ(k) − μ̂(k)‖ ≤ 2Δμ(k).
We will show this lemma by contradiction. Suppose that there is (x∗, μ∗) ∈ Θ

which is not a saddle point of L over X × M . Then at least one of the following
equalities holds:

∃x ∈ X s.t. L (x∗, μ∗) > L (x, μ∗), (2.18)

∃μ ∈ M s.t. L (x∗, μ) > L (x∗, μ∗). (2.19)

Suppose first that (2.18) holds. Then, there exists ς > 0 such that L (x∗, μ∗) =
L (x, μ∗) + ς . Consider the sequences of {xi (k)} and {μi (k)} which converge
respectively to x∗ and μ∗ defined above. The estimate (2.14) leads to

N∑

i=1

‖xi (k + 1) − x‖2 ≤
N∑

i=1

‖xi (k) − x‖2 + α(k)2
N∑

i=1

‖D i
x (k)‖2 − 2α(k)

×
N∑

i=1

(Ai (k) + Bi (k) + Ci (k) + Di (k) + Ei (k) + Fi (k)),

where the notations are given by:

Ai (k) = Li (v
i
x (k), vi

μ(k)) − Li (x̂(k), vi
μ(k)),

Bi (k) = Li (x̂(k), vi
μ(k)) − Li (x̂(k), μ̂(k)),

Ci (k) = Li (x̂(k), μ̂(k)) − Li (x∗, μ̂(k)), Di (k) = Li (x∗, μ̂(k)) − Li (x∗, μ∗),
Ei (k) = Li (x∗, μ∗) − Li (x, μ∗), Fi (k) = Li (x, μ∗) − Li (x, vi

μ(k)).

It follows from the Lipschitz continuity property of Li ; see Lemma2.7, that

‖Ai (k)‖ ≤ L‖vi
x (k) − x̂(k)‖ ≤ 2LΔx (k), ‖Bi (k)‖ ≤ R‖vi

μ(k) − μ̂(k)‖ ≤ 2RΔμ(k),

‖Ci (k)‖ ≤ L‖x̂(k) − x∗‖ ≤ L

N

N∑

i=1

‖xi (k) − x∗‖,

‖Di (k)‖ ≤ R‖μ̂(k) − μ∗‖ ≤ R

N

N∑

i=1

‖μi (k) − μ∗‖,

‖Fi (k)‖ ≤ R‖μ∗ − vi
μ(k)‖ ≤ R‖μ∗ − μ̂(k)‖ + R‖μ̂(k) − vi

μ(k)‖
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≤ R

N

N∑

i=1

‖μ∗(k) − μi (k)‖ + 2RΔμ(k).

Since lim
k→+∞ ‖xi (k) − x∗‖ = 0, lim

k→+∞ ‖μi (k) − μ∗‖ = 0, lim
k→+∞ Δx (k) = 0 and

lim
k→+∞ Δμ(k) = 0, then all Ai (k), Bi (k), Ci (k), Di (k), Fi (k) converge to zero as

k → +∞. Then there exists k0 ≥ 0 such that for all k ≥ k0, it holds that

N∑

i=1

‖xi (k + 1) − x‖2 ≤
N∑

i=1

‖xi (k) − x‖2 + Nα(k)2L2 − ςα(k).

Following a recursive argument, we have that for all k ≥ k0, it holds that

N∑

i=1

‖xi (k + 1) − x‖2 ≤
N∑

i=1

‖xi (k0) − x‖2 + NL2
k∑

τ=k0

α(τ)2 − ς

k∑

τ=k0

α(τ).

Since
∑+∞

k=k0 α(k) = +∞ and
∑+∞

k=k0 α(k)2 < +∞ and xi (k0) ∈ Xi , x ∈ X are
bounded, the above estimate yields a contradiction by taking k sufficiently large. In
other words, (2.18) cannot hold. Following a parallel argument, one can show that
(2.19) cannot hold either. This ensures that each (x∗, μ∗) ∈ Θ is a saddle point of
L over X × M . �

The combination of (c) in Lemmas2.1 and 2.10 gives that, for each (x∗, μ∗) ∈ Θ ,
we have that L (x∗, μ∗) = p∗ and μ∗ is Lagrangian dual optimal. We still need to
verify that x∗ is a primal optimal solution. We are now in the position to show
Theorem2.1 based on two claims.

Proofs of Theorem 2.1:

Claim 2.1 Each point (x∗, μ∗) ∈ Θ is a point in X∗ × D∗
L .

Proof The Lagrangian dual optimality of μ∗ follows from (c) in Lemmas2.1
and 2.10. To characterize the primal optimality of x∗, we define an auxiliary

sequence {z(k)} by z(k) �
∑k−1

τ=0 α(τ)x̂(τ )
∑k−1

τ=0 α(τ)
which is a weighted version of the aver-

age of primal estimates. Since lim
k→+∞ x̂(k) = x∗, it follows from Lemma2.6 (b) that

lim
k→+∞ z(k) = x∗.

Since (x∗, μ∗) is a saddle point ofL over X × M , thenL (x∗, μ) ≤ L (x∗, μ∗)
for any μ ∈ M ; i.e., the following relation holds for any μ ∈ M :

g(x∗)T (μ − μ∗) ≤ 0. (2.20)
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Choose μa = μ∗ + mini∈V θi
μ∗

‖μ∗‖ where θi > 0 is given in the definition of Mi .
Then μa ≥ 0 and ‖μa‖ ≤ ‖μ∗‖ + mini∈V θi implying μa ∈ M . Letting μ = μa in
(2.20) gives that

mini∈V θi

‖μ∗‖ g(x∗)T μ∗ ≤ 0.

Since θi > 0, we have g(x∗)T μ∗ ≤ 0. On the other hand, we choose μb = 1
2μ

∗
and then μb ∈ M . Letting μ = μb in (2.20) gives that − 1

2g(x∗)T μ∗ ≤ 0 and thus
g(x∗)T μ∗ ≥ 0. The combination of the above two estimates guarantees the property
of g(x∗)T μ∗ = 0.

We now proceed to show g(x∗) ≤ 0 by contradiction. Assume that g(x∗) ≤ 0
does not hold. Denote J+(x∗) � {1 ≤ � ≤ m | g�(x∗) > 0} �= ∅ and η �
min�∈J+(x∗){g�(x∗)}. Then η > 0. Since g is continuous and vi

x (k) converges to x∗,
there exists K ≥ 0 such that g�(vi

x (k)) ≥ η
2 for all k ≥ K and all � ∈ J+(x∗).

Since vi
μ(k) converges to μ∗, without loss of generality, we say that ‖vi

μ(k)−μ∗‖ ≤
1
2 mini∈V θi for all k ≥ K . Choose μ̂ such that μ̂� = μ∗

� for � /∈ J+(x∗) and
μ̂� = μ∗

� + 1√
m
mini∈V θi for � ∈ J+(x∗). Since μ∗ ≥ 0 and θi > 0, μ̂ ≥ 0.

Furthermore, ‖μ̂‖ ≤ ‖μ∗‖ + mini∈V θi , then μ̂ ∈ M . Equating μ to μ̂ and letting
D i

μ(k) = g(vi
x (k)) in the estimate (2.16), the following holds for k ≥ K :

N |J+(x∗)|ηmin
i∈V

θiα(k) ≤ 2α(k)

N∑

i=1

∑

�∈J+(x∗)
g�(v

i
x (k))(μ̂ − vi

μ(k))�

≤
N∑

i=1

‖μi (k) − μ̂‖2 −
N∑

i=1

‖μi (k + 1) − μ̂‖2 + NR2α(k)2

− 2α(k)

N∑

i=1

∑

�/∈J+(x∗)
g�(v

i
x (k))(μ̂ − vi

μ(k))�. (2.21)

Summing (2.21) over [K , k − 1] with k ≥ K + 1, dividing by
∑k−1

τ=K α(τ) on
both sides, and using −∑N

i=1 ‖μi (k) − μ̂‖2 ≤ 0, we obtain

N |J+(x∗)|ηmin
i∈V

θi ≤ 1
∑k−1

τ=K α(τ)

{
N∑

i=1

‖μi (K ) − μ̂‖2 + NR2
k−1∑

τ=K

α(τ)2

−
k−1∑

τ=K

2α(τ)

N∑

i=1

∑

�/∈J+(x∗)
g�(v

i
x (τ ))(μ̂ − vi

μ(τ))�

⎫
⎬

⎭ . (2.22)
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Since μi (K ) ∈ Mi , μ̂ ∈ M are bounded and
∑+∞

τ=K α(τ) = +∞, then the
limit of the first term on the right-hand side of (2.22) is zero as k → +∞. Since∑+∞

τ=K α(τ)2 < +∞, then the limit of the second term is zero as k → +∞. Since
lim

k→+∞ vi
x (k) = x∗ and lim

k→+∞ vi
μ(k) = μ∗, the following holds:

lim
k→+∞ 2

N∑

i=1

∑

�/∈J+(x∗)
g�(v

i
x (k))(μ̂ − vi

μ(k))� = 0.

Then it follows fromLemma2.6 (b) that the limit of the third term is zero as k → +∞.
We have N |J+(x∗)|ηmini∈V θi ≤ 0. Recall that |J+(x∗)| > 0, η > 0 and θi > 0.
Then we reach a contradiction, implying that g(x∗) ≤ 0.

Since x∗ ∈ X and g(x∗) ≤ 0, then x∗ is a feasible solution and thus f (x∗) ≥ p∗.
On the other hand, since z(k) is a convex combination of x̂(0), . . . , x̂(k − 1) and f
is convex, we have the following estimate:

f (z(k)) ≤
∑k−1

τ=0 α(τ) f (x̂(τ ))
∑k−1

τ=0 α(τ)

= 1
∑k−1

τ=0 α(τ)

{
k−1∑

τ=0

α(τ)L (x̂(τ ), μ̂(τ )) −
k−1∑

τ=0

Nα(τ)μ̂(τ )T g(x̂(τ ))

}
.

Recall the following convergence properties:

lim
k→+∞ z(k) = x∗, lim

k→+∞L (x̂(k), μ̂(k)) = L (x∗, μ∗) = p∗,

lim
k→+∞ μ̂(k)T g(x̂(k)) = g(x∗)T μ∗ = 0.

It follows from Lemma2.6 (b) that f (x∗) ≤ p∗. Therefore, we have f (x∗) = p∗,
and thus x∗ is a primal optimal point. �

Claim 2.2 It holds that lim
k→+∞ ‖yi (k) − p∗‖ = 0.

Proof The following can be proven by induction on k for a fixed k′ ≥ 1:

N∑

i=1

yi (k + 1) =
N∑

i=1

yi (k′) + N
k∑

�=k′

N∑

i=1

( fi (xi (�)) − fi (xi (� − 1))). (2.23)

Let k′ = 1 in (2.23) and recall that initial state yi (1) = N fi (xi (0)) for all i ∈ V .
Then we have
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N∑

i=1

yi (k + 1) =
N∑

i=1

yi (1) + N
N∑

i=1

( fi (xi (k)) − fi (xi (0))) = N
N∑

i=1

fi (xi (k)).

(2.24)

The combination of (2.24) with lim
k→+∞ ‖yi (k) − y j (k)‖ = 0 gives the desired

result. �

2.5.2 Convergence Analysis of the DISTRIBUTED PENALTY

PRIMAL-DUAL SUBGRADIENT ALGORITHM

In order to analyze the Distributed Penalty Primal- Dual Subgradient
Algorithm, we first rewrite it into the following form:

μi (k + 1) = vi
μ(k) + ui

μ(k), λi (k + 1) = vi
λ(k) + ui

λ(k),

xi (k + 1) = vi
x (k) + ei

x (k), yi (k + 1) = vi
y(k) + ui

y(k),

where ei
x (k) is projection error described by

ei
x (k) � PX [vi

x (k) − α(k)S i
x (k)] − vi

x (k),

and the quantities ui
μ(k) � α(k)[g(vi

x (k))]+, ui
λ(k) � α(k)|h(vi

x (k))| and ui
y(k) =

N ( fi (xi (k)) − fi (xi (k − 1))) represent local inputs. Denote by the maximum devi-
ations of dual estimates Mμ(k) � maxi∈V ‖μi (k)‖ and Mλ(k) � maxi∈V ‖λi (k)‖.
Before showing Lemma2.11, we present some useful facts. Since X is compact,
and fi , [g(·)]+ and h are continuous, there exist F, G+, H > 0 such that for all
x ∈ X , it holds that ‖ fi (x)‖ ≤ F for all i ∈ V , ‖[g(x)]+‖ ≤ G+, and ‖h(x)‖ ≤ H .
Since X is a compact set and fi , [g�(·)]+, |h�(·)| are convex, then it follows from
Proposition 5.4.2 in [11] that there exist DF , DG+ , DH > 0 such that for all x ∈ X ,
it holds that ‖D fi (x)‖ ≤ DF (i ∈ V ), m‖D[g�(x)]+‖ ≤ DG+ (1 ≤ � ≤ m)
and ν‖D |h�|(x)‖ ≤ DH (1 ≤ � ≤ ν). Denote by the averages of primal and dual
estimates x̂(k) � 1

N

∑N
i=1 xi (k), μ̂(k) � 1

N

∑N
i=1 μi (k) and λ̂(k) � 1

N

∑N
i=1 λi (k).

Lemma 2.11 (Diminishing and summable properties) Suppose the double stochas-
ticity Assumption1.2 and the step-size Assumption2.2 hold.

(a) The following holds:

lim
k→+∞ α(k)Mμ(k) = 0, lim

k→+∞ α(k)Mλ(k) = 0, lim
k→+∞ α(k)‖S i

x (k)‖ = 0.

Furthermore, the sequences of {α(k)2M2
μ(k)}, {α(k)2M2

λ(k)}, and {α(k)2‖S i
x

(k)‖2} are summable.

http://dx.doi.org/10.1007/978-3-319-19072-3_1
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(b) The following sequences are summable:

{α(k)‖μ̂(k) − vi
μ(k)‖}, {α(k)‖λ̂(k) − vi

λ(k)‖}, {α(k)Mμ(k)‖x̂(k) − vi
x (k)‖},

{α(k)Mλ(k)‖x̂(k) − vi
x (k)‖}, {α(k)‖x̂(k) − vi

x (k)‖}.

Proof (a) Notice that

‖vi
μ(k)‖ = ‖

N∑

j=1

ai
j (k)μ j (k)‖ ≤

N∑

j=1

ai
j (k)‖μ j (k)‖ ≤

N∑

j=1

ai
j (k)Mμ(k) = Mμ(k),

where in the last equality we use the double stochasticity Assumption1.2. Recall that
vi

x (k) ∈ X . This implies that the following holds for all k ≥ 0:

‖μi (k + 1)‖ ≤ ‖vi
μ(k) + α(k)[g(vi

x (k))]+‖ ≤ ‖vi
μ(k)‖ + G+α(k) ≤ Mμ(k) + G+α(k).

From here, then we deduce the following recursive estimate on Mμ(k + 1): Mμ(k +
1) ≤ Mμ(k) + G+α(k). Repeatedly applying the above estimates yields that

Mμ(k + 1) ≤ Mμ(0) + G+s(k). (2.25)

Similar arguments can be employed to show that

Mλ(k + 1) ≤ Mλ(0) + Hs(k). (2.26)

Since lim
k→+∞ α(k + 1)s(k) = 0 and lim

k→+∞ α(k) = 0, we know that

lim
k→+∞ α(k + 1)Mμ(k + 1) = 0, lim

k→+∞ α(k + 1)Mλ(k + 1) = 0.

Notice that the following estimate on S i
x (k) holds:

‖S i
x (k)‖ ≤ DF + DG+ Mμ(k) + DH Mλ(k). (2.27)

Recall that lim
k→+∞ α(k) = 0, lim

k→+∞ α(k)Mμ(k) = 0 and lim
k→+∞ α(k)Mλ(k) = 0.

Then the result of lim
k→+∞ α(k)‖S i

x (k)‖ = 0 follows. By (2.25), we have

+∞∑

k=0

α(k)2M2
μ(k) ≤ α(0)2M2

μ(0) +
+∞∑

k=1

α(k)2(Mμ(0) + G+s(k − 1))2.

It follows from the step-size Assumption2.2 that
∑+∞

k=0 α(k)2M2
μ(k) < +∞. Simi-

larly, one can show that
∑+∞

k=0 α(k)2M2
λ(k) < +∞. By using (2.25)–(2.27), we have

the following estimate:

http://dx.doi.org/10.1007/978-3-319-19072-3_1
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+∞∑

k=0

α(k)2‖S i
x (k)‖2 ≤ α(0)2(DF + DG+ Mμ(0) + DH Mλ(0))

2

+
+∞∑

k=1

α(k)2(DF + DG+(Mμ(0) + G+s(k − 1)) + DH (Mλ(0) + Hs(k − 1)))2.

Then the summability of {α(k)2}, {α(k + 1)2s(k)} and {α(k + 1)2s(k)2} verifies that
of {α(k)2‖S i

x (k)‖2}.
(b) Consider the dynamics of μi (k) which is in the same form as the distributed
projected subgradient algorithm in [13]. Recall that {[g(vi

x (k))]+} is uniformly
bounded. Then following from Lemma2.5 in the Appendix2.5 with Z = R

m≥0 and
di (k) = −[g(vi

x (k))]+, we have the summability of {α(k)maxi∈V ‖μ̂(k) − μi (k)‖}.
Then {α(k)‖μ̂(k) − vi

μ(k)‖} is summable by using the following set of inequalities:

‖μ̂(k) − vi
μ(k)‖ ≤

N∑

j=1

ai
j (k)‖μ̂(k) − μ j (k)‖ ≤ max

i∈V
‖μ̂(k) − μi (k)‖, (2.28)

where we use
∑N

j=1 ai
j (k) = 1. Similarly, it holds that

∑+∞
k=0 α(k)‖λ̂(k)− vi

λ(k)‖ <

+∞.
We now consider the evolution of xi (k). Recall that vi

x (k) ∈ X . By Lemma1.1
with Z = X , z = vi

x (k) − α(k)S i
x (k) and y = vi

x (k), we have

‖xi (k + 1) − vi
x (k)‖2 ≤ ‖vi

x (k) − α(k)S i
x (k) − vi

x (k)‖2
− ‖xi (k + 1) − (vi

x (k) − α(k)S i
x (k))‖2,

and thus ‖ei
x (k) + α(k)S i

x (k)‖ ≤ α(k)‖S i
x (k)‖.With this relation, fromLemma2.5

with Z = X and di (k) = S i
x (k), the following holds for some γ > 0 and 0 < β < 1:

‖xi (k) − x̂(k)‖ ≤ Nγβk−1
N∑

i=0

‖xi (0)‖ + 2Nγ

k−1∑

τ=0

βk−τ α(τ )‖S i
x (τ )‖. (2.29)

Multiplying both sides of (2.29) by α(k)Mμ(k) and using (2.27), we obtain

α(k)Mμ(k)‖xi (k) − x̂(k)‖ ≤ Nγ

N∑

i=0

‖xi (0)‖α(k)Mμ(k)βk−1 + 2Nγα(k)Mμ(k)

×
k−1∑

τ=0

βk−τ α(τ )(DF + DG+ Mμ(τ) + DH Mλ(τ )).

Notice that the above inequalities hold for all i ∈ V . Then by employing the
relation of ab ≤ 1

2 (a
2 + b2) and regrouping similar terms, we obtain

http://dx.doi.org/10.1007/978-3-319-19072-3_1
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α(k)Mμ(k)max
i∈V

‖xi (k) − x̂(k)‖ ≤ Nγ

(
1

2

N∑

i=0

‖xi (0)‖ + (DF + DG+ + DH )

k−1∑

τ=0

βk−τ

)

× α(k)2M2
μ(k) + 1

2
Nγ

N∑

i=0

‖xi (0)‖β2(k−1)

+ Nγ

k−1∑

τ=0

βk−τ α(τ )2(DF + DG+ M2
μ(τ) + DH M2

λ(τ )).

Part (a) gives that {α(k)2M2
μ(k)} is summable. Combining this fact with the prop-

erty of
∑k−1

τ=0 βk−τ ≤ ∑+∞
k=0 βk = 1

1−β
, then we can say that the first term on the

right-hand side in the above estimate is summable. It is easy to check that the second
term is also summable. It follows from Part (a) that

lim
k→+∞ α(k)2(DF + DG+ M2

μ(k) + DH M2
λ(k)) = 0,

and thus {α(k)2(DF +DG+ M2
μ(k)+DH M2

λ(k))} is summable. ThenLemma7 in [13]
with γ� = Nγα(�)2(DF + DG+ M2

μ(�) + DH M2
λ(�)) ensures that the third term

is summable. Therefore, the summability of {α(k)Mμ(k)maxi∈V ‖xi (k) − x̂(k)‖}
is guaranteed. Following the same lines in (2.28), one can show the summability
of {α(k)Mμ(k)‖vi

x (k) − x̂(k)‖}. Following analogous arguments, we have that
{α(k)Mλ(k)‖vi

x (k) − x̂(k)‖} and {α(k)‖vi
x (k) − x̂(k)‖} are summable. �

Remark 2.5 In Lemma2.11, the assumption of all local constraint sets being iden-
tical is utilized to find an upper bound of the convergence rate of ‖x̂(k) − vi

x (k)‖ to
zero. This property is crucial to establish the summability of expansions pertaining
to ‖x̂(k) − vi

x (k)‖ in part (b). •
The following is a basic iteration relation of theDistributed Penalty Primal-

Dual Subgradient Algorithm.

Lemma 2.12 (Basic iteration relation) The following estimates hold for any x ∈ X
and (μ, λ) ∈ R

m≥0 × R
ν≥0:

N∑

i=1

‖ei
x (k) + α(k)S i

x (k)‖2 ≤
N∑

i=1

α(k)2‖S i
x (k)‖2

−
N∑

i=1

2α(k)(Hi (v
i
x (k), vi

μ(k), vi
λ(k)) − Hi (x, vi

μ(k), vi
λ(k)))

+
N∑

i=1

(‖xi (k) − x‖2 − ‖xi (k + 1) − x‖2), (2.30)
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0 ≤
N∑

i=1

(‖μi (k) − μ‖2 − ‖μi (k + 1) − μ‖2)

+
N∑

i=1

(‖λi (k) − λ‖2 − ‖λi (k + 1) − λ‖2)+

N∑

i=1

2α(k)(Hi (v
i
x (k), vi

μ(k), vi
λ(k)) − Hi (v

i
x (k), μ, λ))

+
N∑

i=1

α(k)2(‖[g(vi
x (k))]+‖2 + ‖h(vi

x (k))‖2). (2.31)

Proof One can finish the proof by following analogous arguments in Lemma2.8.
�

Lemma 2.13 (Achieving consensus) Let us suppose that the nondegeneracy
Assumption1.1, the double stochasticity Assumption1.2, and the periodical strong
connectivity Assumption1.3 hold. Consider the sequences of {xi (k)}, {μi (k)}, {λi (k)},
and {yi (k)} of the distributed penalty primal-dual subgradient algorithm
with the step-size sequence {α(k)} and the associated {s(k)} satisfying
lim

k→+∞ α(k) = 0 and lim
k→+∞ α(k + 1)s(k) = 0. Then there exists x̃ ∈ X such that

lim
k→+∞ ‖xi (k) − x̃‖ = 0 for all i ∈ V . Furthermore, lim

k→+∞ ‖μi (k) − μ j (k)‖ = 0,

lim
k→+∞ ‖λi (k) − λ j (k)‖ = 0 and lim

k→+∞ ‖yi (k) − y j (k)‖ = 0 for all i, j ∈ V .

Proof Similar to (2.16), we have

N∑

i=1

‖xi (k + 1) − x‖2 ≤
N∑

i=1

‖xi (k) − x‖2

+
N∑

i=1

α(k)2‖S i
x (k)‖2 +

N∑

i=1

2α(k)‖S i
x (k)‖‖vi

x (k) − x‖.

Since lim
k→+∞ α(k)‖S i

x (k)‖ = 0, the proofs of lim
k→+∞ ‖xi (k) − x̃‖ = 0 for all i ∈ V

are analogous to those in Lemma2.9. The remainder of the proofs can be finished
by Theorem1.4 with the properties of lim

k→+∞ ui
μ(k) = 0, lim

k→+∞ ui
λ(k) = 0 and

lim
k→+∞ ui

y(k) = 0 (due to lim
k→+∞ xi (k) = x̃ and fi is continuous). �

We now proceed to show Theorem2.3 based on five claims.

Proof of Theorem 2.3:

Claim 2.3 For any x∗ ∈ X∗ and (μ∗, λ∗) ∈ D∗
P , the following sequences are

summable:

http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
http://dx.doi.org/10.1007/978-3-319-19072-3_1
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{
α(k)

[
N∑

i=1

Hi (x∗, vi
μ(k), vi

λ(k)) − H (x∗, μ̂(k), λ̂(k))

]}
,

{
α(k)

[
N∑

i=1

Hi (v
i
x (k), μ∗, λ∗) − H (x̂(k), μ∗, λ∗)

]}

Proof Observe that

‖Hi (x∗, vi
μ(k), vi

λ(k)) − Hi (x∗, μ̂(k), λ̂(k))‖
≤ ‖vi

μ(k) − μ̂(k)‖‖[g(x∗)]+‖ + ‖vi
λ(k) − λ̂(k)‖‖h(x∗)‖

≤ G+‖vi
μ(k) − μ̂(k)‖ + H‖vi

λ(k) − λ̂(k)‖. (2.32)

By using the summability of {α(k)‖μ̂(k) − vi
μ(k)‖} and {α(k)‖λ̂(k) − vi

λ(k)‖} in
Part (b) of Lemma2.11, we have that the following are summable:

{
α(k)

N∑

i=1

‖Hi (x∗, vi
μ(k), vi

λ(k)) − Hi (x∗, μ̂(k), λ̂(k))‖
}

,

{
α(k)

[
N∑

i=1

(
Hi (x∗, vi

μ(k), vi
λ(k)) − Hi (x∗, μ̂(k), λ̂(k))

)
]}

.

Similarly, the following estimates hold:

‖Hi (v
i
x (k), μ∗, λ∗) − Hi (x̂(k), μ∗, λ∗)‖

≤ ‖ fi (v
i
x (k)) − fi (x̂(k))‖ + ‖(μ∗)T ([g(vi

x (k))]+ − [g(x̂(k))]+)‖
+ ‖(λ∗)T (|h(vi

x (k))| − |h(x̂(k))|)‖
≤ (DF + DG+‖μ∗‖ + DH ‖λ∗‖)‖vi

x (k) − x̂(k)‖.

Then the property of
∑+∞

k=0 α(k)‖x̂(k) − vi
x (k)‖ < +∞ in Part (b) of Lemma2.11

implies the summability of the following sequences:

{
α(k)

N∑

i=1

‖Hi (v
i
x (k), μ∗, λ∗) − Hi (x̂(k), μ∗, λ∗)‖

}
,

{
α(k)

N∑

i=1

(
Hi (v

i
x (k), μ∗, λ∗) − Hi (x̂(k), μ∗, λ∗)

)
}

.

�

Claim 2.4 Denote the weighted version of Hi as
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Ĥi (k) � 1

s(k − 1)

k−1∑

�=0

α(�)Hi (v
i
x (�), vi

μ(�), vi
λ(�)).

The following property holds: lim
k→+∞

N∑

i=1

Ĥi (k) = p∗.

Proof Summing (2.30) over [0, k − 1] and replacing x by x∗ ∈ X∗ leads to

k−1∑

�=0

α(�)

N∑

i=1

(Hi (v
i
x (�), vi

μ(�), vi
λ(�)) − Hi (x∗, vi

μ(�), vi
λ(�)))

≤
N∑

i=1

‖xi (0) − x∗‖2 +
k−1∑

�=0

N∑

i=1

α(�)2‖S i
x (�)‖2. (2.33)

The summability of {α(k)2‖S i
x (k)‖2} in Part (b) of Lemma2.11 implies that the

right-hand side of (2.33) is finite as k → +∞, and thus

lim sup
k→∞

1

s(k − 1)

k−1∑

�=0

α(�)

[
N∑

i=1

(
Hi (v

i
x (�), vi

μ(�), vi
λ(�)) − Hi (x∗, vi

μ(�), vi
λ(�))

)
]

≤ 0.

(2.34)

Pick any (μ∗, λ∗) ∈ D∗
P . It follows from Theorem2.2 that (x∗, μ∗, λ∗) is a saddle

point of H over X × R
m≥0 × R

ν≥0. Since (μ̂(k), λ̂(k)) ∈ R
m≥0 × R

ν≥0, then we have

H (x∗, μ̂(k), λ̂(k)) ≤ H (x∗, μ∗, λ∗) = p∗. Combining this relation, Claim 2.3
and (2.34) renders that

lim sup
k→+∞

1

s(k − 1)

k−1∑

�=0

α(�)

[
N∑

i=1

Hi (v
i
x (�), vi

μ(�), vi
λ(�)) − p∗

]

≤ lim sup
k→+∞

1

s(k − 1)

k−1∑

�=0

α(�)

[
N∑

i=1

(
Hi (v

i
x (�), vi

μ(�), vi
λ(�)) − Hi (x∗, vi

μ(�), vi
λ(�))

)
]

+ lim sup
k→+∞

1

s(k − 1)

k−1∑

�=0

α(�)

[
N∑

i=1

Hi (x∗, vi
μ(�), vi

λ(�)) − H (x∗, μ̂(�), λ̂(�))

]

+ lim sup
k→+∞

1

s(k − 1)

k−1∑

�=0

(H (x∗, μ̂(�), λ̂(�)) − p∗) ≤ 0,

and thus lim supk→+∞
∑N

i=1 Ĥi (k) ≤ p∗.
On the other hand, x̂(k) ∈ X (due to the fact that X is convex) implies that

H (x̂(k), μ∗, λ∗) ≥ H (x∗, μ∗, λ∗) = p∗. Along similar lines, by using (2.31) with
μ = μ∗, λ = λ∗, and Claim 2.3, we have lim infk→+∞

∑N
i=1 Ĥi (k) ≥ p∗. Then we

have the desired relation. �
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Claim 2.5 Denote byπ(k)�
∑N

i=1Hi (vi
x (k), vi

μ(k), vi
λ(k))−H (x̂(k), μ̂(k), λ̂(k)).

And we denote the weighted version of H as

Γ (k) � 1

s(k − 1)

k−1∑

�=0

α(�)H (x̂(�), μ̂(�), λ̂(�)).

The following property holds: lim
k→+∞ Γ (k) = p∗.

Proof Notice that

π(k) =
N∑

i=1

( fi (v
i
x (k)) − fi (x̂(k))) +

N∑

i=1

(
vi
μ(k)T [g(vi

x (k))]+ − vi
μ(k)T [g(x̂(k))]+)

+
N∑

i=1

(
vi
μ(k)T [g(x̂(k))]+ − μ̂(k)T [g(x̂(k))]+)

+
N∑

i=1

(
vi
λ(k)T |h(vi

x (k))| − vi
λ(k)T |h(x̂(k))|)

+
N∑

i=1

(
vi
λ(k)T |h(x̂(k))| − λ̂(k)T |h(x̂(k))|). (2.35)

By using the boundedness of subdifferentials and the primal estimates, it follows
from (2.35) that

‖π(k)‖ ≤ (DF + DG+ Mμ(k) + DH Mλ(k)) ×
N∑

i=1

‖vi
x (k) − x̂(k)‖

+ G+
N∑

i=1

‖vi
μ(k) − μ̂(k)‖ + H

N∑

i=1

‖vi
λ(k) − λ̂(k)‖. (2.36)

Then it follows from (b) in Lemma2.11 that {α(k)‖π(k)‖} is summable. Notice that

‖Γ (k)−∑N
i=1 Ĥi (k)‖ ≤

∑k−1
�=0 α(�)‖π(�)‖

s(k−1) , and thus lim
k→+∞ ‖Γ (k) −

N∑

i=1

Ĥi (k)‖ = 0.

The desired result immediately follows from Claim 2.4. �

Claim 2.6 The limit point x̃ in Lemma2.13 is a primal optimal solution.

Proof Let μ̂(k) = (μ̂1(k), . . . , μ̂m(k))T ∈ R
m≥0. By the double stochasticity

Assumption1.2, we obtain

N∑

i=1

μi (k + 1) =
N∑

i=1

N∑

j=1

ai
j (k)μ j (k) + α(k)

N∑

i=1

[g(vi
x (k))]+

http://dx.doi.org/10.1007/978-3-319-19072-3_1
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=
N∑

j=1

μ j (k) + α(k)

N∑

i=1

[g(vi
x (k))]+.

This implies that the sequence {μ̂�(k)} is nondecreasing inR≥0. Observe that {μ̂�(k)}
is lower bounded by zero. In this way, we distinguish the following two cases:

Case 1: The sequence {μ̂�(k)} is upper bounded. Then {μ̂�(k)} is convergent in
R≥0. Recall that lim

k→+∞ ‖μi (k) − μ j (k)‖ = 0 for all i, j ∈ V . This implies that

there exists μ∗
� ∈ R≥0 such that lim

k→+∞ ‖μi
�(k) − μ∗

�‖ = 0 for all i ∈ V . Observe

that
∑N

i=1 μi (k +1) = ∑N
i=1 μi (0)+∑k

τ=0 α(τ)
∑N

i=1[g(vi
x (τ ))]+. Thus, we have

the property of
∑+∞

k=0 α(k)
∑N

i=1[g�(vi
x (k))]+ < +∞, further implying the property

of lim infk→+∞[g�(vi
x (k))]+ = 0. Since lim

k→+∞ ‖xi (k) − x̃‖ = 0 for all i ∈ V , then

it holds that lim
k→+∞ ‖vi

x (k) − x̃‖ = 0, implying [g�(x̃)]+ = 0.

Case 2: The sequence {μ̂�(k)} is not upper bounded. Since {μ̂�(k)} is
nondecreasing, then μ̂�(k) → +∞. It follows from Claim 2.5 and (a) in Lemma2.6
that it is impossible that H (x̂(k), μ̂(k), λ̂(k)) → +∞. Assume that [g�(x̃)]+ > 0.
Then we have

H (x̂(k), μ̂(k), λ̂(k)) = f (x̂(k)) + N μ̂(k)T [g(x̂(k))]+ + Nλ(k)T |h(x̂(k))|
≥ f (x̂(k)) + μ̂�(k)[g�(x̂(k))]+. (2.37)

Taking limits on both sides of (2.37) and we obtain:

lim inf
k→+∞ H (x̂(k), μ̂(k), λ̂(k)) ≥ lim sup

k→+∞
( f (x̂(k)) + μ̂�(k)[g�(x̂(k))]+) = +∞.

Then we reach a contradiction, implying that [g�(x̃)]+ = 0.
In both cases, we have [g�(x̃)]+ = 0 for any 1 ≤ � ≤ m. By utilizing similar

arguments, we can further prove that |h(x̃)| = 0. Since x̃ ∈ X , then x̃ is feasible

and thus f (x̃) ≥ p∗. On the other hand, since
∑k−1

�=0 α(�)x̂(�)
∑k−1

�=0 α(�)
is a convex combination

of x̂(0), . . . , x̂(k − 1) and lim
k→+∞ x̂(k) = x̃ , then Claim 2.5 and (b) in Lemma2.6

implies that

p∗ = lim
k→+∞ Γ (k) = lim

k→+∞

∑k−1
�=0 α(�)H (x̂(�), μ̂(�), λ̂(�))

∑k−1
�=0 α(�)

≥ lim
k→+∞ f

(∑k−1
�=0 α(�)x̂(�)
∑k−1

�=0 α(�)

)
= f (x̃).

Hence, we have f (x̃) = p∗ and thus x̃ ∈ X∗. �
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Claim 2.7 It holds that lim
k→+∞ ‖yi (k) − p∗‖ = 0.

Proof The proof follows the same lines in Claim 2.2 of Theorem2.1 and thus is
omitted here. �

2.6 Notes

Distributed optimization traces back to 1970s. In [14], the classic dual decomposition
approach is proposed to the class of distributed optimization problems characterized
by separable component functions. This approach has been successfully applied to
handle network utility maximization (NUM) in; e.g., [4, 15, 16]. In [17, 18], the
authors develop a general framework for parallel and distributed computation over
a set of processors.

Recently, diffusion consensus algorithms have been integrated into distributed
optimization to address the nonseparability in component functions and dynamic
changes of network topologies. In particular, distributed projected subgradient algo-
rithms are proposed in [13] to address non-smooth multi-agent optimization with
constraint sets. The paper [19] comes upwithDistributed Lagrangian Primal-
Dual Subgradient Algorithm and Distributed Penalty Primal- Dual
Subgradient Algorithm to further address inequality and equality constraints.
The results developed in [19] are extended to solve a class of distributed nonconvex
optimization problems in [20]. All the algorithms aforementioned are discrete-time.
The continuous-time counterparts are investigated in [21–23]. In [24], a distributed
continuous-time algorithm with discrete-time communication is proposed. Random
network and state-dependent topologies are investigated in [25, 26] respectively.

There have been a number of other interesting algorithms for distributed opti-
mization. The authors in [27, 28] apply the second-order Newton method to dis-
tributed optimization. The paper [29] studies the dual averaging algorithm and the
papers [30, 31] investigate the algorithm of Alternating Direction Method of Multi-
pliers. Distributed Nesterov gradient algorithms are developed in [32] to accelerate
the convergence. In [33], the authors aim to minimize a sequence of dynamically
changing convex functions. In [34, 35], the authors investigate the robustness of dis-
tributed algorithms against external disturbances. In [36], game design is utilized to
address distributed optimization. In [37], the authors propose a distributed algorithm
to compute Pareto optimal solutions of multiobjective optimization problems.

Distributed Lagrangian Primal- Dual Subgradient Algorithm and
Distributed Penalty Primal- Dual Subgradient Algorithm presented in
this chapter are built on saddle point dynamics. For a convex–concave function,
continuous-time saddle point dynamics is proved in [8] to converge globally towards a
saddle point. Recently, [9] presents (discrete-time) primal-dual subgradient methods
which relax the differentiability of [8] and further incorporate state constraints. The
method in [8] is adopted by [38, 39] to study a distributed optimization problem on
fixed graphs where objective functions are separable.
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