
Coordinating Multicore Computing

Farhad Arbab1,2(B) and Sung-Shik T.Q. Jongmans1

1 Formal Methods, CWI, Science Park 123, 1098 XG Amsterdam, The Netherlands
farhad@cwi.nl

2 Leiden Institute for Advanced Computer Science, Leiden University,
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

Abstract. Traditional models of concurrency resort to peculiarly indi-
rect means to express interaction and study its properties. Formalisms
such as process algebras/calculi, concurrent objects, actors, shared
memory, message passing, etc., all are primarily action-based models
that provide constructs for the direct specification of things that inter-
act, rather than a direct specification of interaction (protocols). Conse-
quently, interaction in these formalisms becomes a derived or secondary
concept whose properties can be studied only indirectly, as the side-
effects of the (intended or coincidental) couplings or clashes of the actions
whose compositions comprise a model.

Treating interaction as an explicit first-class concept, complete with
its own composition operators, allows to specify more complex interac-
tion protocols by combining simpler, and eventually primitive, protocols.
Reo [4,7,8,15] serves as a premier example of such an interaction-based
model of concurrency. In this paper, we describe Reo and its compiler. We
show how exogenous coordination in Reo reflects an interaction-centric
model of concurrency where an interaction (protocol) consists of nothing
but a relational constraint on communication actions. In this setting,
interaction protocols become explicit, concrete, tangible (software) con-
structs that can be specified, verified, composed, and reused, indepen-
dently of the actors that they may engage in disparate applications.

This paper complements the first author’s lecture at the 15th Interna-
tional School on Formal Methods for the Design of Computer, Communi-
cation and Software Systems in Bertinoro, Italy, June 2015, and collects
previously published material (notably [9]).

1 Introduction

With the availability of today’s low-cost multicore commodity hardware that can
scale up to offer massively parallel computing platforms, high-speed communi-
cation networks that interconnect the globe, plus every indication that both of
these phenomena constitute trends that will continue in the future, the need for
programming techniques to harness the massive concurrency that they offer has
becomemore vivid than ever.Concurrency is inherently difficult because it involves
complex interaction protocols. The inadequacy of traditional models for program-
ming of concurrent systems to serve this purpose stems from the fact that the way
in which they express interaction protocols generally does not scale up.
c© Springer International Publishing Switzerland 2015
M. Bernardo and E.B. Johnsen (Eds.): SFM 2015, LNCS 9104, pp. 57–96, 2015.
DOI: 10.1007/978-3-319-18941-3 2

58 F. Arbab and S.-S.T.Q. Jongmans

Global Objects: Green Producer:
1 Semaphore greenSemaphore = new Semaphore(1); 14 while (true) {
2 Semaphore redSemaphore = new Semaphore(0); 15 sleep(5000);

3 Semaphore bufferSemaphore = new Semaphore(1); 16 greenText = ...;

4 String buffer = EMPTY; 17 greenSemaphore.acquire();

18 bufferSemaphore.acquire();

19 buffer = greenText;

20 bufferSemaphore.release();

21 redSemaphore.release();

22 }

Consumer: Red Producer:
5 while (true) { 23 while (true) {
6 sleep(4000); 24 sleep(3000);

7 bufferSemaphore.acquire(); 25 redText = ...;

8 if (buffer != EMPTY) { 26 redSemaphore.acquire();

9 println(buffer); 27 bufferSemaphore.acquire();

10 buffer = EMPTY; 28 buffer = redText;

11 } 29 bufferSemaphore.release();

12 bufferSemaphore.release(); 30 greenSemaphore.release();

13 } 31 }

Fig. 1. Alternating producers and consumer

In spite of the fact that interaction constitutes the most challenging aspect of
concurrency, traditional models of concurrency predominantly treat interaction
as a secondary or derived concept. Shared memory, message passing, calculi such
as CSP [40], CCS [68], the π-calculus [69,72], process algebras [19,27,36], and
the actor model [6] represent popular approaches to tackle the complexities of
constructing concurrent systems. Beneath their significant differences, all these
models share one common characteristic, inherited from the world of sequential
programming: they all constitute action-based models of concurrency.

For example, consider developing a simple concurrent application with two
producers, which we designate as Green and Red, and one consumer. The con-
sumer must repeatedly obtain and display the contents alternately made avail-
able by the Green and the Red producers.

Figure 1 shows the pseudo code for an implementation of this simple applica-
tion in a Java-like language. Lines 1–4 in this code declare four globally shared
entities: three semaphores and a buffer. The semaphores greenSemaphore and
redSemaphore are used by their respective Green and Red producers for their
turn keeping. The semaphore bufferSemaphore is used as a mutual exclusion
lock for the producers and the consumer to access the shared buffer, which
is initialized to contain the empty string. The rest of the code defines three
processes: two producers and a consumer.

The consumer code (lines 5–13) consists of an infinite loop where in each
iteration, it performs some computation (which we abstract as the sleep on line
6), then it waits to acquire exclusive access to the buffer (line 7). While it has
this exclusive access (lines 8–11), it checks to see if the buffer is empty. An empty
buffer means there is no (new) content for the consumer process to display, in
which case the consumer does nothing and releases the buffer lock (line 12).

Coordinating Multicore Computing 59

If the buffer is non-empty, the consumer prints its content and resets the buffer
to empty (lines 9–10).

The Green producer code (lines 14–22) consists of an infinite loop where in each
iteration, it performs some computation and assigns the value it wishes to produce
to local variable greenText (lines 14–15), and waits for its turn by attempting
to acquire greenSsemaphore (line 17). Next, it waits to gain exclusive access to
the shared buffer, and while it has this exclusive access, it assigns greenText into
buffer (lines 18–20). Having completed its turn, the Green producer now releases
redSemaphore to allow the Red producer to have its turn (line 21).

The Red producer code (lines 23–31) is analogous to that of the Green pro-
ducer, with “red” and “green” swapped.

This is a simple concurrent application whose code has been made even sim-
pler by abstracting away its computation and declarations. Apart from their
trivial outer infinite loops, each process consists of a short piece of sequential
code, with a straight-line control flow that involves no inner loops or non-trivial
branching. The protocol embodied in this application, as described in our prob-
lem statement, above, is also quite simple. One expects it be easy, then, to answer
a number of questions about what specific parts of this code manifest the various
properties of our application. For instance, consider the following questions:

1. Where is the green text computed?
2. Where is the red text computed?
3. Where is the text printed?

The answers to these questions are indeed simple and concrete: lines 16, 25,
and 9, respectively. Indeed, the “computation” aspect of an application typically
correspond to coherently identifiable passages of code. However, the perfectly
legitimate question “Where is the protocol of this application?” does not have
such an easy answer: the protocol of this application is intertwined with its
computation code. More refined questions about specific aspects of the protocol
have more concrete answers:

1. What determines which producer goes first?
2. What ensures that the producers alternate?
3. What provides protection for the global shared buffer?

The answer to the first question, above, is the collective semantics behind lines
1, 2, 17, and 26. The answer to the second question is the collective semantics
behind lines 1, 2, 17, 26, 21, and 30. The answer to the third question is the
collective semantics of lines 3, 18, 20, 27, and 29. These questions can be answered
by pointing to fragments of code scattered among and intertwined with the
computation of several processes in the application. It is far more difficult to
identify other aspects of the protocol, such as possibilities for deadlock or live-
lock, with concrete code fragments. While both concurrency-coordinating actions
and computation actions are concrete and explicit in this code, the interaction
protocol that they induce is implicit, nebulous, and intangible. In applications
involving processes with even slightly less trivial control flow, the entanglement

60 F. Arbab and S.-S.T.Q. Jongmans

Green Producer: Red Producer:
14 while (true) { 28 while (true) {
15 sleep(5000); 29 sleep(3000);

16 greenText = ...; 30 redText = ...;

17 greenSemaphore.acquire(); 31 redSemaphore.acquire();

18 while (greenText !=EMPTY) { 32 while (redText !=EMPTY) {
19 bufferSemaphore.acquire(); 33 bufferSemaphore.acquire();

20 if (buffer == EMPTY) { 34 if (buffer == EMPTY) {
21 buffer = greenText; 35 buffer = redText;

22 greenText = EMPTY; 36 redText = EMPTY;

23 } 37 }
24 bufferSemaphore.release(); 38 bufferSemaphore.release();

25 } 39 }
26 redSemaphore.release(); 40 greenSemaphore.release();

27 } 41 }

Fig. 2. Busy waiting consumer

of data and control flow with concurrency-coordination actions makes it difficult
to determine which parts of the code give rise to even the simplest aspects of
their interaction protocol.

When the protocol in a typical concurrent application consists of 623 send and
receive (or lock/unlock, etc.) primitives, sprinkled over 783,961 lines of C code,
chopped up into 387 different source files, how simple is it to understand this proto-
col, reason about its properties, debug it, adapt it, or imagine reusing it in another
application? How can a hapless programmer (who may very well be the original
author of the code, six months down the road) even see what this protocol actu-
ally does before he can contemplate to do anything with it? Even in the case of our
simple program in Fig. 1, which we just examined, do we see all of its properties?
We asked about and identified the buffer protection mechanism in this application.
But does this mechanism provide adequate protection that we expect?

It is only tactful to say that we are sure all our readers have already spotted
what may be considered a bug in this code that may in fact remain undetected
in practice for a very long time, depending on the circumstances that determine
the relative speeds of the producer and consumer threads in this application.
There is no protection in this code preventing the producers from over-writing
each other in the buffer, regardless of whether or not their output has actually
been consumed by the consumer. Strictly speaking, the original statement of
our requirements does not forbid this behavior, so whether this is a bug (in
the specification or implementation) is unclear. Suppose the intention in fact
was for the consumer to alternately consume what the two producers produce,
which means the implementation in Fig. 1 is incorrect and we need to alter it.

One solution is to make the producers sensitive to the emptiness of the buffer.
The code for the new producers appears in Fig. 2. A disadvantage of this code
is that it more heavily uses the busy-waiting mechanism that already existed in
the consumer code in Fig. 1. A better alternative is to use a different protocol
that explicitly respects the turn taking, as described below.

In the program shown in Fig. 3, the consumer too has its own turn-taking
semaphore, the new blueSemaphore (line 3), which is initialized to be locked,

Coordinating Multicore Computing 61

Global Objects: Green Producer:
1 Semaphore greenSemaphore = new Semaphore(1); 12 while (true) {
2 Semaphore redSemaphore = new Semaphore(0); 13 sleep(5000);

3 Semaphore blueSemaphore = new Semaphore(0); 14 greenText = ...;

4 Semaphore bufferSemaphore = new Semaphore(0); 15 greenSemaphore.acquire();

5 String buffer = EMPTY; 16 buffer = greenText;

17 blueSemaphore.release();

18 bufferSemaphore.acquire();

19 redSemaphore.release();

20 }

Consumer: Red Producer:
6 while (true) { 21 while (true) {
7 sleep(4000); 22 sleep(3000);

8 blueSemaphore.acquire(); 23 redText = ...;

9 println(buffer); 24 redSemaphore.acquire();

10 bufferSemaphore.release(); 25 buffer = redText;

11 } 26 blueSemaphore.release();

27 bufferSemaphore.acquire();

28 greenSemaphore.release();

29 }

Fig. 3. Revised alternating producers and consumer

just as the redSemaphore, because initially, there is nothing for the consumer
to do before any of the producers produces something. The initialization of the
bufferSemaphore is also changed (line 4), making the buffer initially locked on
behalf of the first producer. The consumer and the two producers all can proceed
until each reaches its own turn-taking lock on lines 8, 15, and 24, respectively.
The consumer and the Red producer suspend themselves on their turn-taking
locks, but the Green producer can proceed beyond its turn-taking lock (line 15),
where it fills the buffer (line 16), releases the turn-taking lock of the consumer
(line 17), and suspends itself on the buffer lock (line 18). Only the consumer can
now proceed, printing the content of the buffer (line 9), and releasing the buffer
lock (line 10), after which it proceeds with its next iteration in which it suspends
itself on its turn-taking lock (line 8). Only the Green producer can now proceed,
having obtained the buffer lock. It now completes its iteration by releasing the
turn-taking lock of the Red producer (line 19), and starts its next iteration in
which it suspends itself on its own turn-taking lock (line 15). Now, only the Red
producer can proceed to fill the buffer (line 25), release the turn- taking lock
of the consumer (line 26), and suspend itself on the buffer lock (line 27). The
consumer now goes through another iteration, at the end of which it releases the
buffer lock, allowing only the Red producer to proceed. The Red producer now
releases the turn-taking lock of the Green producer (line 29), and starts its next
iteration in which it suspends itself on its own turn-taking lock (line 24) again.

Now that we have a correct protocol (if we indeed do) that does what we expect
it to do (if it indeed does), what can we do with this protocol? How easy is it, for
instance to reuse this same protocol in a more elaborate application where the
control flow of the processes is more complex than the essentially linear, sequen-
tial flow of these simple processes? Is it possible to bundle up this protocol and

62 F. Arbab and S.-S.T.Q. Jongmans

Global Names: Green Producer:
synchronization-points g, r, b, d G := genG(t) . ?g(k) . !b(t) . ?d(j) . !r(k) . G

Consumer: Red Producer:
B := ?b(t) . print(t) . !d("done") . B R := genR(t) . ?r(k) . !b(t) . ?d(j) . !g(k) . R

Application:
G | R | B | !g("token")

Fig. 4. Alternating producers and consumer in a process algebra

parameterize it such that we can instantiate the protocol with arbitrary numbers
of processes containing arbitrary computation code, the same way that we can
package a piece of code into a parameterized function to compute the inverse of
a matrix of any size, or find the minimum element in a list of any size? It would
certainly help in software development for multicore platforms, for instance, if we
could simply specify the desired numbers of participants and the specific compu-
tation code for each, to instantiate an abstract parameterized protocol, as easily
as passing arguments in a function call, to tailor the desired concurrency on the
available cores. How easy is it to alter this protocol to change the imposed order-
ing or to allow a pair of considerably fast producers go as fast as they wish, while
the slower consumer merely samples their output? Such manipulations are diffi-
cult with this and similar incarnations of a protocol because they require seeing
and touching the protocol as a tangible concrete entity.

Process algebraic models of concurrency fare only slightly better in this
regard than, e.g., programming with threads: they too embody an action-based
model of concurrency. Figure 4 shows a process algebraic model of our alter-
nating producers and consumer application. This model consists of a number of
globally shared names, i.e., g, r, b, and d. Generally, these shared names are con-
sidered as abstractions of channels and thus are called “channels” in the process
algebra/calculi community. However, since these names in fact serve no purpose
other than synchronizing the I/O operations performed on them, and because
we will later use the term “channel” to refer to entities with more elaborate
behavior, we use the term “synchronization points” here to refer to “process
algebra channels” to avoid confusion.

A process algebra consists of a set of atomic actions, and a set of composition
operators on these actions. In our case, the atomic actions include the primitive
actions read ? () and write ! () defined by the algebra, plus the user-defined
actions genG(),genR(), andprint(), which abstract away computation.Typ-
ical composition operators include sequential composition . , parallel composi-
tion | , nondeterministic choice + , definition := , and implicit recursion.

In our model, the consumer B waits to read a data item into t by synchronizing
on the global name b, and then proceeds to print t (to display it). It then writes a
token "done" on the synchronization point d, and recurses. The Green producer G
first generates a new value in t, then waits for its turn by reading a token value into
k from g. It then writes t to b, and waits to obtain an acknowledgment j through
d, after which it writes the token k to r, and recurses. The Red producer R behaves
similarly, with the roles of r and g swapped. The application consists of a parallel

Coordinating Multicore Computing 63

composition of the two producers and the consumer, plus a trivial process that
simply writes a "token" on g to kick off process G to go first.

Observe that a model is constructed by composing (atomic) actions into
(more complex) actions, called processes. True to their moniker, such formalisms
are indeed algebras of processes or actions. Just as in the version in Fig. 3, while
communication actions are concrete and explicit in the incarnation of our appli-
cation in Fig. 4, interaction is a manifestation of the model with no direct explicit
structural correspondence. Process algebraic incarnations of concurrency proto-
cols are obviously simpler and more concise than their incarnations in typical
programming languages, primarily because they abstract away the clutter of
computation. Nevertheless, process algebras and calculi also constitute action-
based models of concurrency.

In all action-based models of concurrency, interaction becomes a by-product of
processes executing their respective actions: when a process A happens to execute
its ith communication action ai on a synchronization point, at the same time that
another process B happens to execute its jth communication action bj on that
same synchronization point, the actions ai and bj “collide” with one another and
their collision yields an interaction. Manifested this way, an interaction protocol
consists of a desired temporal sequence of such (coincidental or planned) collisions.
It is non-trivial to distinguish between the essential and the coincidental collision
sequences, when the protocol itself is only such an ephemeral manifestation.

Generally, the reason behind the specific collision of ai and bj remains debat-
able. Perhaps it was just dumb luck. Perhaps it was divine intervention. Some
may prefer to attribute it to intelligent design! What is not debatable is the fact
that, a split second earlier or later, perhaps in another run of the same application,
completely random cosmic rays may zap a memory bit and trigger the automatic
hardware error correction of the affected memory cell, and thus change the relative
timing of the running processes, making ai and bj collide not with each other, but
with two other actions (of perhaps other processes) yielding completely different
interactions. Action based models of concurrency make protocols more difficult
than necessary to specify, manipulate, verify, debug, and next to impossible to
reuse.

Instead of explicitly composing (communication) actions to indirectly specify
and manipulate implicit interactions, is it possible to devise a model of concur-
rency where interaction (not action) is an explicit, first-class construct? We tend
to this question in the next section and in the remainder of this paper describe
a specific language based on an interaction-centric model of concurrency. We
show that making interaction explicit leads to a clean separation of computa-
tion and communication, and produces reusable, tangible protocols that can be
constructed and verified independently of the processes that they engage.

2 Interaction-Centric Concurrency

The most salient characteristic of interaction is that it transpires among two or
more actors. This is in contrast to action, which is what a single actor manifests.

64 F. Arbab and S.-S.T.Q. Jongmans

In other words, interaction is not about the specific actions of individual actors,
but about the relations that (must) hold among those actions. A model of inter-
action, thus, must allow us to directly specify, represent, construct, compose,
decompose, analyze, and reason about those relations that define what tran-
spires among two or more engaged actors, without the necessity to be specific
about their individual actions. Making interaction a first-class concept means
that a model must offer (1) an explicit, direct, concrete representation of the
interaction among actors, independent of their (communication) actions; (2) a
set of primitive interactions; and (3) composition operators to combine (primi-
tive) interactions into more complex interactions.

Wegner has proposed to consider coordination as constrained interaction [74].
We propose to go a step further and consider interaction itself as a constraint
on (communication) actions. Features of a system that involve several entities,
for instance the clearance between two physical objects, cannot conveniently be
associated with any one of those entities. It is quite natural to specify and rep-
resent such features as constraints. The interaction among several active entities
has a similar essence: although it involves them, it does not belong to any one of
those active entities. Constraints have a natural formal model as mathematical
relations, which are non-directional. In contrast, actions correspond to functions
or mappings which are directional, i.e., transformational.

A constraint declaratively specifies what must hold in terms of a relation.
Typically, there are many ways in which a constraint can be enforced or violated,
leading to many different sequences of actions that describe precisely how to
enforce or maintain a constraint. Action-based models of concurrency lead to
the precise specification of how in terms of sequences of actions interspersed
among the active entities involved in a protocol. In an interaction-based model of
concurrency, only what a protocol represents is specified as a constraint over the
(communication) actions of some active entities; as in constraint programming,
the responsibility of how the protocol constraints are enforced or maintained is
relegated to an entity other than those active entities.

Generally, composing the sequences of actions that manifest two different
protocols does not yield a sequence of actions that manifests a composition
of those protocols. Thus, in action-based models of concurrency, protocols are
not compositional. Represented as constraints, in an interaction-based model of
concurrency, protocols can be composed as mathematical relations.

Banishing the actions that comprise protocol fragments out of the bodies
of processes produces simpler, cleaner, and more reusable processes. Expressed
as constraints, pure protocols become first-class, tangible, reusable constructs in
their own right. As concrete software constructs, such protocols can be embodied
into architecturally meaningful connectors.

In this setting, a process (or thread, component, service, actor, agent, etc.)
offers no methods, functions, or procedures for other entities to call, and it
makes no such calls itself. Moreover, processes cannot exchange messages through
targeted send and receive actions. In fact, a process cannot refer to any foreign
entity, such as another process, the mailbox or message queue of another process,
shared variables, semaphores, locks, etc. The only means of communication of

Coordinating Multicore Computing 65

P C

Fig. 5. Protocol in a connector

a process with its outside world is through blocking I/O operations that it may
perform exclusively on its own ports, producing and consuming passive data.
A port is a construct analogous to a file descriptor in a Unix process, except that
a port is unidirectional, has no buffer, and supports blocking I/O exclusively.

If i is an input port of a process, there are only two operations that the process
can perform on i: (1) blocking input get(i, v) waits indefinitely or until it suc-
ceeds to obtain a value through i and assigns it to variable v; and (2) input with
time-out get(i, v, t) behaves similarly, except that it unblocks and returns false
if the specified time-out t expires before it obtains a value to assign to v. Anal-
ogously, if o is an output port of a process, there are only two operations that
the process can perform on o: (1) blocking output put(o, v) waits indefinitely or
until it succeeds to dispense the value in variable v through o; and (2) output with
time-out put(o, v, t) behaves similarly, except that it unblocks and returns false
if the specified time-out t expires before it dispenses the value in v.

Inter-process communication is possible only by mediation of connectors. For
instance, Fig. 5 shows a producer, P and a consumer C whose communication
is coordinated by a simple connector. The producer P consists of an infinite
loop in each iteration of which it computes a new value and writes it to its
local output port (shown as a small circle on the boundary of its box in the
figure) by performing a blocking put operation. Analogously, the consumer C
consists of an infinite loop in each iteration of which it performs a blocking
get operation on its own local input port, and then uses the obtained value.
Observe that, written in an imperative programming language, the code for P
and C is substantially simpler than the code for the Green/Red producers and
the consumer in Figs. 1, 2, and 3: it contains no semaphore operations or any
other inter-process communication primitives.

The direction of the connector arrow in Fig. 5 suggests the direction of the
dataflow from P to C. However, even in the case of this very simple example, the
precise behavior of the system crucially depends on the specific protocol that this
simple connector implements. For instance, if the connector implements a syn-
chronous protocol, then it forces P and C to iterate in lock-step, by synchronizing
their respective put and get operations in each iteration. On the other hand the
connector may have a bounded or an unbounded buffer and implement an asyn-
chronous protocol, allowing P to produce faster than C can consume. The protocol
of the connector may, for instance enable it to replicate data items, e.g., the last
value that it contained, if C consumes faster and drains the buffer. The protocol
may mandate an ordering other than FIFO on the contents of the connector buffer,
perhaps depending on the contents of the exchanged data. It may retain only some
of the contents of the buffer (e.g., only the first or the last item) if P produces data
faster than C can consume. It may be unreliable and lose data nondeterministically
or according to some probability distribution. It may retain data in its buffer only

66 F. Arbab and S.-S.T.Q. Jongmans

for a specified length of time, losing all data items that are not consumed before
their expiration dates. The alternatives for the connector protocol are endless, and
composed with the very same P and C, each yields a totally different system.

A number of key observation about this simple example are worth noting. First,
Fig. 5 is an architecturally informative representation of this system. Second, ban-
ishing all inter-process communication out of the communicating parties, into the
connector, yields a “good” system design with the beneficial consequences that:

– changing P, C, or the connector does not affect the other parts of the system;
– although they are engaged in a communication with each other, P and C are

oblivious to each other, as well as to the actual protocol that enables their
communication;

– the protocol embodied in the connector is oblivious to P and C.

In this architecture, the composition of the components and the coordination of
their interactions are accomplished exogenously, i.e., from outside of the com-
ponents (or processes) themselves, and without their “knowledge”1. In contrast,
the interaction protocol and coordination in the examples in Figs. 1, 2, 3, and 4
are endogenous, i.e., accomplished through (inter-process communication) prim-
itives from inside the parties engaged in the protocol. It is clear that exogenous
composition and coordination lead to simpler, cleaner, and more reusable com-
ponent code, simply because all composition and coordination concerns are left
out. What is perhaps less obvious is that exogenous coordination also leads
to reusable, pure coordination code: there is nothing in any incarnation of the
connector in Fig. 5 that is specific to P or C; it can just as readily engage any
producer and consumer processes in any other application.

Obviously, we are not interested in only this example, nor exclusively in con-
nectors that implement exogenous coordination between only two communicating
parties. Moreover, the code for any version of the connector in Fig. 5, or any other
connector, can be written in any programming language: the concepts of exogenous
composition, exogenous coordination, and the system design and architecture that
they induce constitute what matters, not the implementation language.

Nevertheless, focusing on multi-party interaction/coordination protocols reve-
als that they are composed out of a small set of common recurring concepts. They
include synchrony, atomicity, asynchrony, ordering, exclusion, grouping, selection,
etc. Encoding every instance of these recurring concepts in terms of assignment
statements, if-then-else, for-loops, and communication actions in every applica-
tion is tedious, error prone, and obscures the concepts beyond recognition when
they are interspersed with the computation code of an application. Compliant
with the constraint view of interaction advocated above, these concepts can be
expressed more succinctly and elegantly as constraints. This observation behooves
us to consider the interaction-as-constraint view of concurrency as a foundation
for a special language to specify multi-party exogenous interaction/coordination

1 By this anthropomorphic expression we simply mean that a component does not con-
tain any piece of code that directly contributes to determine the entities that it com-
poses with, or the specific protocol that coordinates its own interactions with them.

Coordinating Multicore Computing 67

protocols and the connectors that embody them, of which the connector in Fig. 5
is but a trivial example. Reo, described in the next section, is a premier example
of such a language.

3 Overview of Reo

Reo [4,7,8,15] is a channel-based exogenous coordination language wherein com-
plex coordinators, called connectors, or circuits, are compositionally built out of
simpler ones. Exogenous coordination imposes a purely local interpretation on
each inter-components communication, engaged in as a pure I/O operation on
each side, that allows components to communicate anonymously, through the
exchange of untargeted passive data. We summarize only the main concepts in
Reo here. Further details about Reo and its semantics can be found in the cited
references.

Complex connectors in Reo are constructed as a network of primitive binary
connectors, called channels. Connectors serve to provide the protocol that con-
trols and organizes the communication, synchronization and cooperation among
the components/services that they interconnect. Formally, the protocol embod-
ied in a connector is a relation, which the connector imposes as a constraint on
the actions of the communicating parties that it inter-connects.

A channel is a medium of communication that consists of two ends and
a constraint on the dataflows observed at those ends. There are two types of
channel ends: source and sink. A source channel end accepts data into its channel,
and a sink channel end dispenses data out of its channel. Every channel (type)
specifies its own particular behavior as constraints on the flow of data through
its ends. These constraints relate, for example, the content, the conditions for
loss, and/or creation of data that pass through the ends of a channel, as well
as the atomicity, exclusion, order, and/or timing of their passage. Reo places no
restriction on the behavior of a channel and thus allows an open-ended set of
different channel types to be used simultaneously together.

Although all channels used in Reo are user-defined and users can indeed
define channels with any complex behavior (expressible in a semantic model
of Reo) that they wish, a very small set of channels, each with very simple
behavior, suffices to construct useful Reo connectors with significantly complex
behavior. Figure 6 shows a common set of primitive channels often used to build
Reo connectors.

P

Filter(P)AsyncDrainSyncDrainFIFO1LossySyncSync

Fig. 6. A typical set of Reo channels

A Sync channel has a source and a sink end and no buffer. It accepts a data
item through its source end iff it can simultaneously (i.e., atomically) dispense
it through its sink.

68 F. Arbab and S.-S.T.Q. Jongmans

A LossySync channel is similar to a synchronous channel except that it
always accepts all data items through its source end. This channel transfers a
data item if it is possible for the channel to dispense the data item through its
sink end; otherwise the channel loses the data item. Observe that the behavior
of this channel if fully deterministic; the channel is never free to choose between
passing or losing a data item: if it is possible for a data item to be consumed
through its sink end, the channel must pass the data item exactly as a Sync.
Thus, the context of (un)availability of a ready consumer at its sink end deter-
mines the (context-sensitive) behavior a LossySync channel.

A FIFO1 channel represents an asynchronous channel with a buffer of capacity
1: it can contain at most one data item. In the graphical representation of an empty
FIFO1 channel, no data item is shown in the box (this is the case in Fig. 1). If the
buffer of a FIFO1 channel contains a data element d, then d appears inside the box
in its graphical representation. When its buffer is empty, a FIFO1 channel blocks
I/O operations on its sink, because it has no data to dispense. It dispenses a data
item and allows an I/O operation at its sink to succeed, only when its buffer is
full, after which its buffer becomes empty. When its buffer is full, a FIFO1 channel
blocks I/O operations on its source, because it has no more capacity to accept the
incoming data. It accepts a data item and allows an I/O operation at its source
to succeed, only when its buffer is empty, after which its buffer becomes full.

More exotic channels are also permitted in Reo, for instance, synchronous
and asynchronous drains. Each of these channels has two source ends and no
sink end. No data value can be obtained from a drain channel because it has no
sink end. Consequently, all data accepted by a drain channel are lost. SyncDrain
is a synchronous drain that can accept a data item through one of its ends iff a
data item is also available for it to simultaneously accept through its other end as
well. AsyncDrain is an asynchronous drain that accepts data items through its
source ends and loses them exclusively one at a time, but never simultaneously.

For a filter channel, or Filter(P), its pattern P ⊆ Data specifies the type of
data items that can be transmitted through the channel. This channel accepts a
value d ∈ P through its source end iff it can simultaneously dispense d through
its sink end, exactly as if it were a Sync channel; it always accepts all data items
d �∈ P through its source end and loses them immediately.

Synchronous and asynchronous Spouts are the duals of their respective drain
channels, as each has two sink ends through which it produces nondeterministic
data items. Further discussion of these and other primitive channels is beyond
the scope of this paper.

Complex connectors are constructed by composing simpler ones via the join
and hide operations. Channels are joined together in nodes, each of which consists
of a set of channel ends. A Reo node is a logical place where channel ends coincide

Mixed nodeSink NodeSource node

Fig. 7. Reo nodes

Coordinating Multicore Computing 69

and coordinate their dataflows as prescribed by its node type. Figure 7 shows the
three possible node types in Reo. A node is either source, sink, ormixed, depending
on whether all channel ends that coincide on that node are source ends, sink ends,
or a combination of the two. Reo fixes the semantics of (i.e., the constraints on
the dataflow through) Reo nodes, as described below. The hide operation is used
to hide the internal topology of a Reo connector. A hidden node can no longer be
accessed or observed from outside.

The source and sink nodes of a connector are collectively called its bound-
ary nodes. Boundary nodes define the interface of a connector. Processes (or
components, actors, agents, etc.) connect to the boundary nodes of a connector
and interact anonymously with each other through this interface. Connecting a
process to a (source or sink) node of a connector consists of the identification of
one of the (respectively, output or input) ports of the process with that node.
At most one process can be connected to a (source or sink) node at a time.
Processes interact by performing their blocking I/O operations on their own
local ports, which trigger dataflow through their respectively identified nodes of
the connector(s): the get and put operations mentioned in the description of
the processes in Fig. 5 trigger write and take operations of Reo on the channel
ends of their respective nodes.

A component (or process) can write data items to a source node that it is
connected to. The write operation succeeds only if all (source) channel ends
coincident on the node accept the data item, in which case the data item is
transparently written to every source end coincident on the node. A source node,
thus, acts as a synchronous replicator.

A component (or process) can obtain data items, by an input operation, from
a sink node that it is connected to. A take operation succeeds only if at least one
of the (sink) channel ends coincident on the node offers a suitable data item; if
more than one coincident channel end offers suitable data items, one is selected
nondeterministically. A sink node, thus, acts as a nondeterministic merger.

A mixed node nondeterministically selects and takes a suitable data item
offered by one of its coincident sink channel ends and replicates it into all of its
coincident source channel ends. Note that a component cannot connect to, take
from, or write to mixed nodes.

Because a node has no buffer, data cannot be stored in a node. Specifically, a
mixed node cannot take a data item out of one of its coincident sink channel ends,
unless it can atomically replicate and write it into all of its coincident source
channel ends. Hence, nodes instigate the propagation of synchrony and exclusion
constraints on dataflow throughout a connector. Deriving the semantics of a
Reo connector amounts to resolving the composition of the constraints of its
constituent channels and nodes [33]. This is not a trivial task. In the sequel,
we present examples of Reo connectors that illustrate how non-trivial dataflow
behavior emerges from composing simple channels using Reo nodes. The local
constraints of individual channels propagate through (the synchronous regions
of) a connector to its boundary nodes. This propagation also induces a certain
context-awareness in connectors. See [32] for a detailed discussion of this.

70 F. Arbab and S.-S.T.Q. Jongmans

Reo has been used for composition of Web services [16,57,65], modeling and
analysis of long-running transactions in service-oriented systems [60], coordina-
tion of multi-agent systems [10], performance analysis of coordinated composi-
tions [12,13,17,70,71], modeling of business processes and verification of their
compliance [14,59,73], and modeling of coordination in biological systems [31].

Reo offers a number of operations to reconfigure and change the topology of a
connector at run-time: operations that enable the dynamic creation of channels,
splitting and joining of nodes, hiding internal nodes. The hiding of internal
nodes allows to permanently fix the topology of a connector, such that only its
boundary nodes are visible and available. The resulting connector can then be
viewed as a new primitive connector, or primitive for short, since its internal
structure is hidden and its behavior is fixed.

Tool support for Reo consists of a set of Eclipse plug-ins that together comprise
the Extensible Coordination Tools (ECT) visual programming environment [2].
The Reo graphical editor supports drag-and-drop graphical composition and edit-
ing of Reo connectors. This editor also serves as a bridge to other tools, includ-
ing animation and code generation plug-ins. The animation plug-in automatically
generates a graphical animation of the flow of data in a Reo connector, which pro-
vides an intuitive insight into their behavior through visualization of how they
work. Several model checking tools are available for analyzing Reo. The Vere-
ofy model checker, integrated in ECT, is based on constraint automata [5,21–
24,28,37,55,56]. Properties of Reo connectors can be specified for verification by
Vereofy in a language based on Linear Temporal Logic (LTL), or on a variant
of Computation Tree Logic (CTL), called Alternating-time Stream Logic (ASL).
Another means for verification of Reo is made possible by a transformation bridge
into the mCRL2 toolset [3,38]. The mCRL2 verifier relies on the parameterized
boolean equation system (PBES) solver to encode model checking problems, such
as verifying first-order modal-calculus formulas on linear process specifications.
An automated tool integrated in ECT translates Reo models into mCRL2 and
provides a bridge to its tool set. This translation and its application for the analy-
sis of workflows modeled in Reo are discussed in [58,62,63]. Through mCRL2,
it is possible to verify the behavior of timed Reo connectors, or Reo connectors
with more elaborate data-dependent behavior than Vereofy supports. The result-
ing labeled transformation systems can also be used for analysis by a number of
tools in the CADP tool set [1]. Another tool is a Reo compiler that generates exe-
cutable code for Reo connectors; we discuss compilation in more detail shortly.
Even more tools are discussed elsewhere [9].

4 Examples

Recall our alternating producers and consumer example of Sect. 1. We revise
the code for the Green and Red producers to make them suitable for exogenous
coordination (which, in fact, makes them simpler). Similar to the producer P in
Fig. 5, this code now consists of an infinite loop, in each iteration of which the
producer computes a new value and writes it to its output port. Analogously, we

Coordinating Multicore Computing 71

Consumer: Green Producer: Red Producer:
1 while (true) { 6 while (true) { 11 while (true) {
2 sleep(4000); 7 sleep(5000); 12 sleep(3000);

3 get(input, text); 8 greenText = ...; 13 redText = ...;

4 print(text); 9 put(output, greenText); 14 put(output, redText);

5 } 10 } 15 }

Fig. 8. Generic reusable producers and consumer

revise the consumer code, fashioning it after the consumer C in Fig. 5. Figure 8
shows this code.

In the remainder of this section, we present a number of protocols to implement
different versions of the alternating producers and consumer example of Sect. 1,
using the producers and consumer processes in Fig. 8. These examples serve three
purposes. First, they show a flavor of programming of pure interaction coordina-
tion protocols as Reo connectors. Second, they present a number of generically
useful connectors that can serve as connectors in many other applications, or as
sub-connectors in the connectors for construction of many other protocols. Third,
they illustrate the utility of exogenous coordination by showing how trivial it is
to change the protocol of an application, without altering any of the processes
involved.

4.1 Alternator

The connector shown in Fig. 9(a) is an alternator that imposes an ordering on the
flow of the data from its input nodes A and B to its output node C. The SyncDrain
enforces that data flow through A and B only synchronously (i.e., atomically). The
empty buffer of the FIFO1 channel together with the SyncDrain guarantee that
the data item obtained from A is delivered to C while the data item obtained from
B is stored in the FIFO1 buffer. After this, the buffer of the FIFO1 is full and data
cannot flow in through either A or B, but C can dispense the data stored in the
FIFO1 buffer, which makes it empty again. Thus, subsequent take operations at
C obtain the data items written to A,B,A,B, ..., etc.

A

B

CA

B

C

(b)

CC

(d)

(c)

A3

A2

A1 A1

A2

A3

A4

(a)

Fig. 9. Reo connectors for alternators

72 F. Arbab and S.-S.T.Q. Jongmans

The connector in Fig. 9(b) has an extra Sync channel between node B and
the FIFO1 channel, compared to the one in Fig. 9(a). It is trivial to see that
these two connectors have the exact same behavior. However, the structure of
the connector in Fig. 9(b) allows us to generalize its alternating behavior to any
number of producers, simply by replicating it and “juxtaposing” the top and the
bottom Sync channels of the resulting copies, as seen in Fig. 9(c) and (d).

The two SyncDrain channels in the connector shown in Fig. 9(c) require
data to flow through A1, A2, and A3 only simultaneously (i.e., atomically). The
empty buffers of the FIFO1 channels, together with these SyncDrain channels
guarantee that the data item obtained from A1 is delivered to C while the data
items obtained from A2 and A3 are stored in the buffers of their respective
FIFO1 channels. Subsequently, as long as the buffer of at least one of the FIFO1
channels remains full, no data can flow through any of the nodes A1, A2, and
A3, but C can dispense the data stored in the buffers of the FIFO1 channels,
with their order preserved. Thus, the first 3 take operations on C deliver the
data items obtained through A1, A2, and A3, in that order. At this point, all
FIFO1 buffers become empty and the next round of input becomes possible.

The connector in Fig. 9(d) is obtained by replicating the one in Fig. 9(b) 3
times. Following the reasoning for the connector in Fig. 9(c), it is easy to see
that the connector in Fig. 9(d) delivers the data items obtained from A1, A2,
A3,and A4 through C, in that order.

A version of our alternating producers and consumer example of Sect. 1 can
now be composed by attaching the output port of the revised Green producer in
Fig. 8 to node A, the output port of the revised Red producer in Fig. 8 to node
B, and the input port of the consumer in Fig. 8 to node C of the Reo connector
in Fig. 9(a).

A closer look shows, however, that the behavior of this version of our example
is not exactly the same as that of the one in Figs. 3 and 4. As explained above,
the Reo connector in Fig. 9(a) requires the availability of a pair of values on A
(from the Green producer) and B (from the Red producer) before it allows the
consumer to obtain them, first from A and then from B. Thus, if the Green
producer and the consumer are both ready to communicate, they still have to
wait for the Red producer to also attempt to communicate, before they can
exchange data. The versions in Figs. 3 and 4 allow the Green producer and
the consumer to go ahead, regardless of the state of the Red producer. Our
original specification of this example in Sect. 1 was abstract enough to allow
both alternatives. A further refinement of this specification may indeed prefer
one and disallow the other. If the behavior of the connector in Fig. 9(a) is not
what we want, we need to construct a different Reo connector to impose the
same behavior as in Figs. 3 and 4. This is precisely what we describe below.

4.2 Sequencer

Figure 10(a) shows an implementation of a sequencer by composing five Sync
channels and four FIFO1 channels together. The first (leftmost) FIFO1 channel
is initialized to have a data item in its buffer, as indicated by the presence of the

Coordinating Multicore Computing 73

Sequencer

(b)

A
B

C

e

A B C D

(a)

Sequencer

(c)

A
B

C

Fig. 10. Sequencer

symbol e in the box representing its buffer cell. The actual value of the data item
is irrelevant. The connector provides only the four nodes A, B, C and D for other
entities (connectors or component instances) to take from. The take operation
on nodes A, B, C and D can succeed only in the strict left-to-right order. This
connector implements a generic sequencing protocol: we can parameterize this
connector to have as many nodes as we want simply by inserting more (or fewer)
Sync and FIFO1 channel pairs, as required.

Figure 10(b) shows a simple example of the utility of the sequencer. The
connector in this figure consists of a two-node sequencer, plus a SyncDrain and
two Sync channels connecting each of the nodes of the sequencer to the nodes
A and C, and B and C, respectively. Similar to the connector in Fig. 9(a), this
connector imposes an order on the flow of the data items written to A and B,
through C: the sequence of data items obtained by successive take operations
on C consists of the first data item written to A, followed by the first data
item written to B, followed by the second data item written to A, followed
by the second data item written to B, and so on. However, there is a subtle
difference between the behavior of the two connectors in Figs. 9(a) and 10(b).
The alternator in Fig. 9(a) delays the transfer of a data item from A to C until
a data item is also available at B. The connector in Fig. 10(b) transfers from A
to C as soon as these nodes can satisfy their respective operations, regardless of
the availability of data on B.

We can obtain a new version of our alternating producers and consumer
example by attaching the output port of the Green producer in Fig. 8 to node A,
the output port of the Red producer in Fig. 8 to node B, and the input port of the
consumer in Fig. 8 to node C. The behavior of this version of our application is
now the same as the programs in Fig. 4 and in Fig. 1 (after replacing its producers
with the ones in Fig. 2). The connector in Fig. 10(b) embodies the same protocol
that is implicit in Fig. 4.

A characteristic of this protocol is that it “slows down” each producer, as
necessary, by delaying the success of its data production until the consumer
is ready to accept its data. Our original problem statement in Sect. 1 does not
explicitly specify whether or not this is a required or permissible behavior. While
this may be desirable in some applications, slowing down the producers to match
the processing speed of the consumer may have serious drawbacks in other appli-
cations, e.g., if these processes involve time-sensitive data or operations. Perhaps
what we want is to bind our producers and consumer by a protocol that decou-
ples them such as to allow each process to proceed at its own pace. We proceed,
below, to present a number of protocols that we then compose to construct a
Reo connector for such a protocol.

74 F. Arbab and S.-S.T.Q. Jongmans

4.3 Buffered Sequencing

Figure 10(c) shows how easily we can decouple the producers from the consumer
by adding two FIFO1 channels to the connector in Fig. 10(b). The protocol imple-
mented by this connector allows each producer to move ahead of its turn by one
item. Obviously, one can add more FIFO1 channels, as desired, to allow the pro-
ducers to move ahead of their turns by any arbitrary k items, before they need
to wait for their next output item to be accepted. Because Reo allows users to
define arbitrary channels, it is equally possible to define an unbounded FIFO
channel, and use two instances of this channel to allow producers to move ahead
of the consumer by any arbitrary number of items.

A characteristic of all such buffered protocols is that they make sure every
item produced by every producer is eventually consumed by the consumer. In
fact, such total retention of data is not always desirable. Sometimes, some sort of
sampling is required to ensure the consumer is not overwhelmed by much faster
producers, or to ensure that the consumer always processes the most up-to-date
produced items.

4.4 Sampling

The connector in Fig. 11(a) is a variant of the one in Fig. 10(b) which never
delays any of its producers. Producers can produce items as fast as they wish
and the protocol never delays them; it simply loses any item that they produce
when the consumer is not ready to take it. Whenever the consumer is ready to
take an item, it must wait for the producer whose turn it is to produce its next
item for it to consume. On the one hand, this ensures that the consumer always
obtains the freshest, most up-to-date item produced by each producer. On the
other hand, although the producers never wait, the consumer may still have to
wait for the right producer to deliver its next fresh item. If this is not desirable,
we may wish the protocol to hold at least one produced item at hand to alleviate
the need for the consumer to wait.

The connector on the left-hand side of the ≡ sign in Fig. 11(b) shows a useful
connector which behaves almost exactly as a FIFO1 channel. The only difference
is that, unlike a normal FIFO1 channel, this connector does not suspend its writer
if its buffer is full; it allows the write to succeed, but loses the written data. We use
the symbol on the right-hand side of the ≡ sign in Fig. 11(b) as a short-hand for
this connector, and refer to it as an OverflowLossyFIFO1 channel. This symbol
is intentionally similar to that of a regular FIFO1 channel, because the behavior

Sequencer

(c)

A
B

C

(b)

Sequencer

(a)

A
B

C

Fig. 11. Synchronized sampling, OverflowLossyFIFO1, and buffered sampling

Coordinating Multicore Computing 75

of this connector closely resembles that of a regular FIFO1 channel. The dashed
source-side half of this channel suggests that when its buffer is full, this channel
simply loses its new input items, as if they “overflow” over a full container.

Replacing the FIFO1 channels in Fig. 10(c) with such OverflowLossyFIFO1
channels, we obtain the connector in Fig. 11(c). Using this connector in our
running example application allows the producers to run as fast as they wish,
and allows the consumer to merely sample what each producer delivers. If the
consumer ever gets ahead of a producer by more than one cycle, then this pro-
tocol makes the consumer wait. Obviously, we can add more FIFO1 channels to
the construct in Fig. 11(b) to obtain an OverflowLossyFIFOk channel, for any
k > 1. We can then raise the sampling depth of our protocol to any k by using
OverflowLossyFIFOk channels in connectors similar to the one in Fig. 11(c).
Such a protocol with the sampling depth of k allows the consumer move ahead
of a producer by k items, while the protocol retains up to k items produced by
each producer, before it loses their excess output.

A consequence of using OverflowLossyFIFOk channels in the above con-
nectors is that the protocol tends to retain the “oldest” k sampled output of
each producer.2 In many situations, it is desirable to bias sampling toward most
recent values, discarding older values. To do this, we need a counterpart of the
OverflowLossyFIFO1 channel in Fig. 11(b), that when its buffer is full, discards
the old value in the buffer and retains its new input. We present a connector
with such behavior in Sect. 4.6.

4.5 Exclusive Router

The connector shown in Fig. 12(a) is a binary exclusive router : it routes data from
A to either B or C (but not both). This connector can accept data only if there is
a write operation at the source node A, and there is at least one taker at the sink
node B or C. If both B and C can dispense data, the choice of routing to B or C

in

outo

A

B C

M

(a) (b)

Fig. 12. An exclusive router and a ShiftLossyFIFO1

2 In fact, this characterization is not very accurate for values of k > 1. Work out what
happens for k = 2, for instance.

76 F. Arbab and S.-S.T.Q. Jongmans

follows from the non-deterministic decision by the mixed node M : it can accept
data only from one of its sink ends, excluding the flow of data through the other,
which forces the latter’s respective LossySync to lose the data it obtains from A,
while the other LossySync passes its data as if it were a Sync.

By connecting the source node of a binary exclusive router to one of the sink
nodes of another binary exclusive router we obtain a ternary exclusive router.
This is possible in Reo because synchrony and exclusion constraints propagate
through its nodes. More generally, an n-ary exclusive router (with a single source
and n sink ends) can be composed out of n−1 binary exclusive routers. Because
the exclusive routers are so commonly useful, we use a graphical short-hand to
represent them in connectors. The crossed circle shown on the right-hand side
of the ≡ symbol in Fig. 12(a) is the symbol that we use to represent a generic
n-ary exclusive router.

4.6 Shift-Lossy FIFO1

Figure 12(b) shows a Reo connector for a connector that behaves as a lossy
FIFO1 channel with a shift loss-policy. This channel is called shift-lossy FIFO1
(ShiftLossyFIFO1). This connector is composed of an exclusive router (shown
in Fig. 12(a)), an initially full FIFO1 channel, two initially empty FIFO1 channels,
and four Sync channels. Intuitively, it behaves as a normal FIFO1 channel, except
that if its buffer is full then the arrival of a new data item deletes the existing
data item in its buffer, making room for the new arrival. As such, this channel
implements a “shift loss-policy” losing the older contents in its buffer in favor of
the newer arrivals. This is in contrast to the behavior of an overflow-lossy FIFO1
channel, whose “overflow loss-policy” loses the new arrivals when its buffer is
full. See [25] for a more formal treatment of the semantics of this connector.

The ShiftLossyFIFO1 connector in Fig. 12(b) is indeed so frequently useful
as a connector in construction of more complex connectors, that it makes sense to
have a special graphical symbol to designate it as a short-hand. The symbol shown
on the right-hand side of the ≡ symbol in Fig. 12(b) is the what we use to repre-
sent this connector, and also take the liberty to refer to it as a ShiftLossyFIFO1
channel. This symbol is intentionally similar to that of a regular FIFO1 channel,
because the behavior of this connector closely resembles that of a regular FIFO1
channel. The dashed sink-side half of this channel suggests that it loses the older
values to make room for new arrivals, i.e., it shifts to lose.

4.7 Decoupled Alternating Producers and Consumer

Figure 13(a) shows how the ShiftLossyFIFO1 connector of Fig. 12(b) can be
used to construct a version of the example in Fig. 5, where the producer and the
consumer are partially decoupled from one another. Whenever, as initially is the
case, the ShiftLossyFIFO1 buffer is empty, the consumer has no choice but to
wait for the producer to place a value into this buffer. However, the producer
never has to wait for the consumer: it can work at its own pace and write to the
connector whenever it wishes. Every write by the producer replaces the current

Coordinating Multicore Computing 77

(b)(a)

Sequencer

producer
Red

Green
producer

Consumer

ConsumerProducer

Fig. 13. Decoupled producers and consumer

contents of the ShiftLossyFIFO1 buffer. A subsequent take by the consumer
obtains the current value out of ShiftLossyFIFO1 buffer and makes it empty.
The producer never has to wait for the consumer, but if the consumer is faster
than the producer, it has to wait for the next data item to arrive. It is instructive
to compare the behavior of this system with that of a single LossySync channel
connecting a producer and a consumer: the two are not exactly the same.

The connector in Fig. 13(b) is a small variation of the Reo connector in
Fig. 10(b), with two instances of the ShiftLossyFIFO1 connector of Fig. 12(b)
spliced in. In this version of our alternating producers and consumer, these three
processes are partially decoupled: each producer runs at its own pace, never
having to wait for any of the other two processes. Every take by the consumer,
always obtains and empties the latest value produced by its respective producer.
If the consumer runs slower than a producer, the excess data that they produce
is lost in the producer’s respective ShiftLossyFIFO1, which allows the consumer
to effectively “sample” the data generated by this producer. If the consumer runs
faster than a producer, it will block on its respective empty ShiftLossyFIFO1
until a new value becomes available.

4.8 Dataflow Variable

The Reo connector in Fig. 14 implements the behavior of a dataflow variable. It
uses two instances of the ShiftLossyFIFO1 connector shown Fig. 12(b), to build
a connector with a single input and a single output nodes. Initially, the buffers
of its ShiftLossyFIFO1 channels are empty, so an initial take on its output node
suspends for data. Regardless of the status of its buffers, or whether or not data
can be dispensed through its output node, every write to its input node always
succeeds and resets both of its buffers to contain the new data item. Every time
a value is dispensed through its output node, a copy of this value is “cycled
back” into its left ShiftLossyFIFO1 channel. This connector “remembers” the
last value it obtains through its input node, and dispenses copies of this value
through its output node as frequently as necessary: i.e., it can be used as a
dataflow variable.

78 F. Arbab and S.-S.T.Q. Jongmans

out

in

Fig. 14. Dataflow variable

The variable connector in Fig. 14 is also very frequently useful as a connector
in construction of more complex connectors. Therefore, it makes sense to have a
short-hand graphical symbol to designate it with as well. The symbol shown on
the right-hand side of Fig. 14 is the what we use to represent this connector, and
also take the liberty to refer to it as a Variable channel, or just a “variable”
for short. This symbol is intentionally similar to that of a regular FIFO1 chan-
nel, because the behavior of this connector closely resembles that of a regular
FIFO1 channel. We use a rounded box to represent its buffer: the rounded box
hints at the recycling behavior of the variable connector, which implements its
remembering of the last data item that it obtained or dispensed.

4.9 Fully Decoupled Alternating Producers and Consumer

Figure 15(a) shows how the variable connector of Fig. 14 can be used to construct
a version of the example in Fig. 5, where the producer and the consumer are fully
decoupled from one another. Initially, the variable contains no value, and there-
fore, the consumer has no choice but to wait for the producer to place its first value
into the variable. After that, neither the producer, nor the consumer ever has to
wait for the other one. Each can work at its own pace and write to or take from
the connector. Every write by the producer replaces the current contents of the
variable, and every take by the consumer obtains a copy of the current value of
the variable, which always contains the most recent value produced.

(b)(a)

Sequencer

producer
Red

Green
producer

Consumer

ConsumerProducer

Fig. 15. Fully decoupled producers and consumer

Coordinating Multicore Computing 79

The connector in Fig. 15(b) is a small variation of the Reo connector in
Fig. 10(b), with two instances of the variable connector of Fig. 14 spliced in. In
this version of our alternating producers and consumer, these three processes are
fully decoupled: each can produce and consume at its own pace, never having to
wait for any of the other two. Every take by the consumer, always obtains the
latest value produced by its respective producer. If the consumer runs slower
than a producer, the excess data is lost in the producer’s respective variable,
and the consumer will effectively “sample” the data generated by this producer.
If the consumer runs faster than a producer, it will read (some of) the values of
this producer multiple times.

4.10 Flexibility and Scaling

Figures 9(a), 10(b), (c), 11(a), (c), 13(b), and 15(b) show a number of different
connectors, each imposing a variant of a protocol for the coordination of two
alternating producers and a consumer. The exact same producers and consumer
processes can be combined with any of these connectors to yield different appli-
cations. It is instructive to compare the ease with which this is accomplished in
our interaction-centric world, with the effort involved in modifying the action-
centric incarnations of this same example in Figs. 3 and 4, which correspond
to the protocol of the connector in Fig. 10(b), in order to achieve the behavior
induced by the connector in Figs. 9(a), 10(c), 11(a), (c), 13(b), or 15(b). It is
also instructive to compare the ease with which any of these connectors can be
parameterized to scale up their number of producers, with the changes necessary
to scale up the number of producers in action-centric versions of these protocols.

Moreover, applications with many producers may indeed require somewhat
different treatment of the output of some of their producers. For instance, an
application may require barrier synchronization of some producers, synchronous
sampling of some others, buffered sampling of yet others, etc., etc. It is trivial
to mix-and-match the necessary interaction (sub-)protocols that we examined,
to tailor make such a protocol, essentially through cut-and-paste of parts of
the various Reo connectors presented above. Such cut-and-paste is generally
unthinkable when protocols are expressed in terms of action-based constructs of
traditional models of concurrency.

As if anyone needed more evidence to appreciate that concurrency is dif-
ficult, the many variants of our deceptively trivial running example presented
above, plus the multitudes of their possible mix-and-match variants, demon-
strate that even seemingly trivial protocols involve intricate details that require
careful attention and explicit, concrete, first-class treatment. By the way, none
of the variants of the Reo connectors presented above captures the behavior
of the Java-like code of our initial attempt. For the sake of completeness, the
behavior of the protocol in Fig. 1 corresponds to the behavior of the connector
in Fig. 16. Just as in the case of the program in Fig. 1, this connector allows the
producers at nodes A and B alternate and over-write each other in the buffer
of the ShiftLossyFIFO1. The consumer at C can obtain only the latest value
produced by either of the producers.

80 F. Arbab and S.-S.T.Q. Jongmans

Sequencer

A
B

C

Fig. 16. Alternating and over-writing

The Reo connector binding a number of distributed processes, such as Web
services, can even be “hot-swapped” while the application runs, without the
knowledge or the involvement of the engaged processes. A prototype platform
to demonstrate this capability is available at [2].

5 Semantics

Reo allows arbitrary user-defined channels as primitives; arbitrary mix of syn-
chrony and asynchrony; and relational constraints between input and output.
This makes Reo more expressive than, e.g., dataflow models, Kahn networks,
synchronous languages, stream processing languages, workflow models, and Petri
nets. On the other hand, it makes the semantics of Reo quite non-trivial.

Various models for the formal semantics of Reo have been developed, each
to serve some specific purposes. In the rest of this section, we briefly describe
constraint automata [25], the main semantics used in verification and code gen-
eration; a comprehensive overview of other models appears elsewhere [44].

Constraint automata provide an operational model for the semantics of Reo
connectors. The states of an automaton represent the configurations of its corre-
sponding connector (e.g., the contents of the FIFO channels), while the transitions
encode its maximally-parallel stepwise behavior. The transitions are labeled with
themaximal sets of nodes onwhich dataflowoccurs simultaneously, and a data con-
straint (i.e., boolean condition for the observed data values). For example, Fig. 17
shows the constraint automata semantics for some of the common Reo primitives.

The constraint automaton for the Sync channel consists of a single state. It
has only a single transition, labeled by the pair of synchronization constraint, and
data constraint. The synchronization constraint {A,B} states that this transition
is possible iff both nodes A and B can fire synchronously (i.e., atomically),
allowing their respective pending I/O operations to succeed. The data constraint

P

{A,B}, d(A)=d(B)

{A
}, true

{A}, d(A)=X’

{B}, d(B)=X

{A,B}, d(A)=d(B) {A,B}, d(A)=d(B) ^ d(A) # P

{A
}, d(A

) !# P

Filter(P)AsyncDrainSyncDrainFIFO1LossySyncSync

A B A B A B A B A B A B

{A,B}, true

{A
}, true

{B}, true

Fig. 17. Constraint automata of some typical Reo channels

Coordinating Multicore Computing 81

d(A) = d(B) states that this transition is possible iff the data observed at
node A is identical to the data observed at node B. Because these two nodes
are respectively the source and the sink nodes (of the Sync channel), this data
constraint requires a transfer of data from A to B.

The constraint automaton for the LossySync channel in fact expresses the
semantics of a nondeterministic LossySync channel, not that of our context
sensitive LossySync described in Sect. 3. The difference is significant, but it is
not important for our purposes in this paper.3 This automaton has a single
state and two transitions. One of these transitions is identical to that of the
Sync channel, modeling its identical behavior. The other, labeled by {A}, true
simply states that the automaton can make this transition iff A can fire by itself
and imposes no constraint of the data of A: this data is lost.

The constraint automaton for the FIFO1 channel has two states, represent-
ing its empty (initial) and full states. To simplify our presentation, we consider a
variant of constraint automata that allow states to have local memory variables.
The label {A}, d(A) = X ′ of the transition that takes the automaton from its
empty to its full state allows it to make this transition iff node A can fire by itself,
and the new value of the memory variable X in the target state (identified by
X ′ in the data constraint) is the same as the data value observed on node A: the
value obtained from the source node A gets assigned to the X variable of the tar-
get state to satisfy this constraint. The label {B}, d(B) = X of the transition that
takes the automaton from its full to its empty state allows it to make this transi-
tion iff node B can fire by itself, and the value of the memory variable X in the
source state (identified by X in the data constraint) is the same as the data value
observed on node B: the value of the X variable of the source state is dispensed
through the sink node B to satisfy this data constraint.

The constraint automaton for the SyncDrain channel has a single state
and a single transition, whose constraints require its ends to fire synchronously
({A,B}), but imposes no constraints (true) on their data. Because these are
both source ends, their data are simply lost.

The constraint automaton for the AsyncDrain channel has a single state and
two transitions, each of which allow it to fire and lose the data obtained through
one of its ends (but never both synchronously).

The constraint automaton for the Filter(P) channel has a single state and
two transitions. If source node A can fire and its data value does not match
the filter pattern P, then the data value of A is simply lost. If the data value
available on the source node A matches the filter pattern P, then the only possible
transition is one similar to that of the Sync channel, by which the data value of
A is transferred to the sink node B.

3 In fact, constraint automata do not have the expressiveness required to directly
represent context sensitivity. Other more expressive semantic models, including more
sophisticated automata models, have been devised for this purpose [29,34]. A recent
work shows that, although constraint automata cannot directly represent context
sensitivity, it is possible to encode context sensitivity using constraint automata as
well [52,61].

82 F. Arbab and S.-S.T.Q. Jongmans

{A,C}, d(A)=d(C) {B
,C

}, d(B
)=

d(C
)

BA

C

{A,C}, d(A)=d(C) {A
,B

}, d(A
)=

d(B
)

Exclusive router

{C}, d(C)=X

{A,B,C}, d(A)=d(C) ^ d(B) = X’

{B}, d(B)=X

{A}, d(A) = X’

{A
}, true

{B}, d(B)=X

{A}, d(A) = X’ {A
}, d(A

) =
 X

’

Binary Merger

(a) (b)

Alternator Shift−Lossy FIFO1Overflow−Lossy FIFO1

)e()d()c(

Fig. 18. Constraint automata of a binary merger and some example connectors

The semantics of a Reo connector is derived by composing the constraint
automata of its constituents, through a special form of synchronized product of
automata, which automatically accommodates the replication semantics of Reo
nodes [25]. The nondeterministic n-ary merge semantics inherent in Reo nodes
needs to be made explicit as a (product) composition of n − 1 nondeterminis-
tic binary merge primitives. Figure 18(a) shows the constraint automaton for a
nondeterministic binary merge primitive.

Figure 18(b) shows the constraint automaton representing the semantics of
the exclusive router Reo connector of Fig. 12(a), which is obtained as the product
of the constraint automata of its constituents: 5 Sync channels, 2 LossySync
channels, a SyncDrain channel, and a merger.

Figure 18(c) shows the constraint automaton representing the semantics of
the alternator connector of Fig. 9(a), obtained as the product of the constraint
automata of its constituent Sync channel, SyncDrain channel, FIFO1 channel,
and merger.

Figure 18(d) shows the constraint automaton representing the semantics of
an overflow lossy connector, which can be easily composed by connecting the
sink end of a LossySync to the source end of a FIFO1. Although this is the
semantics that must be obtained, the product of simple constraint automata in
Fig. 17 does not yield this automaton. This automaton can be obtained using
more sophisticated variants of constraint automata [29,34], or an encoding tech-
nique [52] which can handle context sensitivity.

Figure 18(e) shows the constraint automaton representing the semantics of
the ShiftLossyFIFO1 connector of Fig. 12(b), which is obtained as the product
of the constraint automata of its constituents.

Constraint automata have been used for the verification of protocols through
model-checking [5,22–24,28,37,55,56]. Results on equivalence and containment
of the languages of constraint automata [25] and failure based equivalences [43]
provide opportunities for analysis and optimization of Reo connectors.

A constraint automaton essentially captures all behavior alternatives of a Reo
connector. Therefore, it can be used to generate a state-machine implementing
the behavior of Reo connectors, in a chosen target language, such as Java or C,
as explained in the next section.

Variants of the constraint automata model have been devised to capture time-
sensitive behavior [11,53,54], probabilistic behavior [20], stochastic behavior [26],

Coordinating Multicore Computing 83

context sensitive behavior [29,34,41], fairness [30,42], resource sensitivity [66],
and the QoS aspects [12,13,67,70,71] of Reo connectors and composite systems.

d
e
c
l
a
r
a
t
iv
e

im
p
e
r
a
t
iv
e

programmers S

shared-mem.
+sync. prims. I1 I2 Ik

hardware B1 B2 Bk

f lo

glo
1 glo

k−1 ◦ · · · ◦ glo
2

h h h

Fig. 19. From declarative specifications to imperative implementations

6 Compilation

By now, we may have convinced our readers that both (1) exogenous specifi-
cation of multi-party interaction protocols (regardless of the language in which
they are implemented), and (2) high-level languages that support specification of
such protocols as composition of primitive interactions (as opposed to in terms
of low level communication actions) offer clear software engineering advantages
(e.g., programmability, maintainability, reusability, verifiability, etc.). Reo serves
as a prime example of a high-level language, based on an exogenous interaction-
centric model of concurrency, that demonstrates the viability of raising the level
of abstraction in specification of concurrency protocols to where these software
engineering advantages can indeed materialize. It seems far less obvious, how-
ever, that protocol specifications expressed in such high-level languages can be
compiled into efficient and scalable binaries.

In this section, we intend to persuade the reader that in time, sufficiently
smart compilers for high-level protocol languages can produce binaries with bet-
ter performance than binaries produced by compilers for contemporary general-
purpose languages that offer the lower-level constructs of traditional models
of concurrency. At the core of our argument lies the observation that compil-
ers for such high-level protocol languages can optimize concurrent programs in
novel ways inconceivable for compilers that receive lower-level constructs of tra-
ditional models of concurrency as their input. In making this argument, first, we
need to understand the limitations of compiling protocols coded in lower-level
action-based languages as Java and C.

Essentially, to write a concurrent program, concurrent programmers cross
a distance between a declarative specification of its protocols and processes

84 F. Arbab and S.-S.T.Q. Jongmans

(or threads, components, services, actors, agents, etc.), which abstractly defines
what must happen, and its imperative implementation, which concretely defines
how things happen. Today, the processes in such imperative implementations
typically interact with each other through actions that manipulate shared-memory
protected by classical synchronization primitives, such as locks, semaphores, or
monitors.4 Figure 19 shows our perspective on this approach in terms of three
levels of abstraction: (i) the specification interpreted by programmers, denoted
by S, (ii) its implementations using shared-memory protected by classical syn-
chronization primitives, denoted by Ii, and (iii) the binaries executed by the
hardware, denoted by Bi. In writing their concurrent program, programmers
first cross the distance between S and I1, denoted by arrow f lo. Subsequently,
possibly assisted by tools, these programmers may incrementally improve I1
into implementations I2 . . . Ik by applying high-level optimizations to the pro-
gram logic (e.g., introducing more fine-grained concurrency or replacing data
structures with more optimal ones), denoted by arrows glo1 . . . glok−1. Finally, a
compiler crosses the remaining distance between Ii and Bi, denoted by arrow h.

Figure 19 provides another perspective on the previously identified difficulties
with low-level action-based concurrency. Essentially, these difficulties arise from
the conceptually long distance between the levels of abstraction of S and I1,
effectively measured by comparing the textual length of specification S with
the number of lines of code of its implementation I1. Intuitively, as this ratio
gets smaller, the distance between S and I1 grows longer, and consequently, the
amount of intellectual work that programmers need to perform becomes larger.
In practice, it typically requires a substantial effort and significant ingenuity
from programmers to define f lo (i.e., to write their concurrent program with
action-based concurrency) and to establish f lo(S) � S in terms of the low-level
code that f lo(S) consists of (i.e., to establish that f lo faithfully implements S).
Hamberg and Vaandrager, for instance, discuss these issues in more detail, from
the perspective of teaching concurrency through model checking [39].

Additionally, Fig. 19 also shows that facing a traditional low-level action-based
model of concurrency, forces programmers to take responsibility for defining,
selecting, and applying every gloi (i.e., defining, selecting, and applying optimiza-
tions) and, again, for establishing (glok−1 ◦ · · · ◦glo1 ◦f lo)(S) � S. Ideally, of course,
a compiler instead of programmers should perform every gloi . But although sixty
years of research in compiler technology has resulted in a battery of many impor-
tant low-level optimization techniques, current compilers typically cannot apply
higher-level, “intention-preserving” optimizations to the program logic. For ins-
tance, automatic parallelization of general algorithms and data structures remains
an open problem to this day [18].

To further illustrate this point, Fig. 20 shows the problem that a low-level
compiler faces in applying such high-level “intention-preserving” optimizations.
For such a compiler to decide which optimizations it can—and should—apply

4 Of course, in a distributed memory setting, the concurrency primitives are different,
but message passing communication primitives used in such settings still constitute
an action-based model of concurrency, for which our subsequent argument still holds.

Coordinating Multicore Computing 85

d
e
c
l
a
r
a
t
iv
e

im
p
e
r
a
t
iv
e

programmers S

shared-mem.
+sync. prims. I1 I2 Ik

hardware B1 B2 Bk

glo
1 glo

k−1 ◦ · · · ◦ glo
2

h h h

(f lo)-1f lo

g lo
k−1 ◦ · · · ◦ g lo

1 ◦ f lo

Fig. 20. Irresurrectability of declarative specifications

to which parts of implementation I1, it essentially needs to reconstruct specifi-
cation S. Only then, when the compiler knows the itentions that programmers
had when they wrote I1, can it decide which portions of the code admit which
intention-preserving optimization. In other words, before the compiler can opti-
mize anything, it first needs to apply the inverse of f lo to f lo(S) to resurrect
the lost what, S. Generally, however, the compiler cannot do this: in going from
a declarative specification to an imperative implementation, certain informa-
tion gets irretrievably lost or becomes practically impossible to extract from the
resulting code. Consider, for instance, the following C code:

int x;
for (int i = 0; i < 10; i++) {

x = rand();
a[i] = some_function(x); // without side effects

}

If we intended just to assign the output of some function to every a[i], for
random inputs x, a compiler can parallelize the loop. However, if we additionally
intended the resulting array to have the same content in executions with the
same random seed (e.g., to reproduce bugs), a compiler cannot parallelize the
loop: in that case, the order of generating random numbers matters. Just from
this code, thus, neither a compiler nor a human can judiciously decide about
loop parallelization; to make that decision, one needs more information.

For more complex programs, as the distance between specifications and their
implementations becomes longer, the distance between those implementations
and their binaries becomes relatively shorter, leaving less room for a compiler
to perform significant high-level “intention preserving” optimizations. Inciden-
tally, the annotations used in some parallelization frameworks (e.g., OpenMP)
explicitly preserve information that otherwise gets lost in translation, which
the compiler subsequently leverages to produce more optimized binaries. For
instance, with OpenMP, a programmer can annotate the loop in the previous C
code with the following pragma to inform the compiler that it may parallelize:

86 F. Arbab and S.-S.T.Q. Jongmans

#pragma omp parallel for private(x)

In summary, the distance between high-level declarative specifications of pro-
tocols/processes and their low-level imperative implementations using action-
based concurrency models hinders concurrent programming in two ways: (1) this
distance is too long for average programmers to reasonably write correct code, let
alone, correct code that is also efficient, and scalable; (2) the low level of abstrac-
tion of the synchronization primitives in which they write their code leaves too
small a domain for compilers to perform effective, high-level, intention-preserving
optimizations. The latter subsequently forces programmers to take direct respon-
sibility for such optimizations, thereby adding even more complexity to the already
daunting task of programmers. To alleviate these issues, programming language
designers should provide programmers new, declarative, high-level interaction-
based abstractions for implementing parallel programs. In the previous sections,
we already argued that languages that offer such constructs, as Reo, can alleviate
the first issue. Here, Figs. 19 and 20 give us the right context to argue that such
languages also alleviate the second issue.

Figure 21 shows our proposed approach, where M1 . . . Mk denote implemen-
tations of S in a special, declarative protocol language (imagine Reo). The
shorter distance between S and M1 simplifies programmers’ task of writing their
parallel program, denoted by arrow fhi, essentially because those programmers
need to concern themselves with fewer details (e.g., seemingly nondeterministic
scheduling). Moreover, as programmers express their protocols at a high level of
abstraction, declaratively, more information about their intentions remains avail-
able in the resulting code. A compiler can subsequently leverage this information
to generate more optimized binaries. As such, this compiler relieves programmers
from the responsibility of manually implementing, and establishing the correct-
ness of, not only low-level optimizations (as current compilers already do) but
also high-level intention-preserving optimizations: an application programmer
now needs to work out only fhi, after which the compiler takes care of selecting

d
e
c
l
a
r
a
t
iv
e

im
p
e
r
a
t
iv
e

programmers S

protocols &
processes M1 M2 Mk

hardware B1 B2 Bk

fhi

ghi
1 ghi

k−1 ◦ · · · ◦ ghi
2

hhi hhi hhi

Fig. 21. From declarative specifications to declarative implementations

Coordinating Multicore Computing 87

and applying every applicable ghii defined by its designer. This designer, instead
of application programmers, should prove the correctness and effectiveness of
every ghii , and establishing those properties remains a one-shot activity (cf. ad-
hoc reasoning about every manually optimized low-level concurrent program).
Moreover, because Mi and Mi+1 reside at a higher level of abstraction than Ii
and Ii+1 do, proving the correctness and effectiveness of ghii typically becomes
simpler, clearer, and more mathematically elegant than reasoning about the low-
level code manipulated by gloi . Shortly, we give concrete examples for this claim.

Thus, by offering a new level of interaction-based abstraction to program-
mers, our proposed approach alleviates the software engineering difficulties of
expressing implementations using action-based models of concurrency, by short-
ening the distance between specifications and their implementations, which in
turn makes it more reasonable for programmers to perform the intellectual work
required to cross this distance. Perhaps surprisingly, a shorter distance between
specification and implementation has another significant advantage: it makes the
distance between implementations and binaries long enough for compilers to per-
form also high-level intention-preserving optimizations, which also ameliorates
the difficulties of developing implementations with good scalability and perfor-
mance. In time, binaries generated by sufficiently smart compilers for high-level
protocol languages should outperform binaries of low-level code hand-written by
average programmers. In posing this thesis, we feel encouraged by the observa-
tion that although the distance between an implementation of a typical sequen-
tial program expressed in a conventional imperative languages (e.g., Java or C)
and an optimized version of its binary code is also huge, the compiler construc-
tion community has still succeeded to develop effective tools for crossing this dis-
tance, demanding little or no intellectual effort from programmers. Essentially,
we propose to extend that work to high-level protocol languages for concurrent
programming. By now, the concrete preliminary results of experiments with our
Reo compiler support our thesis and exemplify its feasibility.

d
e
c
l
a
r
a
t
iv
e

im
p
e
r
a
t
iv
e

programmers S

Reo circuits
& Java/C M1 M2 M3 M4

hardware B

fhi

ghi
1 ghi

2 ghi
3

hhi

Fig. 22. From declarative specifications to imperative implementations via cas

88 F. Arbab and S.-S.T.Q. Jongmans

Figure 22 shows the instantiation of Fig. 21 in the context of our Reo com-
piler, which is based on Reo’s constraint automaton semantics, presented in
Sect. 5. In this instantiation, the programmers’ task fhi consists of (i) translat-
ing the processes in specification S into Java or C code and (ii) translating the
protocol in S into a Reo connector; together, this code and the Reo connector
constitute M1. Our compiler subsequently maps every node and every channel in
the Reo connector to its corresponding constraint automaton. This yields a set
of “small” automata that collectively represent the connector’s semantics. The
compiler then translates this set of small automata into Java/C and merges the
code so generated with the Java/C code for the processes. An external compiler
for Java/C subsequently translates the full code base into a binary.

Our Reo compiler currently applies three high-level optimizations ghii .

– ghi1 —Improving latency [46]
The most straight-forward translation of a parallel composition of small auto-
mata, which collectively model a connector’s semantics, into Java/C works by
generating a distinct thread for each of those automata. In this approach, every
such thread executes a small state machine for its corresponding automaton,
firing transitions as it reaches consensus with the other threads about their col-
lective behavior. The distributed consensus algorithm necessary for achieving
such multiparty synchronization, however, costs too much in terms of resources
at run-time, which causes transitions to have high firing latency.
Optimization ghi1 aims at reducing firing latency: instead of translating a par-
allel composition of small automata to as many threads, ghi1 first computes a
single “big” automaton for that composition, similar to parallel expansion in
process calculi, and generates only one thread for that automaton. This single
thread executes a big state machine, free of other threads to synchronize its
behavior with.

– ghi2 —Improving throughput [45,47,48,51]
Although ghi1 reduces firing latency, it does so at the cost of reduced firing
throughput: by computing one big automaton out of multiple small automata,
ghi1 effectively serializes all parallelism among those small automata. If those
small automata have heavy synchronization interdependencies, this is desir-
able, but if the small automata are more “loosely coupled”, such sequen-
tialization may unnecessarily reduce throughput. In that case, at run-time,
independent transitions cannot fire in parallel but are artificially serialized.
Optimization ghi2 aims at improving firing throughput: instead of computing
one big automaton for a parallel composition of small automata, it carefully
partitions that set of small automata into a number of disjoint subsets. Then,
for every resulting subset, it composes that subset’s elements into a “medium”
automaton and generates a thread for that automaton. Every such thread exe-
cutes a medium state machine, but because of how ghi2 partitions the set of
small automata, the consensus algorithm necessary for achieving multiparty
synchronization among those threads costs only little in terms of resources
at run-time. Consequently, ghi2 balances low latency (i.e., sequentiality) with
high throughput (i.e., parallelism).

Coordinating Multicore Computing 89

– ghi3 —Improving scalability [49]
Before a thread can fire a transition, it must check the synchronization con-
straint and the data constraint of that transition. To check the synchronization
constraint, a thread inspects all relevant interface nodes for a pending i/o-
operation; if at least one of those nodes has no such operation, the transition
cannot fire. To check the data constraint, a thread calls a constraint solver to
find a solution for that constraint; if no solution exists, the transition cannot
fire. Whenever a transition does fire, its executing thread effectively effectu-
ates an interaction among processes. Typically, as the number of processes
increases, the number of transitions per medium automaton also increases.
Because the thread for such a medium automaton needs to check all its tran-
sitions for enabledness (in the worst case), firing a transition requires increas-
ingly more resources as the number of processes increases. This suggests poor
scalability.
Optimization ghi3 aims at improving scalability: instead of directly generating
a thread for a medium ca, it first merges certain distinguished transitions of
that automaton into a single transition in a semantics-preserving way. Subse-
quently, it translates the resulting automaton, with merged transitions, into
a thread. This thread executes in the same way as before, but it can check
merged transitions for enabledness with a single operation, instead of with
one operation per transition. Crucially, to facilitate such combined checks, ghi3
injects optimized data structures for pending i/o-operations on nodes in the
generated code. Because not all transitions can be merged in a semantics-
preserving way, ghi3 performs static analysis on the transitions of an automa-
ton to determine the extent to which it can introduce such optimized data
structures.

We have proved the correctness of the above high-level optimizations in terms
of constraint automata (see their respective references, above).

The Java bytecode obtained using our compiler (and an external Java compiler
afterward) runs on a Jvm as any other Java program. With C, as an extra low-
level optimization, we use a framework that allows instructions to be scheduled
directly to cores instead of indirectly via the operating system’s scheduler [49].

Compilers for low-level languages seem incapable of performing similar
optimizations as those in Fig. 22 (i.e., automatic sequentialization, automatic
parallelization, and automatic optimization of data structures). As practical evi-
dence, if those compilers would be capable of this, we would have relied on those
capabilities of theirs instead of developing optimizations ourselves. More philo-
sophically, we believe that low-level compilers will never be capable of optimizing
in this way, simply because they do not have enough information about program-
mers’ intentions (see, e.g., the example of assigning random numbers to array
elements, mentioned earlier in this section). Constraint automata, in contrast,
retain enough such information to allow more effective high-level optimizations.
At the same time, it may be difficult for average programmers to detect when
and how optimizations similar to the ones in Fig. 22 may and should be applied
manually; compilers for high-level protocol languages alleviate this burden.

90 F. Arbab and S.-S.T.Q. Jongmans

Fig. 23. Earlier performance results [50] (Color figure online)

For some protocols, the high-level intention-preserving optimizations in
Fig. 22 already allow our compiler to generate code that can compete with
code written by a competent programmer [50]. Figure 23 shows one of our most
promising achievements so far. It shows the performance of three implementa-
tions of a k-producers-single-consumers protocol, for k ∈ {

2i | 2 ≤ i ≤ 9
}
: one

naive hand-written implementation in C (blue, solid line), one hand-crafted
optimized implementation in C (yellow, dashed line), and one implementation
expressed in Reo and compiled via cas into C (red, dotted line). In every round
of this protocol, every producer sends one datum to the consumer. Once the
consumer has received a datum from every producer, in any order, it sends
an acknowledgment to the producers, thereby signaling that the consumer is
ready for the next round. To measure just the performance of the protocol, we
did not give the producers and the consumers real computational tasks (i.e.,
the producers sent only dummy data). This example shows that already our
current compilation technology is capable of generating code that can compete
with—and in this case even outperform—carefully hand-crafted code. Surely, our
technology is not yet mature enough to always achieve such positive results. Nev-
ertheless, this example offers preliminary evidence that programming protocols
among threads using high-level, interaction-based constructs and abstractions
can result in equally good—or better—performance as compared to hand-crafted
code using conventional low-level, action-based models of concurrency.

The obvious superficial “performance comparison” depicted in Fig. 23 may
say as much about the effectiveness of our optimization techniques, as it does
about the competency of the C programmer who produced the hand-crafted
version of the protocol code of this application. However, below this surface,
lies a more crucial fundamental point that is independent of the competency
of any individual programmer, or the precise factor by which our optimization
techniques potentially can or currently do outperform hand-crafted code that a
programmer can (even hypothetically) produce. Crucial to this benchmark is the
fact that the task assigned to the programmer restricted him to use concurrency

Coordinating Multicore Computing 91

constructs available in contemporary programming languages, such as Java or C
(in this case p-threads). On the other hand, our Reo compiler bypasses this level
of abstraction (and the coarser-grained, OS-level scheduling inefficiencies that it
entails) and generates code using finer-grained constructs below the OS-level and
the concurrency constructs that it supports. From this perspective, comparing
the performance of the two versions of the code is even unfair, because the
statement of his task assignment prevents the programmer from using lower-
level constructs to directly hand-craft code similar to (or even better than) what
our Reo compiler produces. But precisely this unfairness constitutes the crux of
our argument in this section.

There are two conceivable ways to make such a comparison fair, i.e., produce
code using constructs that are “fairly comparable” to the constructs that our
Reo compiler uses to produces its code: (1) allow the programmer to directly
code below the level of p-threads and OS; or (2) develop tools that take p-threads
level code written by a programmer and produce more optimized code.

Option 1, i.e., removing the artificial barrier of programming at the level
of p-threads, is certainly possible. However, programming below p-threads and
OS-level sharply raises the level of expertise required by a programmer to code
directly at such a low level, and dramatically increases the size and the complex-
ity of the resulting code. Higher competency requirements and increased size and
complexity of code, in turn, sharply reduce the number of competent individuals
who qualify to perform such programming assignments, and dramatically lower
the likelihood of success of those who undertake such daunting tasks. Besides,
applications that directly use constructs below p-threads or OS abstractions
become highly brittle and non-portable, as they rely on constructs that most
likely do not exist verbatim on other platforms, or even on a future upgrade of
their original platforms.

Option 2 requires developing tools that can reconstruct the intentions behind
the p-threads constructs used to encode a protocol (fragment). As a concrete
example, a single transition in a constraint automaton may declare a complex
multi-party synchronization. By the time that a programmer expresses this inten-
tion in terms of semaphores, locks, guards, communication primitives, and data
structures, and intersperses its resulting code with other fragments of code that
are not directly related to this specific (multi-party synchronization) intention,
it becomes extremely difficult, if not theoretically impossible, for any tool to
reconstruct the original intention. Not having this information prevents a tool
from performing intention-preserving optimizations to generate lower-level code
that can more efficiently implement an application-specific multi-party synchro-
nization.

Offering programmers higher-level protocol specification languages, such as
Reo, which directly capture and retain more of the intentions behind protocol
fragments, seems like a very promising alternative. Our work on Reo and our
preliminary experiments with our Reo compiler suggest this approach is a viable
alternative.

92 F. Arbab and S.-S.T.Q. Jongmans

7 Concluding Remarks

Action and interaction offer dual perspectives on concurrency. Execution of
actions involving shared resources by independent processes that run concur-
rently, induces pairings of those actions, along with an ordering of those pairs,
that we commonly refer to as interaction. Dually, interaction can be seen as an
external relation that constrains the pairings of the actions of its engaged proce-
sses and their ordering. The traditional action-centric models of concurrency
generally make interaction protocols intangible by-products, implied by nebu-
lous specifications scattered throughout the bodies of their engaged processes.
Specification, manipulation, and analysis of such protocols are possible only
indirectly, through specification, manipulation, and analysis of those scattered
actions, which is often made even more difficult by the entanglement of the
data-dependent control flow that surrounds those actions. The most challenging
aspect of a concurrent system is what its interaction protocol does. In contrast
to the how which an imperative programming language specifies, declarative
programming, e.g., in functional and constraint languages, makes it easier to
directly specify, manipulate, and analyze the properties of what a program does,
because what is precisely what they express. Analogously, in an interaction-
centric model of concurrency, interaction protocols become tangible first-class
constructs that exist explicitly as (declarative) constraints outside and indepen-
dent of the processes that they engage. Specification of interaction protocols as
declarative constraints makes them easier to manipulate and analyze directly,
and makes it possible to compose interaction protocols and reuse them.

The coordination language Reo is a premier example of a formalism that
embodies an interaction-centric model of concurrency. We used examples of Reo
connectors to illustrate the flavor of programming pure interaction protocols.
Expressed as explicit declarative constraints, protocols espouse exogenous coor-
dination. Our examples showed the utility of exogenous coordination in yielding
loosely-coupled flexible systems whose components and protocols can be easily
scaled or modified, even at run time.

In addition to software engineering advantages, high-level languages to spec-
ify multi-party exogenous interaction protocols, such as Reo, have advantages
with respect to performance as well: as evidenced by our Reo compiler, compil-
ers for such high-level languages can perform optimizations that compilers for
lower-level languages cannot apply.

References

1. CADP home page. http://www.inrialpes.fr/vasy/cadp/
2. Extensible Coordination Tools home page. http://reo.project.cwi.nl/cgi-bin/trac.

cgi/reo/wiki/Tools
3. mCRL2 home page. http://www.mcrl2.org
4. Reo home page. http://reo.project.cwi.nl
5. Vereofy home page. http://www.vereofy.de/

http://www.inrialpes.fr/vasy/cadp/
http://reo.project.cwi.nl/cgi-bin/trac.cgi/reo/wiki/Tools
http://reo.project.cwi.nl/cgi-bin/trac.cgi/reo/wiki/Tools
http://www.mcrl2.org
http://reo.project.cwi.nl
http://www.vereofy.de/

Coordinating Multicore Computing 93

6. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge (1986)

7. Arbab, F.: Reo: a channel-based coordination model for component composition.
Math. Struct. Comput. Sci. 14(3), 329–366 (2004)

8. Arbab, F.: Abstract behavior types: a foundation model for components and their
composition. Sci. Comput. Program. 55(1–3), 3–52 (2005)

9. Arbab, F.: Puff, the magic protocol. In: Agha, G., Danvy, O., Meseguer, J. (eds.)
Formal Modeling: Actors, Open Systems, Biological Systems. LNCS, vol. 7000, pp.
169–206. Springer, Heidelberg (2011)

10. Arbab, F., Aştefănoaei, L., de Boer, F.S., Dastani, M., Meyer, J.-J., Tinnermeier,
N.: Reo connectors as coordination artifacts in 2APL systems. In: Bui, T.D., Ho,
T.V., Ha, Q.T. (eds.) PRIMA 2008. LNCS (LNAI), vol. 5357, pp. 42–53. Springer,
Heidelberg (2008)

11. Arbab, F., Baier, C., de Boer, F.S., Rutten, J.J.M.M.: Models and temporal logical
specifications for timed component connectors. Softw. Syst. Model. 6(1), 59–82
(2007)

12. Arbab, F., Chothia, T., Meng, S., Moon, Y.-J.: Component connectors with QoS
guarantees. In: Murphy, A.L., Vitek, J. (eds.) COORDINATION 2007. LNCS, vol.
4467, pp. 286–304. Springer, Heidelberg (2007)

13. Arbab, F., Chothia, T., van der Mei, R., Meng, S., Moon, Y.-J., Verhoef, C.:
From coordination to stochastic models of QoS. In: Field and Vasconcelos [35], pp.
268–287

14. Arbab, F., Kokash, N., Meng, S.: Towards using Reo for compliance-aware business
process modeling. In: Margaria, T., Steffen, B. (eds.) ISoLA 2008. CCIS, vol. 17,
pp. 108–123. Springer, Heidelberg (2008)

15. Arbab, F., Mavaddat, F.: Coordination through channel composition. In: Arbab,
F., Talcott, C. (eds.) COORDINATION 2002. LNCS, vol. 2315, pp. 22–39.
Springer, Heidelberg (2002)

16. Arbab, F., Meng, S.: Synthesis of connectors from scenario-based interaction spec-
ifications. In: Chaudron, M.R.V., Ren, X.-M., Reussner, R. (eds.) CBSE 2008.
LNCS, vol. 5282, pp. 114–129. Springer, Heidelberg (2008)

17. Arbab, F., Meng, S., Moon, Y.-J., Kwiatkowska, M.Z., Qu, H.: Reo2MC: a tool
chain for performance analysis of coordination models. In: van Vliet, H., Issarny,
V. (eds.) ESEC/SIGSOFT FSE, pp. 287–288. ACM, New York (2009)

18. Arvind, D.A., Pingali, K., Chiou, D., Sendag, R., Yi, J.: Programming multicores:
do applications programmers need to write explicitly parallel programs? IEEE
Micro 30(3), 19–33 (2010)

19. Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge University Press,
Cambridge (1990)

20. Baier, C.: Probabilistic models for Reo connector circuits. J. Univers. Comput. Sci.
11(10), 1718–1748 (2005)

21. Baier, C., Blechmann, T., Klein, J., Klüppelholz, S.: Formal verification for com-
ponents and connectors. In: de Boer, F.S., Bonsangue, M.M., Madelaine, E. (eds.)
FMCO 2008. LNCS, vol. 5751, pp. 82–101. Springer, Heidelberg (2009)

22. Baier, C., Blechmann, T., Klein, J., Klüppelholz, S.: A uniform framework for
modeling and verifying components and connectors. In: Field and Vasconcelos [35],
pp. 247–267

23. Baier, C., Blechmann, T., Klein, J., Klüppelholz, S., Leister, W.: Design and ver-
ification of systems with exogenous coordination using vereofy. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2010, Part II. LNCS, vol. 6416, pp. 97–111. Springer,
Heidelberg (2010)

94 F. Arbab and S.-S.T.Q. Jongmans

24. Baier, C., Klein, J., Klüppelholz, S.: Modeling and verification of components and
connectors. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp.
114–147. Springer, Heidelberg (2011)

25. Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.M.M.: Modeling component connec-
tors in Reo by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006)

26. Baier, C., Wolf, V.: Stochastic reasoning about channel-based component connec-
tors. In: Ciancarini, P., Wiklicky, H. (eds.) COORDINATION 2006. LNCS, vol.
4038, pp. 1–15. Springer, Heidelberg (2006)

27. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Inf.
Control 60, 109–137 (1984)

28. Blechmann, T., Baier, C.: Checking equivalence for Reo networks. Electr. Notes
Theor. Comput. Sci 215, 209–226 (2008)

29. Bonsangue, M.M., Clarke, D., Silva, A.: Automata for context-dependent connec-
tors. In: Field and Vasconcelos [35], pp. 184–203

30. Bonsangue, M.M., Izadi, M.: Automata based model checking for reo connec-
tors. In: Arbab, F., Sirjani, M. (eds.) FSEN 2009. LNCS, vol. 5961, pp. 260–275.
Springer, Heidelberg (2010)

31. Clarke, D., Costa, D., Arbab, F.: Modelling coordination in biological systems. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2004. LNCS, vol. 4313, pp. 9–25. Springer,
Heidelberg (2006)

32. Clarke, D., Costa, D., Arbab, F.: Connector colouring I: Synchronisation and con-
text dependency. Sci. Comput. Program. 66(3), 205–225 (2007)

33. Clarke, D., Proença, J., Lazovik, A., Arbab, F.: Channel-based coordination via
constraint satisfaction. Sci. Comput. Program. 76(8), 681–710 (2011)

34. Costa, D.: Formal models for context dependent connectors for distributed soft-
ware components and services. Ph.D. thesis, Vrije Universiteit Amsterdam (2010).
http://dare.ubvu.vu.nl//handle/1871/16380

35. Field, J., Vasconcelos, V.T. (eds.): COORDINATION 2009. LNCS, vol. 5521.
Springer, Heidelberg (2009)

36. Fokkink, W.: Introduction to Process Algebra. Texts in Theoretical Computer
Science, An EATCS Series. Springer, Berlin (1999)

37. Grabe, I., Jaghoori, M.M., Aichernig, B.K., Baier, C., Blechmann, T., de Boer,
F.S., Griesmayer, A., Johnsen, E.B., Klein, J., Klüppelholz, S., Kyas, M.,
Leister, W., Schlatte, R., Stam, A., Steffen, M., Tschirner, S., Xuedong, L., Yi,
W.: Credo methodology: modeling and analyzing a peer-to-peer system in credo.
Electr. Notes. Theor. Comput. Sci. 266, 33–48 (2010)

38. Groote, J.F., Mathijssen, A., Reniers, M.A., Usenko, Y.S., van Weerdenburg, M.:
The formal specification language mCRL2. In: Brinksma, E., Harel, D., Mader,
A., Stevens, P., Wieringa, R. (eds.) MMOSS. Dagstuhl Seminar Proceedings,
vol. 06351. Internationales Begegnungs- und Forschungszentrum fuer Informatik
(IBFI), Schloss Dagstuhl, Germany (2006)

39. Hamberg, R., Vaandrager, F.: Using model checkers in an introductory course on
operating systems. Oper. Syst. Rev. 42(6), 101–111 (2008)

40. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle
River (1985)

41. Izadi, M., Bonsangue, M.M., Clarke, D.: Modeling component connectors: syn-
chronisation and context-dependency. In: Cerone, A., Gruner, S. (eds.) SEFM, pp.
303–312. IEEE Computer Society, Los Alamitos (2008)

42. Izadi, M., Bonsangue, M.M., Clarke, D.: Büchi automata for modeling component
connectors. Softw. Syst. Model. 10(2), 183–200 (2011)

http://dare.ubvu.vu.nl//handle/1871/16380

Coordinating Multicore Computing 95

43. Izadi, M., Movaghar, A.: Failure-based equivalence of constraint automata. Int. J.
Comput. Math. 87(11), 2426–2443 (2010)

44. Jongmans, S.-S., Arbab, F.: Overview of thirty semantic formalisms for Reo. Sci.
Ann. Comput. Sci. 22(1), 201–251 (2012)

45. Jongmans, S.-S.T.Q., Arbab, F.: Global consensus through local synchronization.
In: Canal, C., Villari, M. (eds.) ESOCC 2013. CCIS, vol. 393, pp. 174–188. Springer,
Heidelberg (2013)

46. Jongmans, S.-S., Arbab, F.: Modularizing and specifying protocols among
threads.In: Proceedings of PLACES 2012. EPTCS, vol. 109, pp. 34–45. CoRR
(2013)

47. Jongmans, S.-S., Arbab, F.: Toward sequentializing overparallelized protocol code.
In: Proceedings of ICE 2014. EPTCS, vol. 166, pp. 38–44. CoRR (2014)

48. Jongmans, S.-S., Arbab, F.: Can high throughput atone for high latency in
compiler-generated protocol code? In: Proceedings of FSEN 2015. Springer (in
press)

49. Jongmans, S.-S.T.Q., Halle, S., Arbab, F.: Automata-based optimization of inter-
action protocols for scalable multicore platforms. In: Kühn, E., Pugliese, R. (eds.)
COORDINATION 2014. LNCS, vol. 8459, pp. 65–82. Springer, Heidelberg (2014)

50. Jongmans, S.-S., Halle, S., Arbab, F.: Reo: a dataflow inspired language for mul-
ticore.In: Proceedings of DFM 2013, pp. 42–50. IEEE (2014)

51. Jongmans, S.-S., Santini, F., Arbab, F.: Partially-distributed coordination with
Reo.In: Proceedings of PDP 2014, pp. 697–706. IEEE (2014)

52. Jongmans, S.-S.T.Q., Krause, C., Arbab, F.: Encoding context-sensitivity in reo
into non-context-sensitive semantic models. In: De Meuter, W., Roman, G.-C.
(eds.) COORDINATION 2011. LNCS, vol. 6721, pp. 31–48. Springer, Heidelberg
(2011)

53. Kemper, S.: SAT-based verification for timed component connectors. Electr. Notes
Theor. Comput. Sci. 255, 103–118 (2009)

54. Kemper, S.: Compositional construction of real-time dataflow networks. In: Clarke,
D., Agha, G. (eds.) COORDINATION 2010. LNCS, vol. 6116, pp. 92–106. Springer,
Heidelberg (2010)

55. Klein, J., Klüppelholz, S., Stam, A., Baier, C.: Hierarchical modeling and formal
verification. An industrial case study using reo and vereofy. In: Salaün, G., Schätz,
B. (eds.) FMICS 2011. LNCS, vol. 6959, pp. 228–243. Springer, Heidelberg (2011)

56. Klüppelholz, S., Baier, C.: Symbolic model checking for channel-based component
connectors. Electr. Notes Theor. Comput. Sci 175(2), 19–37 (2007)

57. Koehler, C., Lazovik, A., Arbab, F.: ReoService: coordination modeling tool. In:
Krämer et al. [64], pp. 625–626

58. Kokash, N., Krause, C., de Vink, E.P.: Data-aware design and verification of service
compositions with Reo and mCRL2. In: SAC 2010: Proceedings of the 2010 ACM
Symposium on Applied Computing, pp. 2406–2413. ACM, New York (2010)

59. Kokash, N., Arbab, F.: Formal behavioral modeling and compliance analysis for
service-oriented systems. In: de Boer, F.S., Bonsangue, M.M., Madelaine, E. (eds.)
FMCO 2008. LNCS, vol. 5751, pp. 21–41. Springer, Heidelberg (2009)

60. Kokash, N., Arbab, F.: Applying Reo to service coordination in long-running busi-
ness transactions. In: Shin, S.Y., Ossowski, S. (eds.) SAC, pp. 1381–1382. ACM,
New York (2009)

61. Kokash, N., Arbab, F., Changizi, B., Makhnist, L.: Input-output conformance
testing for channel-based service connectors. In: Aceto, L., Mousavi, M.R. (eds.)
PACO. EPTCS, vol. 60, pp. 19–35 (2011)

96 F. Arbab and S.-S.T.Q. Jongmans

62. Kokash, N., Krause, C., de Vink, E.P.: Verification of context-dependent channel-
based service models. In: de Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel,
M. (eds.) FMCO 2009. LNCS, vol. 6286, pp. 21–40. Springer, Heidelberg (2010)

63. Kokash, N., Krause, C., de Vink, E.P.: Time and data-aware analysis of graphical
service models in Reo. In: Fiadeiro, J.L., Gnesi, S., Maggiolo-Schettini, A. (eds.)
SEFM, pp. 125–134. IEEE Computer Society (2010)

64. Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.): ICSOC 2007. LNCS, vol. 4749.
Springer, Heidelberg (2007)

65. Lazovik, A., Arbab, F.: Using Reo for service coordination.In: Krämer et al. [64],
pp. 398–403

66. Meng, S., Arbab, F.: On resource-sensitive timed component connectors. In:
Bonsangue, M.M., Johnsen, E.B. (eds.) FMOODS 2007. LNCS, vol. 4468, pp.
301–316. Springer, Heidelberg (2007)

67. Meng, S., Arbab, F.: QoS-driven service selection and composition. In: Billington,
J., Duan, Z., Koutny, M. (eds.) ACSD, pp. 160–169. IEEE (2008)

68. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980)

69. Milner, R.: Elements of interaction - turing award lecture. Commun. ACM 36(1),
78–89 (1993)

70. Moon, Y.-J.: Stochastic models for quality of service of component connectors.
Ph.D. thesis, Leiden University (2011)

71. Moon, Y.-J., Silva, A., Krause, C., Arbab, F.: A compositional semantics for sto-
chastic Reo connectors. In: Mousavi, M.R., Salaün, G. (eds.) FOCLASA. EPTCS,
vol. 30, pp. 93–107 (2010)

72. Sangiorgi, D., Walker, D.: PI-Calculus: A Theory of Mobile Processes. Cambridge
University Press, New York (2001)

73. Schumm, D., Turetken, O., Kokash, N., Elgammal, A., Leymann, F., van den
Heuvel, W.-J.: Business process compliance through reusable units of compliant
processes. In: Daniel, F., Facca, F.M. (eds.) ICWE 2010. LNCS, vol. 6385, pp.
325–337. Springer, Heidelberg (2010)

74. Wegner, P.: Coordination as comstrainted interaction (extended abstract). In:
Hankin, C., Ciancarini, P. (eds.) COORDINATION 1996. LNCS, vol. 1061, pp.
28–33. Springer, Heidelberg (1996)

http://www.springer.com/978-3-319-18940-6

	Coordinating Multicore Computing
	1 Introduction
	2 Interaction-Centric Concurrency
	3 Overview of Reo
	4 Examples
	4.1 Alternator
	4.2 Sequencer
	4.3 Buffered Sequencing
	4.4 Sampling
	4.5 Exclusive Router
	4.6 Shift-Lossy FIFO1
	4.7 Decoupled Alternating Producers and Consumer
	4.8 Dataflow Variable
	4.9 Fully Decoupled Alternating Producers and Consumer
	4.10 Flexibility and Scaling

	5 Semantics
	6 Compilation
	7 Concluding Remarks
	References

