Chapter 2
Generalities on Distributions

2.1 Definition

Let X be an open set in R”, n € N a fixed integer.

Definition 2.1 Every linear continuous map u : %5°(X) +— C is called a
distribution or generalized function. In other words, a distribution is a linear map
u : 65°(X) — C such that u(¢,) —n—>c0 u(¢) for every sequence {¢,}°2, in
%57 (X) converging to ¢ € 65°(X) as h— o0.

The space of distributions on X will be denoted by 2(X). We will write u(¢) or
(u, @) for the value of the functional (generalized function, distribution) u € 2'(X)
on the element ¢ € 65°(X).

Example 2.1 Suppose 0-€ X and take the map u : 65°(X) —> C defined as follows

u(@) = ¢(0) for ¢ e 25°X).

Let ¢1,¢2 € €5°(X) and aq, a5 € C. As
u(p1) = ¢1(0), ul(é) =¢2(0),
u(agr =+ aag) = (191 + a2¢92)(0) = 11 (0) + a2¢2(0) = ayu(epy) + az2u(ehs),

u : 65°(X) — Cis linear. Let {¢,}°2, be a sequence in 6;°(X) for which
On —n—s00 ¢ in G5°(X). Then there exists a compact set K C X such that
suppp, C K for every n € N and D*¢, —> D*¢ uniformly in X for every
multi-index ¢« € N U {0}. In particular, ¢,(0) —,— o ¢(0), and therefore
u(¢p) —n—s00 u(¢). Consequently the linear map u : 65°(X) +— Cis
continuous, in other words it is a distribution on X.
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28 2 Generalities on Distributions

Exercise 2.1 Let 0 € X. For each multi-index o prove that the map u : 65°(X) — 22

C, defined by 23
u(p) = D*¢(0) for ¢ € 65°(X), 24
is a distribution on €5 (X). 25

Exercise 2.2 Denote by §, or §(x — a), a € C", Dirac’s “delta” function at the 26

point a: 27
8a(p) = p(a) for ¢ € E7°(X). 28
Prove that §, is a distribution on 6;°(X). 29
Exercise 2.3 Prove that the map 1 : 65°(X) — C, defined by 30
1(¢p) = /¢(x)dx for ¢ € 65°(X), 31
X
is a distribution on €;° (X). 32
Exercise 2.4 Foru € L} (X),p > 1, we define u : 65°(X) —> C by 33
u(¢) = / u(x)¢p (x)dx. 34
X
Prove that u is a distribution on %;° (X). 35
Exercise 2.5 Let P% 1 657 (X) — C be the map defined by 36
1 —¢(0
P—(¢) = P.V./ de for ¢ € 6;°(X). 37
X X X
Prove that P% € 2'(X). 38
Definition 2.2 The distributions u, v € 2’(X) are said to be equal if 39
u(@) = v(9) 40
for any ¢ € 65°(X). 41
Definition 2.3 The linear combination Au + pv of the distributions u, v € 2'(X) 42
is the functional acting by the rule 43
(Au+ pv) () = Au(p) + pv(@). ¢ € ¢5°(X). 44

This makes the set 2’(X) a vector space. 45
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Definition 2.4 Let u € 2'(X). We define a distribution u € 2'(X), called the
complex conjugate of u, by

a¢) =u@). ¢ <€GEX).
The distributions

Re(u) = HTM Im(u) = 2

are respectively called the real and imaginary parts of u. Equivalently,
u = Re(u) + ilm(u), u = Re(u) — ilm(u).

If Im(x) = 0, u is said to be a real distribution.
Exercise 2.6 Prove that the delta function is a real distribution.
Here are elementary properties of distributions. If u;, u, € 2'(X), then

1. 731 + Uy € @/(X),
2. auy € 2'(X) for VaeC.

These properties follow from the definition, so their proof is omitted.
Foru € 2(X) anda € C", |a| # 0,b € C, b # 0, we define following
distributions

L u(@)(x + a) = u(p(x —a))(x) - Vo€ 6°(X),
2. u(¢)(bx) = Wu(qﬁ(;—;))(x) Vo € 6(X).

Example 2.2 For ¢ € €°(R") we have
$(@) (= 1—2i) = 8(¢p(x— 1 + 20))(x) = p(—1 + 2i),
5@)2ix) = 35(¢(3) ) ) = 36(0).
Exercise 2.7 Compute
3(¢)(2x + 3i)
for ¢ € G°R).

Answer %qﬁ(—%)
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30 2 Generalities on Distributions

If u is a distribution on X, then for every compact subset K of X there exist constants
C and k so that the inequality

u(@)] = € 3 sup| D) .

|| <k

holds for every ¢ € 65°(K). Actually, we suppose there exists a compact set K in
X so that

u@)| >n Y sup|[ D"y () 22)

aeNtufoy K
holds for ¢, € 6;°(K). We set

P (x)

% (-x) = .
n ZaeN”U{O} Supg ‘Da¢n () )

From (2.2) we obtain

lu(yn)| = 1. (2.3)

By the definition of v, (x) it follows that v/, —,—0 0 in 5°(X). Since u :
%5°(X) — C is continuous, we have

(W) —n—s00 0,

which contradicts (2.3).

If u : 65°(X) — Cis a linear map such that for every compact set K in X there
exist constants C > 0and & € N U {0} for which (2.1) holds, then u is a distribution
on X. To show this we will prove that u : €;°(X) — C is continuous at 0. Let
{$n352, beasequence in 65 ° (X) with ¢, —, o0 0in 6°(X). Then

sup ‘D"qﬁn (x) } — 00 0
K

for every || < k. Hence with (2.1) we conclude
u($n) —>n—s0 0.
Exercise 2.8 The function H(x), x € R!, defined by
1 for x>0,

H(x) =
0 for x<0O
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2.2 Order of a Distribution 31

is called Heaviside function. We define 89
H$) = [ HW a0

Rl
¢ € 65° (R"). Using inequality (2.1) prove that H € &'(R"). 91
2.2 Order of a Distribution 92

Definition 2.5 If inequality (2.1) holds for some integer k independent of the o3
compact set K C X, the distribution u is said to be of finite order. The smallest o4
such k is called the order of the distribution u. 95

The space of distributions on X of finite order is denoted by D’(X), and the space 9

of distributions of order < k is denoted by D’ k (X). Then 97
Dp(x) = | D" ). o8
k
Example 2.3 Dirac’s § function is a distribution of order 0. 99
Exercise 2.9 Prove that P% has order [ onR'. 100
Exercise 2.10 Prove that P% is of order 0 on R'\{0}. 101
Let 102
&
. (@(x)) =] Cee TP when )| <, 103

0 when J|a(x)| > €

for a(x) € €' (X) and C, a constant. It is easy to see that 104
8(a(x)) = lim w(a(x)). 105
e—>0
If a(x) € €' (R") has isolated simple zeros xi, x, . . ., then 106
8(x — xx)
8(a(x)) = _. 107
@) =2

It is enough to prove the assertion on a neighbourhood of the simple zero x;. Since 108
X 1s an isolated simple zero of a(x), there exists €, > 0 such that a(x) # O for every
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X € (X — €, Xk + €x), X # xi, a(x) = 0. As

(5a@).6@) = [7 8(a(x)¢ (0dx =

k—€k

= limc—o [} * 0 (@) @dx  (a(x) =)

(xx+ex)
= lim,—9 fa e e (y) |$22—12§))))| y

(Xk—€k)

a(xk+ek) A C163)))
= lim—s [} e 7@ am @Y

(Xk—€k)

_ gt _ (8-
= Wl = (wm)\ px ))

for ¢ € 65°(xx — €k, xk + €), it follows that

8(x — xx)

Sl = Tl

on a neighbourhood of the point xi.

Example 2.4 Let us consider §(cosx). Here a(x) = cosx and its isolated zeros are

_ (Qk+Dr
-2

SO

, k € Z. We notice that

la' ) =1 for keZ,

8(cosx) = Za( (2"“)”)

Exercise 2.11 Compute §(x* — 1).

Answer

2.3 Sequences

S—1)+8(+1)
Nt

oo

Definition 2.6 The sequence {un} 1 of elements of D’ (X) tends to the distribution

u defined on X if

n=

lim_u,(9) = u(g) Ve € 67 (X).

109

110

111

112

113

114
115

116

117

118

119

120

121

122

123

124



2.3 Sequences 33

If so we write 125

lIim u, =u or Up —>n—so00 U. 126
n—oo

If {u, )22, and {v,}72, are two sequences of distributions on X that converge to the 127
distributions u and v respectively, then {au, 4+ Bv,}°2, converges to cu + fv on X. 128

Here a, B € C. Indeed, let ¢ € 6;°(X) be arbitrary. Then 129
un(¢) —n—>00 u(d))s Un(¢) —n—>00 U(¢) 130
Hence, 131

(un + Boa)(@) = (aun) () + (Ba)(@)

132

= ity (P) + PBun(@p) —n— o0 qu(dp) + ().

Example 2.5 Letx € R! and 133

1
3 for |x| <,

fe(x) = 134

0 for |x|>e.

We will compute 135

i 0

in 2'(RY). Let ¢ € € (R") be arbitrary. Then 137
lime— 4o fe (¢) () = lime—s 4o [, 26 (0)dx (x =€)

= 1m0 [, P(ep)dy 138

=¢(0) = 8(¢)(x).

Consequently 139
emoﬂ (x) =68(x) 140

in 2'(R"). 141
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Exercise 2.12 Find
2¢

lim ————.
e—+0 T (x2 + €2)

Answer 2§(x).

2.4 Support

Definition 2.7 A distribution u € 2’(X) is said to vanish on an open set X; C X
if its restriction to X is the zero functional in 2'(X)), i.e., u(¢) = 0.forall ¢ €
%y °(X1). This is written u(x) = 0, x € X;.

Suppose a distribution u € 2'(X) vanishes on X. Then it vanishes on the
neighbourhood of every point in X. Conversely, let u€ %’(X) vanish on a
neighbourhood U(x) C X of every point x in X. Consider the cover {U(x),x € X}
of X. We will construct a locally finite cover {X;} such that X} is contained in some
U(x). Let

xfccxyco...o v Uxi=x
k>1

By the Heine-Borel lemma, the compact set Y} is covered by a finite number of
neighbourhoods U(x), say U(x1); U(xz), ..., U(xy,). Similarly, the compact set

)_(;\Xll is covered by a finite number of neighbourhoods U(xy,+1), - .., U(xn,+n,),
and so on. We set

X, = U)X, k=1,2,...,Ni,

—l1
X =U() NX\XD), k=N +1,...,N| + N,

and so forth. In this way we obtain the required cover {X,}. Let {¢;} be the partition
of unity corresponding to the cover {X;} of X. Then

supp(¢ex) =0

for every ¢ € €;°(X). This implies

u@) = u(Y_ger) = D uger) = 0.

k>1 k>1

Consequently the distribution # vanishes on the whole X.
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2.4 Support 35

The union of all neighbourhoods where a distribution u € %’(X) vanishes forms an
open set X,,, called the zero set of the distribution u. Therefore # = 0 on X,,, and X,
is the largest open set where u vanishes.

Definition 2.8 The support of a distribution u € 2’(X) is the complement suppu =
X\X, of X, in X.

Note that suppu is a closed subset in X.

Definition 2.9 The distribution u € %'(X) is said to have compact support if
suppu CC X.

Example 2.6 suppH = [0, 00).
Exercise 2.13 Find suppl.

Let A be a closed set in X. With ’(X,A) we denote the subset of distributions
on X whose supports are contained in A, endowed with the following notion of
convergence: uy —> 0 in 2'(X,A) as k —> oo, if uyy —>0.in 2'(X) as k —> oo
and suppuy, C A forevery k = 1,2, .. .. For simplicity 2’(A) will denote 2’ (R", A).
Now suppose that for every point y € X there is a neighbourhood U(y) CC X
on which a given distribution u, is defined. Assume further that u,, (x) = u,,(x) if
x € Uly1) N U(y2) # . Then there exists a unique distribution u € 2’(X) so that
u = uy in U(y) for every y € X. To see this we construct, starting as previously
with the cover {U(y),y € X}, the locally finite cover {X;}, Xix C U(y), and the
corresponding partition of unity {e;}. We also set

w(@) =Y u,@er). ¢ € COX). (2.4)

k>1

The number of summands in the right-hand side of (2.4) is finite and does not depend
on ¢ € ¢5°(X’), for any X' CC X. By definition (2.4) u is linear and continuous on
C5°(X), i.e., u € Z'(X). Furthermore if ¢ € 65°(U(y)), then ¢er € €5°(U(yi)).
From (2.4),

u@) = u(¢ 3 e) = w(@).

k>1

i.e., u = u, on U(y). If we suppose there are two distributions « and & such that
u=1uyandu = u,on U(y) foreveryy € X,thenu—iu = Oon U(y) forevery y € X.
Therefore u — u = 0 in X, showing that the distribution u is unique.

The set of distributions with compact support in X will be denoted by &”(X), and
we set &%(X) = & (X) N 2'%(X).

190



36 2 Generalities on Distributions
2.5 Singular Support

Definition 2.10 The set of points of X not admitting neighbourhoods where u €
2'(X) coincides with a € function is called the singular support of u, written
singsuppu.

Hence u coincides with a € function on X\singsuppu.

Example 2.7 Letf € ¥°°(X). We define the functional u in the following manner:

u@) = [ Fpd ¢ € GE).
X
For ¢1, ¢ € 65°(X) and a1, o, € C, we have
u(arr + o) = [y f(X) (@11 (x) + o2 (x))dx
= [x(aif ()1 (x) + af (x) 2 (x))dx
=y [y f)P1(0)dx + o [y f(x)a(x)dx
= aju($r) + cou(en).

Therefore u is a linear functional on 6;°(X). For ¢ € %;°(X), moreover, there
exists a compact subset K of X such that supp¢ C K and

)| = | f@$ x| = | [ fOp @]

< Jx F®Il¢)ldx < [ [f (x¥)|dx sup,e ¢ ()] < o0.

Consequently the linear functional u : 65°(X) — C is well defined. Let {¢,}°2,
be a sequence in €5°(X) such that ¢, — ¢, n —> 00, ¢ € €5°(X), in €5°(X).
Then

u(dy) = /X FOn()dx —> o0 () = /X FOP ().

Therefore u : €°(X) — C is a linear continuous functional, i.e., u € 2’(X). Note
that u = f € ¥°°(X) and therefore singsuppu = Q.
Exercise 2.14 Find singsuppP;I( for x € R1\{0}.

Exercise 2.15 Determine singsuppP% forx e R

Exercise 2.16 Compute singsuppPﬁ for x € R1\{0}.
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2.5 Singular Support 37

Exercise 2.17 Find singsuppPZ for x € R'.

Definition 2.11 The distribution u € 2’(X) is called regular if there exists f €
L .(X) such that

u@) = [ I for ¥ € G0,

In this case we will write u = uy. If no such f exists, u is called singular.
Example 2.8 Letf = 13—, x € R'. The map u : 65°(X) — C,

u@) = [ FOp0s ¢ GERD,

is a regular distribution.

Example 2.9 Consider §(x), x € R!, and suppose that § is a regular distribution.
Then there exists f € L] (R'") such that uy = §. Choose p € 6 °(R") for which

loc

supp(p) C B1(0), p(0) = 1. Define the sequence {p,}52, by

pn(x) = p(nx).

Then supp(p,) C B1(0) and p,(0) = 1. In addition,

8(pn).= pn(0) =1

and

B1(0)

n

V=t = [ repmoa] < [ yelomoas

< sup.eg! [P(¥)] [f(x)|dx —n—0 O,
B%(O)
which is a contradiction. Therefore § € 2’(R') is a singular distribution.

Exercise 2.18 Let u;, uy € 2'(X) be regular distributions. Prove that aju; + azun
is a regular distribution for every o, o € C.

Exercise 2.19 Show that singular distributions form a vector subspace of 2'(X)
over C.
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38 2 Generalities on Distributions
2.6 Measures

Definition 2.12 A measure on a Borel set A is a complex-valued additive function

p(E) = /Eu(dx),

that is finite (i (E)| < co) on any bounded Borel subset E of A.

The measure w(E) of A can be represented in a unique way in terms of four
nonnegative measures (;(E) > 0,i = 1,2, 3, 4, on A in the following way

o= (1 — p2) + i(ps — ha)

and

[ @0 = [@o = [ +i [ pa@ 2 [ o

The measure p(E) on the open set X determines a distribution 1 on X as follows
w@) = [ dwpd. g€ 00,
X

where [ is the Lebesgue-Stieltjes integral. From the integral’s properties it follows
that u € 2'(X). Every measure p of X for which pu(dx) = f(x)dx, f € L} .(X),
defines a regular distribution.

Let u € 2'(X) define a measure y of X. Then

=] ¢ = [ pi s jocol

X X€EX|

for every X; CC X and every ¢ € 6°(X;). Hence u € 2"°(X).
Now we suppose u € 2"°(X), i.e., for every X; CC X

lu(p)| < C(X)) sup | ()]

where C(X1) is a constant which depends on X;. Let {Xi}72, be a family of open
sets such that X CC Xpy1, UgXy = X. Since 65°(Xx) is d@se in o(Xy), the
Riesz-Radon theorem implies that there exists a measure (i of X; such that

u(@) = /X SO, ¢ € G(Xe).
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2.7 Multiplying Distributions by ¢*>° Functions 39

Therefore the measures pu; and g+ coincide on Xj. From this we conclude that
there is a measure y on X which coincides with p; on X; and with the distribution
uonX.

Definition 2.13 The distribution u € 2’(X) is called nonnegative on X if u(¢) > 0
for every ¢ € 65°(X), ¢(x) > 0, x € X.

Example 2.10 The distribution 1 is nonnegative.
Exercise 2.20 Prove that the distribution H is nonnegative.

Exercise 2.21 Prove that the distribution 1 is a measure.

2.7 Multiplying Distributions by %> Functions

Definition 2.14 The product of a distribution u € 2’(X) by.a function b € € (X)
is defined by

bu(g) = u(bp) for ¢ €CRX).

We have

bu(o191 + aa¢2) = u(b(oydr + a292))

= u(a1bd + arbdn) = aju(bpi) + aau(bey)

= a1bu(¢py) + crbu(gpz)
for oy, a0 € C, ¢1, ¢ € 65°(X), i.e., bu is a linear map on 6;5°(X). Let {¢,}°2,
be a sequence in G;°(X) such that ¢, —, 00 @, ¢ € G5°(X), in E5°(X). Then
by —n—s00 bep in E5°(X). Since u € 7'(X), we have

u(bn) —>n—soc0 u(beh),

SO

bu(pn) —>n—so00 bu(p).

Consequently bu is a continuous functional on %°(X) and bu € 2'(X).

Example 2.11 Take x>8. Then
8(p) = 8(¢) = 0°p(0) =0

for ¢ € 6°(X). Therefore x*§ = 0.
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40 2 Generalities on Distributions

Exercise 2.22 Compute (x*> + 1)§.
Answer §.
Letoy,ap € C, by, by € €°(X) and uy, u; € 2'(X). Then

1. (albl(x) + Oézbz(x))ul = ozlbl(x)ul + Olzbz(x)ul,
2. bl(x)(otlul + apuy) = albl(x)ul + Oézbl(x)uz.

Let us prove that this multiplication is neither associative nor commutative. Suppose
the contrary, so

x8(¢) = 8(xp) = 0¢(0) = 0(¢),
xPL($) = PL(xp) = P.V. [ p(0)dx = 1(¢)
for ¢ € €°(R"). Hence
0 =0P! = (()PL = BNPL = 5(x)(xP1).= 5(x)1 = 5(x),

a contradiction.

2.8 Exercises

Problem 2.1 Let o be a multi-index and set u(¢) = D*¢(x¢), ¢ € ¢5°(X) for a
given xo € X. Prove that u is'a distribution of order |«|.

Proof Let ¢y, ¢ € 65°(X) and a, b € C. Then

u(agy +bgy) = D*(apy +bp,)(xo) = aD*¢y(x0) +bDPa(x0) = au(¢p) + bu(e,).

Consequently u is-a linear map on %;°(X). Let K be a compact subset of X and
¢ € 65°(K). Since supp ¢ C K we have to consider two cases: xo € K and xo ¢ K.
If xp € K,

u@l<c Y s;p)Dﬂu(qs)(x)\ 2.5)
1BI<|e|

for C > 1.If xo ¢ K, then u(¢)) = 0. Therefore inequality (2.5) holds, and then
u € 9'(X). Using the definition of u and (2.5) we conclude that u has order |«]|.
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2.8 Exercises 41

Problem 2.2 Take f € ¢'(R") and a multi-index «. Let D*f be defined on G°(R") 306

as follows: 307
D7) = -0 [ reontpeods
RVI
Prove that D*f is a distribution of order |«|. 309
Problem 2.3 Show §, € D'°(R"). 310
Problem 2.4 Let P be defined on 45°(R") by 311
1 o —¢(0
P—(¢) = P.V./ de. 312
x2 o x2
Prove that Pé is a distribution. 313
Problem 2.5 Define u by 314
u(p) = ¢(x)dx V¢ € €5 (RY). 315
<1
Prove that u € D'(R"). 316
Problem 2.6 Define 317
u(p) = / DUp(dx VY € CXR"), s1e
lxl=<1
where « is a multi-index. Show that u € D'(R"). 319
Problem 2.7 Prove that H.€ D'°(R}). 320
Problem 2.8 Let 321
> 1
w(p) = qu(q)(-) Vo € €°(0.1). 322
q
=0
Prove that u belongs to D'(0, 1) but not to D.(0, 1). 323
Problem 2.9 Let P(x,D) = } <, da(x)D%, where g € N U {0} is fixed, and s24
a € ¢ (R"). Let u be defined on 45°(R") by 325
u(p) = / u(x)P(x, D)¢ (x)dx. 326
Rll

Prove that u € D'Y(R"). 327



42 2 Generalities on Distributions

Problem 2.10 Letu € D'(X) and suppose u(¢p) > 0 for every nonnegative function
¢ € 65°(X). Prove that u is a measure, i.e., a distribution of order 0.

Proof Let K C X be a compact set. Then there exists a function y € %3°(X) such
that 0 < y(x) < lonXand y = 1 on K. Then

xsup gl £¢ =0
for every ¢ € 6;°(K), and therefore
u(x sup |¢1 £ ¢) = 0. (2.6)
On the other hand,
u(yx sup 9] £ ¢) = sup |plu(y) + u(@).
Consequently, using (2.6),

Fu($) < u(y) sup ]

Therefore u € D’O(X), i.e., u is a measure.

Problem 2.11 Take ¢(x,y) € €°°(X x Y), where Y is an open set in R”, m > 1.
Suppose there is a compact set K C X such that ¢ (x,y) = 0 for every x ¢ K. Prove
that the map

y > u(p(-.y)
is a €' function for every u € D'(X) and
Du($(-.y)) = u(Di¢ (-, y))

for every multi-index o.

Proof Since u € 7'(X) and ¢ € 65°(X x Y), we have that u(¢ (x, y)) is continuous
in the variable y. We will prove

%u(qﬁ(x, y) = u(aiyjqb(x, y)) for xeK
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andj € {l,...,m}. Fory € Y given,
m ad) )
Pr.y+h) =d(x.y) + Zhia—y(x,y) +o(|h]?)
i=1 J

for¢ € €5°(K xY). Leth=(0,...,0,h;,0,...,0). Then

¢(X,y+ h) —¢(X,y) — a_d)
h dy;

(x,y) + %o(hjz).

Since u is linear, we have

u(qb(x,y +h —¢(x,y)) = u(a—¢(x,y)) + %u(o(hf)).

h ay]

From this equality we obtain
ad ad
(59w ) = 5@ G
as h — 0. By induction

u(DIp () = Diu(g (v, ).

Problem 2.12 Prove that a linear map u : ¢;°(X) — C is a distribution if and

43

only if u(¢;) — o0 Ofor every sequence {¢j}f§1 of elements of 6°(X) with

o0
Proof Letu € D'(X) and {qbn} be a sequence in 63°(X) tending to 0 in €5° (X).

There is a compact subset K of X such that supp ¢, C K for every natural number
n and D*¢, —>;—500 0 for every multi-index «. Hence using (2.1) there exist

constants C and k for which

()

<CZsup

loe| <k

D¢y

—>n—s00 0.

o0
Now suppose that for every sequence {q&n} » in ¢5°(X) tending to 0 in 65°(X),

we have u(¢,) —>1—>00 0. Let us assume there exists a compact subset K of X

such that

lu(p,)| > C Z sup‘D bn

loe| <k
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for every constants C > 0 and k € N U {0}. When C = n and k = n, we get

(@)l > n 3 sup|DF(6)

loe| <n
Let
Pn
Yo = ———.

2 lal<n [P Pn

Since u is linear on €;5°(X), we obtain
)”(%) S R n,
Zlalfn D¢,

which is a contradiction because
Vi —j—00 0

in 5°(X) and u(Y;) —j—00 0.

Problem 2.13 Prove that a linear map u : %;°(X) +— C is a distribution if and
only if there exist functions p, € € (X) such that

()] = 3 sup

DG Vi € (K, 27

for every compact set K C X, and only a finite number of the p, vanish identically.
Proof

1. Let u be a linearmap from %;°(X) to C and p, € %' (X) be such that inequality
(2.7) holds forevery ¢ € 6;°(X) and every compact K. Since p, € €' (X), there
exists a constant C such that

sup |pe| < C.
K

From this and (2.7) it follows that

D*¢

u@) < €Y sup
o K
As only finitely many p, are zero, there is a constant k such that

u(@)| = € 3 sup|D“p)].

|or| <k

ie.,ue 7' (X).
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2. Letu € D'(X) and {K;} be compact subsets of X such that any compact subset is 393
contained in some K;. Take maps y; € 6;°(X) with y; = 1 on K; and define 304

vi=xi—x- Jj>1
Y1 = X1

395
Any ¢ € 65°(X) satisfies 396
o0
o= Up. (2.8)
=1
Note that only a finite number of summands in (2.8) vanish identically. Moreover, 397

Y #0 on Kj\K;—; for j>1, 208

Y1 #0 on K.

Consequently 399
supp(¥j¢) C suppy;. 400
As ;¢ has compact support, for every compact K there are constants C and k; 401
such that 402
()| =C.Y " sup|D* (). w03

|o| <k; K
From this and (2.8) we obtain 404

)| = | X, uvid)| < X, luwg)

< C X, Yjajc, SUPx | D (V)|

< CZjZ\a\gkj > p<a (z) SUPK‘DﬁWi Da_ﬁqﬁ‘-

Supg

If we set 406

b = Z (;)Dﬂwj 407
J o lal<k
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we obtain

u(@)] = €3 sup|opD" Vg,

p=a

Problem 2.14 Prove that u € D’ k(X) can be extended in a unique way to a linear
map on %, (X) so that inequality (2.1) holds for every ¢ € €1 (X).

Proof Since the space 6;°(X) is everywhere dense in ‘fé‘(X), for every ¢ € ‘fé‘(X)
o0
there exists a sequence {qbn} in €;°(X) for which ¢, — o0 ¢ in ‘fé‘(X).

Hence

|lu(pn) — ulg)| = CZ\a\gk supy | D*¢p — D* 1| —>n1—500 0.
o0
Therefore {u(q&n)} 1 is a Cauchy sequence in R!, and as such it converges to, say,

u(@) = tim_u(p,). 2.9)

(0.9]

The claim is that (2.9) is consistent. In fact, let {q,’),,}
in €5°(X) for which

o0
, {Iﬁn} be two sequences
1 n=1

n=

lim ¢, = lim ¥, = ¢
n—>-090

n—>-00

in €5 (X). Then u(¢p) = limy—soott(yy) = limy—soou(¢s) = limy—soo u(yr),
where {yn} _ {qbn} N {Wn} _ . For the sequence y, we have

3

)

<c) sup [D* yn
ol<k

SO

u(q&)‘ <C Z sup‘D“qb‘

la|<k

when n — oo.

Problem 2.15 Let u, € D'(X), u,(¢) > 0 for every nonnegative ¢ € ¢;°(X) and
Uy —>n—>so00 U in D'(X). Prove that u > 0 and u,(¢) —>—00 u(¢p) for every

¢ € C(X).
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Problem 2.16 Prove that the functions
1. f= ei,

1
2. f=e?,

3.f=em, meN
do not define distributions, i.e. f & D’(R'\{0}) in all cases.

1.

Proof Take f(x) = ev and suppose—by contradiction—that f € D'(R'\{0}).
Pick ¢9 € ¢¢°(R'\{0}) such that ¢(x) > 0 for every x # 0, ¢o(x) = 0 for
x<landx > 2,and

o0
/ Po(x)dx = 1.
—0o0
o0
Define the sequence {(;Sk}k_l by

pu(x) = ™2 keho (k).
It satisfies
$r(x) =1 5000
in 9°(R'\{0}), so
F(d1) —1—o0 0.

On the other hand,

oo

Fu) = / ot b

3

2 3
<[ 0 Dpmar = [0 D goras = et [ ponras
1 1 1
By this and the definition of ¢y (x) we conclude
lim f(¢x(x)) = oo,
k—>00

which is a contradiction.

. Hint. Use

$e(x) = ¢ ko (k).
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3. Hint. Use 451
—(5)"
Or(x) = e \2) ko (kx). 452
Problem 2.17 Given constants m € N, a;,i = 1,2,...,m, prove that 453
f= ale% + azefz + -+ ameﬂi’ ¢ D'(R'\{0}). 454
Hint. Use the previous problem. 455
Problem 2.18 Show that 456
1. lime—sg [ 22%0x = ingp(0) + P.V. [ 2Qdx, ¢ € G°RY), 457
2. lime g [ £ dx = —ing(0) + P.V. [o1 22dx, ¢ € G2 R). 458
1. Proof Take ¢ € 6 °(R") with supp ¢ C [-R, R]. Then 459
fo 82 = [, 18800
460
= [R, CHIGOBO) gy 4 R (HDIO) 5y
From this 461
0 o0

i [FEEOG@=O) [T 6@

e—0 J_p x2 + €2 oo X
What is more, 463

R .
0 R
tim [ OO 4 9ig(0) tim arctgt = inp(0) = in(@). s
e—0J) p X2+ e? e—>0 €

2. Hint. Use the solution of part 1. 465
Problem 2.19 Prove that 466

1 1 1
=i+ P(—), — = —ind + P(—). 467

X—1 X x4+ i0 X
Hint. Use the previous problem. 468
Problem 2.20 Prove that 469
1. lime—s 49 ; = 6(x), hme_,+0 —sinZ = §(x), 470

2ﬁexp 46

2. lime_, 401 —m = §(x), lime— 40 =55 sin? £ = §(x), 471

—ixt

exp™ exp _
30 iMoo —5 = 2mid(x), imy—s00 = =5~ = 0, 472
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ixt

4. lim,— o0 i’j_’lo =0, im0 CH_IO = —2mid(x), 473
5. 1My " exp™ = 0,m > 0, lim,—s o P(—’) —0, o
6. Time—s 4o gw(g) — §(0), liMy—s o0 H(H—“)z = 8(0), s
7. 1My o0 sty = 800, iy oo 1 I = 5(x), -

% for |x| < }1
8. lim,— 00 fu(x) = 8(x), where f,(x) = 477

0 otherwise;

w22

9. lim,—e0 % exp” 2 = §(x), limy— o0 M2 = §(x), 478
10, Timy,— o0 2nexp=H = §(x), lim,— o0 %W 8(x), -
11 1m0 /Zexp™ = 8(x), lim,— 0 e = S 480

1. Proof Take ¢ (x) € 6 °(R"). Then there exists R > 0 such that suppg C [-R, R]. 41
Now, 482

(e E.0) = [ SE g

2
. (=)

(*‘)2

= = [y 900 =90 far+ 42 15, dx
( 5 , 483
_ 1R \? Lf) AW | 40 (7) .
=g de+ 42 [fe \ ) a(52)
2
_ 1 R 7<7) RICRIU $(0) —?
= - [ dx + f Y ey
Therefore 484
hme—>0(2f (x))
()
. s X - 485
= hmg_,oﬁffR NG Pt ¢(0)dx+ qi}ol 11m5_>0f Ve e Y dy

e
= &\/%) oS e dy = $(0) = §(¢).

Problem 2.21 Let {X;};c; be an open cover of R”, and suppose u; € D'(X;) satisfy 4s6
u; = uj on X; [ X;. Prove that there exists a unique distribution u € D’(X) such that 4s7

u, = u; forevery i € 1. 488
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Proof Take ¢ € 65°(X) and ¢; € 65°(X;) and define 489

¢ = Zq% 490

and 491
w(@) =D ui). (2.10)

1

We claim that definition (2.10) does not depend on the choice of the sequence {¢;}. 492
For this purpose it is enough to prove that 493

Zd),- =0 494

implies 495
M(Z (,25,) =0. 496

Set 497
K= U suppe;, 498

clearly a compact set. There exist functions ¥, € 65°(Xy) such that 0 < ¥ < 1 499
and 500
Z Yr=1 on K. 501

k

By compactness only a finite number of the above summands are different from so02
zero. Moreover, 503
Vi € 65 (Xk m Xi) 504

and 505

u(Yidi) = ui(Yedi). 506
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Therefore

>ouild) =, Mi(zk %dh’) =2 2w = 3 D u (Vi)

= ¥ Y ui) = Y (Vi X 91) = Xy m(0) = 0.

Consequently definition (2.10) is consistent.
Let ¢ € 65°(K). Then

o= ¢
k

and

u@)| = | T uvio)| < ¥,

ui(pvi)

<2 Ci ) i<k SUP 30‘(451#1')} <G <k sup}a"q&‘

’

E C Z\a\fk Sup)aaqﬁ
showing u is a distribution. We also have

u=mu; on Xi.

Now we will prove the uniqueness of u. Suppose there are two distributions « and u

with the previous properties. We conclude

SO
(u— ﬁ)lx,- =0 Vi

Since X is open in R”, it follows that

<
Il
Ny
]
=]
>

proving uniqueness.
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Problem 2.22 Take u € D'(X) and let F be a relatively open subset of X with 524

suppu C F. Prove there exists a unique linear map # on 525

{¢> L € €°(X), F N suppp C X} 526
such that 527
L. u(¢) = u(¢) for ¢ € 65°(X), 528
2. () =0 for ¢ € €*°X),FNsuppp = D. 529
Proof 530

1. (uniqueness) Let ¢ € ¥°°(X) and F N suppp = K. As K is compact, there 531

exists 7 € €;°(X) such that Y = 1 on a neighbourhood of K. Let 532
$o =V,
533
¢1=010-v)¢
SO 534
¢ = o+ ¢1. (2.11)
Therefore 535
(@) =.it(do) + (). 536
Note u(¢;) = 0, so 537
u(¢) = (o) = u(go). 538
Now suppose that there are two such distributions i, ii. Then 539
u(@) = ulgo).
540
u(@) = ulgo).
and consequently 541
i(¢) = u(#) 42
for every ¢ € €°°(X) so that F N suppgp = @. Therefore it = it. 543
2. (existence) Let 544

¢=¢(/)+¢i 545
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be another decomposition of kind (2.11) and define

X = do— .
Then
X € 65°(X), FnNsuppy =F Nsupp(¢r — ¢;) =D
and so
u(y) = u(go) — u(dy) = 0.
Define i() by

u(¢p) = u(go).
This is makes sense since
(@) = u(p) = u(¢o),
i(¢) =0 if ¢ e LX), FNsuppp =0.

Problem 2.23 Prove that suppé = {0}.
Problem 2.24 Let ¢ € 4°(X) and supp(u) ) supp(¢) = @. Prove that u(¢) = 0.

Proof Since supp(u) (| supp(¢p) = @, we have ¢ € G5°(X\supp(u)). If x €
supp(u), then ¢ (x) = 0, so u(¢p) = 0. If x € X\supp(u), then u(¢p)(x) = 0.

Problem 2.25 Prove that the set of distributions on X with compact support
coincides with the dual space of ¥°°(X) with the topology

’

=3 s;p}a“qs

|| <k

where K is a compact set in X.

Proof Let u be a distribution with compact support and take ¢ € €°°(X) and ¢ €
¢5°(X), ¥ = 1 on a neighbourhood of suppu. Then

¢=v¢+10-v)¢

and

w(@) = u(d + (1 =9)¢) = u(Y¢) + u((1 = ¥)p) = u(ye).
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Define u on ¢°°(X) via

u(@) = u(Yp)

for ¢ € €°°(X). Since u is a distribution and ¢ € €;°(X), we have

(@) = )] = C 3 sup|d (@] = €1 3

loe| <k lor| <k

“¢

Now we suppose that v is a linear operator on ¢°*°(X) for which

g <c Y sg{p\a%

|| <k

for ¢ € €°°(X) and K a compact set. Then

v(@) =0

when suppp N K = @.If ¢ € 65°(X) C €*°(X), v is a distribution. Therefore
there exists a unique distribution u € D’ (X) such that

u(@) = (@)

for every ¢ € €°°(X).

Problem 2.26 Let u be a distribution with a compact support of order < k, ¢ a €*
map with d%¢ (x) = 0 for || < k, x € suppg. Prove that u(¢) = 0.

Proof Let y. € 65°(X), xc = 1 on a neighbourhood U of suppu, while y. = 0 on
X\U. Define the set M¢, € > 0 by

M, = {y: lx—y| <e, xe€ suppu},

making M, an e-neighbourhood of suppu. Moreover,

3“)(6) <Ce . o| <k
for some positive constant C. Since

suppu N supp(l — yo)¢p = @,
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we have

u(@®) = (1) + u((1 = x)) = ud1o).
(@) = C[Lpgee sup(#610)|

fCHZmHWQMWWWHWk

E C2 Zlal"rlﬂlfk Sup 30‘¢) €|a|_k —>¢—>0> |Ol| E k

Consequently u(¢) = 0.

Problem 2.27 Let u be a distribution of order k with support {y}. Prove that u(¢) =

Z\a\sk aaaa(ﬁ(y), ¢) S (gk.
Proof For ¢ € €* we have

(x —y)*
o!

) = > p(y)

|| <k

+ Y (),

where
Y () =0 for |a|<k.
Hence,
u(y) = 0.

Therefore

W9 () = u( Ly 00 G + v ()

= (Lt 0O G ) + uy ()

= Yo (S5 )9 0).
Let

aw = (822,
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Then

wg) = ) and*p ().

|| <k

Problem 2.28 Write x = (¥, x”") € R". Prove that for every distribution u € D'(R")

of order k with compact support contained in the plane x' = 0, we have

u(p) = Z Uy (Po),

|or| <k

(2:12)

where @ = (&, 0), u, is a distribution in the variables x”, of order k — |«|, with

compact support with and ¢, (x") = 3% (¥, x"),
Proof For ¢ € €°° we have

=0"

x/Ol
P =Y, PO+ W),

|| <k,a” =0
where

"D(x),_, =0 for Ja| <k

=0
This implies
uw(®) = 0.

Since u is a distribution,

o

= Y (o)

|/ |<k,a” =0

Now let

o

na(@#) = (@ 0.4) = ).

We want to show u, is a distribution of order £ — |«/|. Set

o

Y(x) = ¢(0,x’/));;' +Oo(X Y for ¥ — 0.

Then

w(¥) = ua(¢) for ¢ €€

(2.13)
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and
Zsup)E)W))fC Z sup)aﬂlﬁ),
i<k X Bl<k—lal ¥
SO
sup|9° ‘<c ‘aﬂ )
up|°¢| < > sup| 3y
[Bl<k—la|
Consequently

@) =C Y suplofy]

K
|Bl<k—lal

for every Y € €™, proving u, is a distribution of order k — |a/ in the variable x”.
From (2.13) it follows that u, has compact support.

Problem 2.29 Let K be a compact set in R” which cannot be written as union of
finitely many compact connected domains. Prove that there exists a distribution u# €
&’ (K) of order 1 that does not satisfy

, P eFPX)

u(«zs)chsl;paqs

o] <k

for any constants C and k.

Problem 2.30 Let K be a compact set in R” and u,, |¢| < k, continuous functions
on K. For || < k we set

_ )8
@ = Y sy ) S eyt

Unlx,y) =
|
|Bl<k—|e| p!

for x,y € K,x'# y, and Uy(x,x) = 0 for x € K. Supposing every function U,,
|ot] < k;-is continuous on K x K, prove that there exists v € ¢*(R") such that
0*v(x) = uy(x) forx € K, || < k. Then prove that v can be chosen so that

Z sup|d®v| < C(Z sup U, + Z supua),
K

ol <k ol <k KK ol <k

where C is a constant depending on K only.
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Problem 2.31 Prove that 645

lu(@)| < C(Z\a\gk Supx,yeK,x;éy‘aa(ab(x) - Z|ﬂ|§k—|a| aa+ﬂ¢@)(x,_g—f)ﬁ

646

X =y 4 Y supg 06| ). @ € ERR),

for every distribution « of order k with compact support K C R". 647

Problem 2.32 Let K be a compact set in R” with finitely many connected compo- 648
nents, such that every two points x and y in the same component can be joined by 49
a rectifiable curve in K of length < C|x — y|. Prove that for every distribution u of es0

order k with suppu C K the estimate 651
u@) <y sup)aaqs . e 'R 652

i<k X
holds. 653
Problem 2.33 Leta € C". Prove that 6,(x), x € R”, is a singular distribution. 654
Problem 2.34 Let u;,u, € 2'(X) with u; regular and u, singular. Prove that 655
Ul + U 656
is singular for every a, o, € C. 657
Problem 2.35 Letf,.f € L} (X) and 658
R E—

K

for every compact subset K of X. Prove that 660
Jn —n—o00 f 661
in2'(X). 662
Problem 2.36 Prove that 663
1. 8(—x) = 8(x), 664
2. (8(ax —xp),9) = q&(’%), for any ¢ € ;°(X) and any constant a # 0. 665
Proof 666
1. Let ¢ € 65°(X). Then 667

(52 9) = (50.4(=0) = $(0) = (5(x). ¢ (x)).
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Consequently
3(—x) = 5(x).

2. Let ¢ € €5°(X). Then

(S(ax — Xo), (;S(x)) (ax =y + xp)

- (0005 =)

Problem 2.37 Prove that

1. §(x* —a®) = ﬁ[(?(x— a)+ §(x+ a)], a#0,

2. 8(sinx) = Y 72 8(x —kmn).

Problem 2.38 Prove that §(x), x € R!, is a measure.

Problem 2.39 Prove that H(x), x € R!, is a measure.

59

Problem 2.40 Let {f,}°2 be a sequence in &’ (X) such that | f,(¢)| < ¢, for every
¢ € €;°(X), and {¢,}52, C €5°(X) a sequence converging to 0 in €5°(X) as

n —> oo. Prove that f,,(¢,) — 0, n —> oo.

Proof We suppose the contrary. Then there exists a constant ¢ > 0 such that

[fa(@n)l = ¢ > 0,

for n large enough. Since ¢, — 0'in G5°(X) as n —> oo, there exists a compact

set X’ such that suppg, C X’ for every n and
Da¢n —>n—>00 0,
for every x € X andevery o € N" U {0}. Hence

1
|D*¢,(x)| < e | <n=0,1,2,...,

for n large enough and every x € X’. We set

wn = 2n¢n-

We have suppy,, C X’ and
1
DY@ = 550 el =n=0.1.2,...,

|ﬁl(1//n)| = 2n|ﬁ1(¢n)| > 2"c —> 00 OO.

(2.14)
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Let us find subsequences {fi, }°2, of {f,}°2, and {y, }52, of {¥,}°2, so that
|foo W) = 2" forv = 1,2,.... As Y% — koo 0 in E5°(X), we have
S (W) —>k—s00 0 forj = 1,2,...,v — 1. Therefore there exists N € N such
that for every k > N

1
[ fi; (Y| < j=12,...,v—1. (2.16)

—= 2‘}_]- )

We note that | fy (V)| < cx,j = 1,2,...,v—1.From (2.15), we can choose k, > N
so that

o W) = D e +v+ 1 2.17)

I<j<v—1
From (2.16) and (2.17) we have

1

Ifk,-(wkv)lfzu_j, j=12,...,v—1, (2.18)
o ) = D 1fe W) + v + 1. (2.19)
I<j=<v—1

We set

v = Zlﬁkj-

J=1

From (2.14) it follows that v is a convergent series, ¥ € %;°(X) and

fu @) =fiWe) + Y fu (W)

jz1j#v

Therefore
Wi, | = 1fi, (D) = 2oyt Wi D] = i 1 (Vi)
2v4+1-Y 7 =V

and then

(fto» ¥) —v—00 0,

which contradicts | fi, ()| < cy.
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Problem 2.41 Let {f,}°2, be a sequence in Z’(X) such that {f,(¢)}52, converges 709

for every ¢ € 6;°(X). Prove that the functional 710

f@) = Tim fi(#). ¢ €EGEX)
is an element of 2’ (X). 712
Proof Letay,a, € Cand ¢y, ¢, € 65°(X). Then 713

floigr + aagn) = lim, o0 fu (@101 + 02¢2) = lim,,— o0 (01 fi (1) + @2fi(@2))

714

= oy limy—s oo fu(@1) + a2 lim, oo f(2) = a1f (1) + ctaf (¢2).

Therefore f is a linear map on %;5°(X). Now we will prove that f is a continuous 715
functional on 6;°(X). Let {¢,}°2, be a sequence in 6;°(X) such that ¢, —, 0 716
0 in 65°(X). We claim f(¢,) —> 00 0, so suppose the'contrary. There exists a 717

constant @ > 0 such that 718
If(¢v)| > a, 719

foreveryv = 1,2,.... Since 720
f(¢y) =" lim fi(éy), 721

k—>00

there is k, € N such that 722
| fo, (@) > a 723

for every v = 1,2,..., which is in contradiction with the result of the previous 724
problem. Consequently f(¢,) —>1—00 0 and f € Z'(X). 725
Problem 242 Letu € 2'(X) and b € €°°(X) be such that b(x) = 1 on a 726
neighbourhood of suppu. Show 727
u = b(x)u. 728

Proof For the function 1 — b(x) we have that 1 — b(x) = 0 on suppu. Then for 720
¢ € 65°(X) we have 730

0 =u((1=b(x))9) = u(¢ —b(x)p) = u(p) —u(b(x)9) = u(¢) —b(x)u(¢), 731
SO 732
u(@) = bx)u() 733

for every ¢ € €;°(X). Therefore u = b(x)u. 734
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Problem 2.43 Compute
4,2 ! 1
(x"+x"+3)8(x) +xP—, xeR'.
X

Answer 36 + 1.
Problem 2.44 Let b € ¥*°(R'). Compute

b(x)§(x), xeR.

Answer b(0)§.
Problem 2.45 Leta € €°°(X), u € D'(X). Prove that supp(au) C suppa N suppu.

Problem 2.46 Letf, u € D'(X) and singsuppu N singsuppf = @. Prove thatfou €
D'(X).

Problem 2.47 Letf € € (X), u € D'(X) and suppu M suppf CC X. Prove that
u(f) can be defined by u(f) = (fu)(1).

Problem 2.48 Let f € €%(X), u € D'*(X). Prove that fu € D’*(X).
Problem 2.49 Solve the equation
x—=3)u=0
in 7' (X).
Solution Let ¢ € 6 °(R!). Then we have

(x=3u(p) =0 or u((x—3)p)=0. (2.20)

Letnow ¢ € 4°(R!), and choose € ¢°(R!) so thatn = 1 on [3—¢,3 + €] and

LAC et/ [CINAE)]

n = 0onR'\[3—¢,3+¢], for a small enough € > 0. Then the function 3

belongs in 62°(R'). From this and (2.20) we have that

YO 1V e))

u((x -3) )

Hence

u() = u((x = 3) LG 4 y(y(3))
= u((x = LD 4 (v (3)

=¥ Bu(n) = Cy3) = C8(x—3)(¥).
Here C = u(n) = const. Since ¥ € °(R') was chosen arbitrarily, u = C§(x—3).
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Problem 2.50 Solve the equation

1
—3)u=P—
(x=3)u 3

in 7'(RY).

Solution By using the previous problem the corresponding homogeneous equation

63

(x —3)u = 0is solved by u = Cé(x — 3), C = const, and a particular solution is

P—L_ . Therefore

(x=3)2"

1

Problem 2.51 Solve the equations

. x—1Dx—2)u=0,
2. x*u=2,
3. (sinx)u = 0.

Answer

1. u=Ci6(x—1) 4+ c26(x —2), C1, C; = const,
2. u = Cod(x) + C18'(x) + 2P, Co, Cy'= const,
3.3 2 Ci8(x — km), C; = const.

k=—00
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