Chapter 2 Generalities on Distributions

1

2.1 Definition

Let *X* be an open set in \mathbb{R}^n , $n \in \mathbb{N}$ a fixed integer.

Definition 2.1 Every linear continuous map $u: \mathscr{C}_0^{\infty}(X) \longrightarrow \mathbb{C}$ is called a 5 distribution or generalized function. In other words, a distribution is a linear map 6 $u: \mathscr{C}_0^{\infty}(X) \longmapsto \mathbb{C}$ such that $u(\phi_n) \longrightarrow_{n \longrightarrow \infty} u(\phi)$ for every sequence $\{\phi_n\}_{n=1}^{\infty}$ in 7 $\mathscr{C}_0^{\infty}(X)$ converging to $\phi \in \mathscr{C}_0^{\infty}(X)$ as $n \longrightarrow \infty$.

The space of distributions on X will be denoted by $\mathscr{D}'(X)$. We will write $u(\phi)$ or 9 (u,ϕ) for the value of the functional (generalized function, distribution) $u \in \mathscr{D}'(X)$ 10 on the element $\phi \in \mathscr{C}_0^{\infty}(X)$.

Example 2.1 Suppose $0 \in X$ and take the map $u : \mathscr{C}_0^{\infty}(X) \longmapsto \mathbb{C}$ defined as follows 12

$$u(\phi) = \phi(0)$$
 for $\phi \in \mathscr{C}_0^{\infty}(X)$.

Let $\phi_1, \phi_2 \in \mathscr{C}_0^{\infty}(X)$ and $\alpha_1, \alpha_2 \in \mathbb{C}$. As

$$u(\phi_1) = \phi_1(0), \quad u(\phi_2) = \phi_2(0),$$

 $u(\alpha_1\phi_1 + \alpha_2\phi_2) = (\alpha_1\phi_1 + \alpha_2\phi_2)(0) = \alpha_1\phi_1(0) + \alpha_2\phi_2(0) = \alpha_1u(\phi_1) + \alpha_2u(\phi_2),$

 $u:\mathscr{C}_0^\infty(X)\longmapsto \mathbb{C}$ is linear. Let $\{\phi_n\}_{n=1}^\infty$ be a sequence in $\mathscr{C}_0^\infty(X)$ for which 16 $\phi_n\longrightarrow_{n\longrightarrow\infty}\phi$ in $\mathscr{C}_0^\infty(X)$. Then there exists a compact set $K\subset X$ such that 17 $\mathrm{supp}\phi_n\subset K$ for every $n\in\mathbb{N}$ and $D^\alpha\phi_n\longrightarrow D^\alpha\phi$ uniformly in X for every 18 multi-index $\alpha\in\mathbb{N}\cup\{0\}$. In particular, $\phi_n(0)\longrightarrow_{n\longrightarrow\infty}\phi(0)$, and therefore 19 $u(\phi_n)\longrightarrow_{n\longrightarrow\infty}u(\phi)$. Consequently the linear map $u:\mathscr{C}_0^\infty(X)\longmapsto \mathbb{C}$ is 20 continuous, in other words it is a distribution on X.

14

15

29

30

32

35

36

38

45

Exercise 2.1 Let $0 \in X$. For each multi-index α prove that the map $u : \mathscr{C}_0^{\infty}(X) \longmapsto$ 22 C, defined by

$$u(\phi) = D^{\alpha}\phi(0)$$
 for $\phi \in \mathscr{C}_0^{\infty}(X)$,

is a distribution on $\mathscr{C}_0^{\infty}(X)$.

Exercise 2.2 Denote by δ_a or $\delta(x-a)$, $a \in \mathbb{C}^n$, Dirac's "delta" function at the 26 point a:

$$\delta_a(\phi) = \phi(a)$$
 for $\phi \in \mathscr{C}_0^{\infty}(X)$.

Prove that δ_a is a distribution on $\mathscr{C}_0^{\infty}(X)$.

Exercise 2.3 Prove that the map $1: \mathscr{C}_0^{\infty}(X) \longmapsto C$, defined by

$$1(\phi) = \int_{X} \phi(x) dx \quad \text{for} \quad \phi \in \mathscr{C}_{0}^{\infty}(X),$$

is a distribution on $\mathscr{C}_0^{\infty}(X)$.

Exercise 2.4 For $u \in L^p_{loc}(X)$, $p \ge 1$, we define $u : \mathscr{C}_0^{\infty}(X) \longmapsto \mathbb{C}$ by

$$u(\phi) = \int_X u(x)\phi(x)dx.$$
 34

Prove that u is a distribution on $\mathscr{C}_0^{\infty}(X)$.

Exercise 2.5 Let $P^{\frac{1}{x}}: \mathscr{C}_0^{\infty}(X) \longmapsto \mathbb{C}$ be the map defined by

$$P\frac{1}{x}(\phi) = P.V. \int_{X} \frac{\phi(x) - \phi(0)}{x} dx \quad \text{for} \quad \phi \in \mathscr{C}_{0}^{\infty}(X).$$
 37

Prove that $P^{\frac{1}{x}} \in \mathcal{D}'(X)$.

Definition 2.2 The distributions $u, v \in \mathcal{D}'(X)$ are said to be equal if

$$u(\phi) = v(\phi) \tag{40}$$

for any $\phi \in \mathscr{C}_0^{\infty}(X)$.

Definition 2.3 The linear combination $\lambda u + \mu v$ of the distributions $u, v \in \mathcal{D}'(X)$ 42 is the functional acting by the rule

$$(\lambda u + \mu v)(\phi) = \lambda u(\phi) + \mu v(\phi), \qquad \phi \in \mathscr{C}_0^{\infty}(X).$$

This makes the set $\mathcal{D}'(X)$ a vector space.

2.1 Definition 29

Definition 2.4 Let $u \in \mathcal{D}'(X)$. We define a distribution $\overline{u} \in \mathcal{D}'(X)$, called the 46 complex conjugate of u, by

$$\overline{u}(\phi) = \overline{u(\overline{\phi})}, \qquad \phi \in \mathscr{C}_0^{\infty}(X).$$

The distributions 49

$$Re(u) = \frac{u + \overline{u}}{2}, \qquad Im(u) = \frac{u - \overline{u}}{2i}$$

51

53

55

58

63

65

are respectively called the real and imaginary parts of u. Equivalently,

$$u = \operatorname{Re}(u) + i\operatorname{Im}(u), \quad \overline{u} = \operatorname{Re}(u) - i\operatorname{Im}(u).$$
 52

If Im(u) = 0, u is said to be a real distribution.

Exercise 2.6 Prove that the delta function is a real distribution.

Here are elementary properties of distributions. If $u_1, u_2 \in \mathcal{D}'(X)$, then

$$1. \ u_1 \pm u_2 \in \mathscr{D}'(X),$$

2.
$$\alpha u_1 \in \mathcal{D}'(X)$$
 for $\forall \alpha \in \mathbb{C}$.

These properties follow from the definition, so their proof is omitted.

For $u \in \mathscr{D}'(X)$ and $a \in \mathbb{C}^n$, $|a| \neq 0$, $b \in \mathbb{C}$, $b \neq 0$, we define following 59 distributions

1.
$$u(\phi)(x+a) = u(\phi(x-a))(x) \quad \forall \phi \in \mathscr{C}_0^{\infty}(X),$$

2.
$$u(\phi)(bx) = \frac{1}{|b|^n} u\left(\phi\left(\frac{x}{b}\right)\right)(x) \quad \forall \phi \in \mathscr{C}_0^{\infty}(X).$$

Example 2.2 For $\phi \in \mathscr{C}_0^{\infty}(\mathbb{R}^1)$ we have

$$\delta(\phi)(x+1-2i) = \delta(\phi(x-1+2i))(x) = \phi(-1+2i),$$

$$\delta(\phi)(2ix) = \frac{1}{2}\delta\left(\phi\left(\frac{x}{2i}\right)\right)(x) = \frac{1}{2}\phi(0).$$
64

Exercise 2.7 Compute

$$\delta(\phi)(2x+3i) \tag{66}$$

for
$$\phi \in \mathscr{C}_0^{\infty}(\mathbb{R}^1)$$
.

Answer
$$\frac{1}{2}\phi\left(-\frac{3i}{2}\right)$$
.

75

79

85

87

If u is a distribution on X, then for every compact subset K of X there exist constants 69 C and k so that the inequality 70

$$|u(\phi)| \le C \sum_{|\alpha| \le k} \sup_{K} \left| D^{\alpha} \phi(x) \right| \tag{2.1}$$

holds for every $\phi \in \mathscr{C}_0^{\infty}(K)$. Actually, we suppose there exists a compact set K in 71 X so that

$$|u(\phi_n)| > n \sum_{\alpha \in \mathbb{N}^n \cup \{0\}} \sup_K \left| D^{\alpha} \phi_n(x) \right| \tag{2.2}$$

holds for $\phi_n \in \mathscr{C}_0^{\infty}(K)$. We set

$$\psi_n(x) = \frac{\phi_n(x)}{n \sum_{\alpha \in \mathbb{N}^n \cup \{0\}} \sup_K \left| D^{\alpha} \phi_n(x) \right|}.$$

From (2.2) we obtain

$$|u(\psi_n)| \ge 1. \tag{2.3}$$

By the definition of $\psi_n(x)$ it follows that $\psi_n \longrightarrow_{n \longrightarrow \infty} 0$ in $\mathscr{C}_0^{\infty}(X)$. Since u: 76 $\mathscr{C}_0^{\infty}(X) \longmapsto C$ is continuous, we have

$$u(\psi_n) \longrightarrow_{n \longrightarrow \infty} 0,$$
 78

which contradicts (2.3).

If $u: \mathscr{C}_0^\infty(X) \longmapsto C$ is a linear map such that for every compact set K in X there 80 exist constants C>0 and $k\in\mathbb{N}\cup\{0\}$ for which (2.1) holds, then u is a distribution 81 on X. To show this we will prove that $u: \mathscr{C}_0^\infty(X) \longmapsto C$ is continuous at 0. Let 82 $\{\phi_n\}_{n=1}^\infty$ be a sequence in $\mathscr{C}_0^\infty(X)$ with $\phi_n \longrightarrow_{n\longrightarrow\infty} 0$ in $\mathscr{C}_0^\infty(X)$. Then

$$\sup_{K} \left| D^{\alpha} \phi_{n}(x) \right| \longrightarrow_{n \longrightarrow \infty} 0$$

for every $|\alpha| \le k$. Hence with (2.1) we conclude

$$u(\phi_n) \longrightarrow_{n \longrightarrow 0} 0.$$
 86

Exercise 2.8 The function H(x), $x \in \mathbb{R}^1$, defined by

$$H(x) = \begin{cases} 1 & \text{for } x \ge 0, \\ 0 & \text{for } x < 0 \end{cases}$$

91

92

99

100

104

is called Heaviside function. We define

$$H(\phi) = \int_{\mathbb{R}^1} H(x)\phi(x)dx,$$
 90

 $\phi \in \mathscr{C}_0^{\infty}(\mathbb{R}^1)$. Using inequality (2.1) prove that $H \in \mathscr{D}'(\mathbb{R}^1)$.

2.2 Order of a Distribution

Definition 2.5 If inequality (2.1) holds for some integer k independent of the 93 compact set $K \subset X$, the distribution u is said to be of finite order. The smallest 94 such k is called the order of the distribution u.

The space of distributions on X of finite order is denoted by $D'_F(X)$, and the space of distributions of order $\leq k$ is denoted by $D'^k(X)$. Then

$$D'_F(X) = \bigcup_k D'^k(X).$$
 98

Example 2.3 Dirac's δ function is a distribution of order 0.

Exercise 2.9 Prove that $P_{\bar{x}}^{1}$ has order 1 on \mathbb{R}^{1} .

Exercise 2.10 Prove that $P^{\frac{1}{x}}$ is of order 0 on $\mathbb{R}^1 \setminus \{0\}$.

Let 102

$$\omega_{\epsilon}(a(x)) = \begin{cases} C_{\epsilon} e^{-\frac{\epsilon^2}{\epsilon^2 - |a(x)|^2}} & \text{when } |a(x)| \le \epsilon, \\ 0 & \text{when } |a(x)| > \epsilon \end{cases}$$

for $a(x) \in \mathcal{C}^1(X)$ and C_{ϵ} a constant. It is easy to see that

$$\delta(a(x)) = \lim_{\epsilon \to 0} \omega_{\epsilon}(a(x)).$$
 105

If $a(x) \in \mathcal{C}^1(\mathbb{R}^1)$ has isolated simple zeros x_1, x_2, \ldots , then

$$\delta(a(x)) = \sum_{k} \frac{\delta(x - x_k)}{|a'(x_k)|}.$$

It is enough to prove the assertion on a neighbourhood of the simple zero x_k . Since x_k is an isolated simple zero of a(x), there exists $x_k > 0$ such that $a(x) \neq 0$ for every

113

119

121

$$x \in (x_k - \epsilon_k, x_k + \epsilon_k), x \neq x_k, a(x_k) = 0. \text{ As}$$

$$\left(\delta(a(x)), \phi(x)\right) = \int_{x_k - \epsilon_k}^{x_k + \epsilon_k} \delta(a(x))\phi(x)dx =$$

$$= \lim_{\epsilon \to 0} \int_{x_k - \epsilon_k}^{x_k + \epsilon_k} \omega_{\epsilon}(a(x))\phi(x)dx \qquad (a(x) = y)$$

$$= \lim_{\epsilon \to 0} \int_{a(x_k - \epsilon_k)}^{a(x_k + \epsilon_k)} \omega_{\epsilon}(y) \frac{\phi(a^{-1}(y))}{|a'(a^{-1}(y))|} dy$$

$$= \lim_{\epsilon \to 0} \int_{a(x_k - \epsilon_k)}^{a(x_k + \epsilon_k)} \omega_{\epsilon}(y) \frac{\phi(a^{-1}(a(x)))}{|a'(a^{-1}(a(x)))|} dy$$

$$= \frac{\phi(x_k)}{|a'(x_k)|} = \left(\frac{\delta(x - x_k)}{|a'(x_k)|}, \phi(x)\right)$$

for $\phi \in \mathscr{C}_0^{\infty}(x_k - \epsilon_k, x_k + \epsilon_k)$, it follows that

$$\delta(a(x)) = \frac{\delta(x - x_k)}{|a'(x_k)|}$$

on a neighbourhood of the point x_k .

Example 2.4 Let us consider $\delta(\cos x)$. Here $a(x) = \cos x$ and its isolated zeros are 114 $x_k = \frac{(2k+1)\pi}{2}, k \in \mathbb{Z}$. We notice that

$$|a'(x_k)| = 1$$
 for $k \in \mathbb{Z}$,

SO 117

$$\delta(\cos x) = \sum_{k} \delta\left(x - \frac{(2k+1)\pi}{2}\right).$$

Exercise 2.11 Compute $\delta(x^4 - 1)$.

Answer $\frac{\delta(x-1)+\delta(x+1)}{4}$.

2.3 Sequences

Definition 2.6 The sequence $\left\{u_n\right\}_{n=1}^{\infty}$ of elements of D'(X) tends to the distribution 122 u defined on X if

$$\lim_{n \to \infty} u_n(\phi) = u(\phi) \quad \forall \phi \in \mathscr{C}_0^{\infty}(X).$$

2.3 Sequences 33

If so we write 125

$$\lim_{n \to \infty} u_n = u \quad \text{or} \quad u_n \longrightarrow_{n \to \infty} u.$$

If $\{u_n\}_{n=1}^{\infty}$ and $\{v_n\}_{n=1}^{\infty}$ are two sequences of distributions on X that converge to the distributions u and v respectively, then $\{\alpha u_n + \beta v_n\}_{n=1}^{\infty}$ converges to $\alpha u + \beta v$ on X. 128 Here $\alpha, \beta \in \mathbb{C}$. Indeed, let $\phi \in \mathscr{C}_0^{\infty}(X)$ be arbitrary. Then 129

$$u_n(\phi) \longrightarrow_{n \longrightarrow \infty} u(\phi), \qquad v_n(\phi) \longrightarrow_{n \longrightarrow \infty} v(\phi).$$
 130

Hence, 131

$$(\alpha u_n + \beta v_n)(\phi) = (\alpha u_n)(\phi) + (\beta v_n)(\phi)$$

$$= \alpha u_n(\phi) + \beta v_n(\phi) \longrightarrow_{n \longrightarrow \infty} \alpha u(\phi) + \beta v(\phi).$$
132

Example 2.5 Let $x \in \mathbb{R}^1$ and

$$f_{\epsilon}(x) = \begin{cases} \frac{1}{2\epsilon} & \text{for } |x| \le \epsilon, \\ 0 & \text{for } |x| > \epsilon. \end{cases}$$
 134

We will compute

$$\lim_{x \to +0} f_{\epsilon}(x) \tag{136}$$

133

135

137

139

in $\mathcal{D}'(\mathbb{R}^1)$. Let $\phi \in \mathscr{C}_0^{\infty}(\mathbb{R}^1)$ be arbitrary. Then

$$\lim_{\epsilon \to +0} f_{\epsilon}(\phi)(x) = \lim_{\epsilon \to +0} \int_{|x| \le \epsilon} \frac{1}{2\epsilon} \phi(x) dx \qquad (x = \epsilon y)$$

$$= \frac{1}{2} \lim_{\epsilon \to +0} \int_{|y| \le 1} \phi(\epsilon y) dy$$

$$= \phi(0) = \delta(\phi)(x).$$

$$= \phi(0) = \delta(\phi)(x).$$

Consequently

$$\lim_{\epsilon \to +0} f_{\epsilon}(x) = \delta(x)$$
 140

in
$$\mathscr{D}'(\mathsf{R}^1)$$
.

163

165

Exercise 2.12 Find 142

$$\lim_{\epsilon \to +0} \frac{2\epsilon}{\pi (x^2 + \epsilon^2)}.$$

Answer $2\delta(x)$.

2.4 Support

Definition 2.7 A distribution $u \in \mathscr{D}'(X)$ is said to vanish on an open set $X_1 \subset X$ 146 if its restriction to X_1 is the zero functional in $\mathscr{D}'(X_1)$, i.e., $u(\phi) = 0$ for all $\phi \in \mathcal{C}_0^{\infty}(X_1)$. This is written u(x) = 0, $x \in X_1$.

Suppose a distribution $u \in \mathscr{D}'(X)$ vanishes on X. Then it vanishes on the 149 neighbourhood of every point in X. Conversely, let $u \in \mathscr{D}'(X)$ vanish on a 150 neighbourhood $U(x) \subset X$ of every point x in X. Consider the cover $\{U(x), x \in X\}$ 151 of X. We will construct a locally finite cover $\{X_k\}$ such that X_k is contained in some 152 U(x). Let

$$X_1^1 \subset\subset X_2^1 \subset\subset \ldots, \qquad \bigcup_{k\geq 1} X_k^1 = X.$$
 154

By the Heine-Borel lemma, the compact set \overline{X}_1^l is covered by a finite number of 155 neighbourhoods U(x), say $U(x_1)$, $U(x_2)$, ..., $U(x_{N_1})$. Similarly, the compact set 156 $\overline{X}_2^l \setminus X_1^l$ is covered by a finite number of neighbourhoods $U(x_{N_1+1})$, ..., $U(x_{N_1+N_2})$, 157 and so on. We set

$$X_k = U(x_k) \cap X_1^1, \qquad k = 1, 2, \dots, N_1,$$

$$X_k = U(x_k) \cap (\overline{X}_2^1 \setminus X_1^1), \qquad k = N_1 + 1, \dots, N_1 + N_2,$$
 159

and so forth. In this way we obtain the required cover $\{X_k\}$. Let $\{e_k\}$ be the partition of unity corresponding to the cover $\{X_k\}$ of X. Then

$$\operatorname{supp}(\phi e_k) = 0 \tag{162}$$

for every $\phi \in \mathscr{C}_0^{\infty}(X)$. This implies

$$u(\phi) = u\left(\sum_{k \ge 1} \phi e_k\right) = \sum_{k \ge 1} u(\phi e_k) = 0.$$
 164

Consequently the distribution u vanishes on the whole X.

2.4 Support 35

The union of all neighbourhoods where a distribution $u \in \mathcal{D}'(X)$ vanishes forms an 166 open set X_u , called the zero set of the distribution u. Therefore u = 0 on X_u , and X_u is the largest open set where u vanishes.

Definition 2.8 The support of a distribution $u \in \mathcal{D}'(X)$ is the complement suppu = X $X \setminus X_u$ of X_u in X. 170

168

171

174

175

Note that supp u is a closed subset in X.

Definition 2.9 The distribution $u \in \mathcal{D}'(X)$ is said to have compact support if 172 $supp u \subset\subset X$.

Example 2.6 supp $H = [0, \infty)$.

Exercise 2.13 Find supp1.

Let A be a closed set in X. With $\mathcal{D}'(X,A)$ we denote the subset of distributions 176 on X whose supports are contained in A, endowed with the following notion of 177 convergence: $u_k \longrightarrow 0$ in $\mathcal{D}'(X, A)$ as $k \longrightarrow \infty$, if $u_k \longrightarrow 0$ in $\mathcal{D}'(X)$ as $k \longrightarrow \infty$ and supp $u_k \subset A$ for every $k = 1, 2, \dots$ For simplicity $\mathcal{D}'(A)$ will denote $\mathcal{D}'(\mathbb{R}^n, A)$. 179 Now suppose that for every point $y \in X$ there is a neighbourhood $U(y) \subset X$ 180 on which a given distribution u_y is defined. Assume further that $u_{y_1}(x) = u_{y_2}(x)$ if 181 $x \in U(y_1) \cap U(y_2) \neq \emptyset$. Then there exists a unique distribution $u \in \mathcal{D}'(X)$ so that $u = u_y$ in U(y) for every $y \in X$. To see this we construct, starting as previously 183 with the cover $\{U(y), y \in X\}$, the locally finite cover $\{X_k\}, X_k \subset U(y_k)$, and the 184 corresponding partition of unity $\{e_k\}$. We also set 185

$$u(\phi) = \sum_{k>1} u_{y_k}(\phi e_k), \quad \phi \in \mathscr{C}_0^{\infty}(X).$$
 (2.4)

The number of summands in the right-hand side of (2.4) is finite and does not depend 186 on $\phi \in \mathscr{C}_0^{\infty}(X')$, for any $X' \subset \subset X$. By definition (2.4) u is linear and continuous on $\mathscr{C}_0^{\infty}(X)$, i.e., $u \in \mathscr{D}'(X)$. Furthermore if $\phi \in \mathscr{C}_0^{\infty}(U(y))$, then $\phi e_k \in \mathscr{C}_0^{\infty}(U(y_k))$. From (2.4), 189

$$u(\phi) = u_y \left(\phi \sum_{k>1} e_k \right) = u_y(\phi), \tag{190}$$

i.e., $u = u_v$ on U(y). If we suppose there are two distributions u and \tilde{u} such that $u = u_y$ and $\tilde{u} = u_y$ on U(y) for every $y \in X$, then $u - \tilde{u} = 0$ on U(y) for every $y \in X$. 192 Therefore $u - \tilde{u} = 0$ in X, showing that the distribution u is unique. The set of distributions with compact support in X will be denoted by $\mathcal{E}'(X)$, and 194 we set $\mathcal{E}'^k(X) = \mathcal{E}'(X) \cap \mathcal{D}'^k(X)$.

200

203

2.5 Singular Support

Definition 2.10 The set of points of X not admitting neighbourhoods where $u \in {}^{197}$ $\mathscr{D}'(X)$ coincides with a \mathscr{C}^{∞} function is called the singular support of u, written 198 singsuppu.

Hence *u* coincides with a \mathscr{C}^{∞} function on *X*\singsupp*u*.

Example 2.7 Let $f \in \mathcal{C}^{\infty}(X)$. We define the functional u in the following manner: 201

$$u(\phi) = \int_X f(x)\phi(x)dx, \quad \phi \in \mathscr{C}_0^{\infty}(X).$$
 202

For $\phi_1, \phi_2 \in \mathscr{C}_0^{\infty}(X)$ and $\alpha_1, \alpha_2 \in \mathbb{C}$, we have

$$u(\alpha_1\phi_1 + \alpha_2\phi_2) = \int_X f(x)(\alpha_1\phi_1(x) + \alpha_2\phi_2(x))dx$$

$$= \int_X (\alpha_1f(x)\phi_1(x) + \alpha_2f(x)\phi_2(x))dx$$

$$= \alpha_1 \int_X f(x)\phi_1(x)dx + \alpha_2 \int_X f(x)\phi_2(x)dx$$

$$= \alpha_1 u(\phi_1) + \alpha_2 u(\phi_2).$$
204

Therefore u is a linear functional on $\mathscr{C}_0^{\infty}(X)$. For $\phi \in \mathscr{C}_0^{\infty}(X)$, moreover, there 205 exists a compact subset K of X such that $\operatorname{supp} \phi \subset K$ and 206

$$|u(\phi)| = \left| \int_X f(x)\phi(x)dx \right| = \left| \int_K f(x)\phi(x)dx \right|$$

$$\leq \int_K |f(x)||\phi(x)|dx \leq \int_K |f(x)|dx \sup_{x \in K} |\phi(x)| < \infty.$$

Consequently the linear functional $u: \mathscr{C}_0^\infty(X) \longrightarrow \mathbb{C}$ is well defined. Let $\{\phi_n\}_{n=1}^\infty$ 208 be a sequence in $\mathscr{C}_0^\infty(X)$ such that $\phi_n \longrightarrow \phi$, $n \longrightarrow \infty$, $\phi \in \mathscr{C}_0^\infty(X)$, in $\mathscr{C}_0^\infty(X)$. 209 Then

$$u(\phi_n) = \int_X f(x)\phi_n(x)dx \longrightarrow_{n \longrightarrow \infty} u(\phi) = \int_X f(x)\phi(x)dx.$$
 211

Therefore $u: \mathscr{C}_0^{\infty}(X) \longmapsto \mathbb{C}$ is a linear continuous functional, i.e., $u \in \mathscr{D}'(X)$. Note 212 that $u \equiv f \in \mathscr{C}^{\infty}(X)$ and therefore singsupp $u = \emptyset$.

Exercise 2.14 Find singsupp
$$P^{\frac{1}{x}}$$
 for $x \in \mathbb{R}^1 \setminus \{0\}$.

Exercise 2.15 Determine singsupp
$$P^{\frac{1}{x}}$$
 for $x \in \mathbb{R}^1$.

Exercise 2.16 Compute singsupp
$$P_{\frac{1}{x^2}}$$
 for $x \in \mathbb{R}^1 \setminus \{0\}$.

221

222

224

229

233

Exercise 2.17 Find singsupp $P_{x^2}^{\frac{1}{x^2}}$ for $x \in \mathbb{R}^1$.

Definition 2.11 The distribution $u \in \mathcal{D}'(X)$ is called regular if there exists $f \in \mathcal{D}'(X)$ such that

$$u(\phi) = \int_X f(x)\phi(x)dx$$
 for $\forall \phi \in \mathscr{C}_0^{\infty}(X)$.

In this case we will write $u = u_f$. If no such f exists, u is called singular.

Example 2.8 Let $f = \frac{1}{1+x^2}, x \in \mathbb{R}^1$. The map $u : \mathscr{C}_0^{\infty}(X) \longmapsto \mathbb{C}$,

$$u(\phi) = \int_{\mathbb{R}^1} f(x)\phi(x)dx, \quad \phi \in \mathscr{C}_0^{\infty}(\mathbb{R}^1),$$
 223

is a regular distribution.

Example 2.9 Consider $\delta(x)$, $x \in \mathbb{R}^1$, and suppose that δ is a regular distribution. 225 Then there exists $f \in L^1_{loc}(\mathbb{R}^1)$ such that $u_f = \delta$. Choose $\rho \in \mathscr{C}^{\infty}_0(\mathbb{R}^1)$ for which 226 $\mathrm{supp}(\rho) \subset \overline{B_1(0)}$, $\rho(0) = 1$. Define the sequence $\{\rho_n\}_{n=1}^{\infty}$ by 227

$$\rho_n(x) = \rho(nx). \tag{228}$$

Then supp $(\rho_n) \subset \overline{B_{\frac{1}{n}}(0)}$ and $\rho_n(0) = 1$. In addition,

$$\delta(\rho_n) = \rho_n(0) = 1$$

and 231

$$1 = |\delta(\rho_n)| = \left| \int_{\overline{B_{\frac{1}{n}}(0)}} f(x)\rho(nx)dx \right| \le \int_{\overline{B_{\frac{1}{n}}(0)}} |f(x)||\rho(nx)|dx$$

$$\le \sup_{x \in \mathbb{R}^1} |\rho(x)| \int_{\overline{B_{\frac{1}{n}}(0)}} |f(x)|dx \longrightarrow_{n \longrightarrow \infty} 0,$$

which is a contradiction. Therefore $\delta \in \mathcal{D}'(\mathbb{R}^1)$ is a singular distribution.

Exercise 2.18 Let $u_1, u_2 \in \mathcal{D}'(X)$ be regular distributions. Prove that $\alpha_1 u_1 + \alpha_2 u_2$ 234 is a regular distribution for every $\alpha_1, \alpha_2 \in \mathbb{C}$.

Exercise 2.19 Show that singular distributions form a vector subspace of $\mathcal{D}'(X)$ 236 over C.

252

254

255

2.6 Measures 238

Definition 2.12 A measure on a Borel set A is a complex-valued additive function 23

$$\mu(E) = \int_{E} \mu(dx),$$
 240

that is finite $(|\mu(E)| < \infty)$ on any bounded Borel subset E of A.

The measure $\mu(E)$ of A can be represented in a unique way in terms of four 242 nonnegative measures $\mu_i(E) \ge 0, i = 1, 2, 3, 4,$ on A in the following way 243

$$\mu = (\mu_1 - \mu_2) + i(\mu_3 - \mu_4)$$
 244

and 245

$$\int_{E} \mu(dx) = \int_{E} \mu_{1}(dx) - \int_{E} \mu_{2}(dx) + i \int_{E} \mu_{3}(dx) - i \int_{E} \mu_{4}(dx).$$
 246

The measure $\mu(E)$ on the open set X determines a distribution μ on X as follows

$$\mu(\phi) = \int_{X} \phi(x)\mu(dx), \quad \phi \in \mathscr{C}_{0}^{\infty}(X),$$
 248

where \int is the Lebesgue-Stieltjes integral. From the integral's properties it follows that $\mu \in \mathscr{D}'(X)$. Every measure μ of X for which $\mu(dx) = f(x)dx$, $f \in L^1_{loc}(X)$, 250 defines a regular distribution.

Let $u \in \mathcal{D}'(X)$ define a measure μ of X. Then

$$|u(\phi)| = \left| \int_{X_1} \phi(x) \mu(dx) \right| \le \int_{X_1} \mu(dx) \sup_{x \in X_1} |\phi(x)|$$
 253

for every $X_1 \subset\subset X$ and every $\phi \in \mathscr{C}_0^{\infty}(X_1)$. Hence $u \in \mathscr{D}^{\prime 0}(X)$. Now we suppose $u \in \mathscr{D}^{\prime 0}(X)$, i.e., for every $X_1 \subset\subset X$

$$|u(\phi)| \le C(X_1) \sup_{x \in X_1} |\phi(x)|$$
 256

where $C(X_1)$ is a constant which depends on X_1 . Let $\{X_k\}_{k=1}^{\infty}$ be a family of open 257 sets such that $X_k \subset\subset X_{k+1}$, $\bigcup_k X_k = X$. Since $\mathscr{C}_0^{\infty}(X_k)$ is dense in $\mathscr{C}_0(\overline{X_k})$, the 258 Riesz-Radon theorem implies that there exists a measure μ_k of $\overline{X_k}$ such that

$$u(\phi) = \int_{X_k} \phi(x) \mu_k(dx), \quad \phi \in \mathscr{C}_0(\overline{X_k}).$$
 260

268

269

Therefore the measures μ_k and μ_{k+1} coincide on X_k . From this we conclude that 261 there is a measure μ on X which coincides with μ_k on X_k and with the distribution 262 u on X. 263

Definition 2.13 The distribution $u \in \mathcal{D}'(X)$ is called nonnegative on X if $u(\phi) > 0$ 264 for every $\phi \in \mathscr{C}_0^{\infty}(X)$, $\phi(x) \ge 0$, $x \in X$. 265

Example 2.10 The distribution 1 is nonnegative.

Exercise 2.20 Prove that the distribution *H* is nonnegative. 267

Exercise 2.21 Prove that the distribution 1 is a measure.

Multiplying Distributions by \mathscr{C}^{∞} Functions

Definition 2.14 The product of a distribution $u \in \mathcal{D}'(X)$ by a function $b \in \mathcal{C}^{\infty}(X)$ 270 is defined by 271

$$bu(\phi) = u(b\phi)$$
 for $\phi \in \mathscr{C}_0^{\infty}(X)$.

We have 273

$$bu(\alpha_1\phi_1 + \alpha_2\phi_2) = u(b(\alpha_1\phi_1 + \alpha_2\phi_2))$$

$$= u(\alpha_1b\phi_1 + \alpha_2b\phi_2) = \alpha_1u(b\phi_1) + \alpha_2u(b\phi_2)$$

$$= \alpha_1bu(\phi_1) + \alpha_2bu(\phi_2)$$
274

for $\alpha_1, \alpha_2 \in \mathbb{C}$, $\phi_1, \phi_2 \in \mathscr{C}_0^{\infty}(X)$, i.e., bu is a linear map on $\mathscr{C}_0^{\infty}(X)$. Let $\{\phi_n\}_{n=1}^{\infty}$ be a sequence in $\mathscr{C}_0^{\infty}(X)$ such that $\phi_n \longrightarrow_{n \longrightarrow \infty} \phi$, $\phi \in \mathscr{C}_0^{\infty}(X)$, in $\mathscr{C}_0^{\infty}(X)$. Then 276 $b\phi_n \longrightarrow_{n \longrightarrow \infty} b\phi$ in $\mathscr{C}_0^{\infty}(X)$. Since $u \in \mathscr{D}'(X)$, we have 277

$$u(b\phi_n) \longrightarrow_{n \longrightarrow \infty} u(b\phi),$$
 278

279

$$bu(\phi_n) \longrightarrow_{n \longrightarrow \infty} bu(\phi).$$
 280

Consequently bu is a continuous functional on $\mathscr{C}_0^{\infty}(X)$ and $bu \in \mathscr{D}'(X)$. 281

Example 2.11 Take $x^2\delta$. Then 282

$$x^{2}\delta(\phi) = \delta(x^{2}\phi) = 0^{2}\phi(0) = 0$$
 283

for $\phi \in \mathscr{C}_0^{\infty}(X)$. Therefore $x^2 \delta = 0$. 284

292

293

Exercise 2.22 Compute
$$(x^2 + 1)\delta$$
.

Answer
$$\delta$$
.

Let
$$\alpha_1, \alpha_2 \in \mathbb{C}$$
, $b_1, b_2 \in \mathscr{C}^{\infty}(X)$ and $u_1, u_2 \in \mathscr{D}'(X)$. Then

1.
$$(\alpha_1 b_1(x) + \alpha_2 b_2(x))u_1 = \alpha_1 b_1(x)u_1 + \alpha_2 b_2(x)u_1$$
, 288

2.
$$b_1(x)(\alpha_1u_1 + \alpha_2u_2) = \alpha_1b_1(x)u_1 + \alpha_2b_1(x)u_2$$
.

Let us prove that this multiplication is neither associative nor commutative. Suppose 290 the contrary, so 291

$$x\delta(\phi) = \delta(x\phi) = 0\phi(0) = 0(\phi),$$

$$xP\frac{1}{x}(\phi) = P\frac{1}{x}(x\phi) = P.V. \int_{\mathbb{R}^1} \phi(x)dx = 1(\phi)$$

for $\phi \in \mathscr{C}_0^{\infty}(\mathbb{R}^1)$. Hence

$$0 = 0P_{\overline{x}}^{1} = (x\delta(x))P_{\overline{x}}^{1} = (\delta(x)x)P_{\overline{x}}^{1} = \delta(x)(xP_{\overline{x}}^{1}) = \delta(x)1 = \delta(x),$$
 294

a contradiction.

2.8 Exercises

Problem 2.1 Let α be a multi-index and set $u(\phi) = D^{\alpha}\phi(x_0)$, $\phi \in \mathscr{C}_0^{\infty}(X)$ for a 297 given $x_0 \in X$. Prove that u is a distribution of order $|\alpha|$.

Proof Let
$$\phi_1, \phi_2 \in \mathscr{C}_0^{\infty}(X)$$
 and $a, b \in \mathbb{C}$. Then

$$u(a\phi_1 + b\phi_2) = D^{\alpha}(a\phi_1 + b\phi_2)(x_0) = aD^{\alpha}\phi_1(x_0) + bD^{\alpha}\phi_2(x_0) = au(\phi_1) + bu(\phi_2).$$
 300

Consequently u is a linear map on $\mathscr{C}_0^{\infty}(X)$. Let K be a compact subset of X and 001 $\phi \in \mathscr{C}_0^{\infty}(K)$. Since supp $\phi \subset K$ we have to consider two cases: $x_0 \in K$ and $x_0 \notin K$. 302 If $x_0 \in K$,

$$|u(\phi)| \le C \sum_{|\beta| \le |\alpha|} \sup_{K} \left| D^{\beta} u(\phi)(x) \right| \tag{2.5}$$

for $C \ge 1$. If $x_0 \notin K$, then $u(\phi) = 0$. Therefore inequality (2.5) holds, and then $u \in \mathcal{D}'(X)$. Using the definition of u and (2.5) we conclude that u has order $|\alpha|$.

Problem 2.2 Take $f \in \mathcal{C}(\mathbb{R}^n)$ and a multi-index α . Let $D^{\alpha}f$ be defined on $\mathcal{C}_0^{\infty}(\mathbb{R}^n)$ 306 as follows:

$$D^{\alpha}f(\phi) = (-1)^{|\alpha|} \int_{\mathbb{R}^n} f(x)D^{\alpha}\phi(x)dx.$$
 308

309

311

313

314

316

319

323

Prove that $D^{\alpha}f$ is a distribution of order $|\alpha|$.

Problem 2.3 Show
$$\delta_a \in D'^0(\mathbb{R}^n)$$
.

Problem 2.4 Let $P_{x^2}^{\frac{1}{2}}$ be defined on $\mathscr{C}_0^{\infty}(\mathbb{R}^1)$ by

$$P\frac{1}{x^2}(\phi) = P.V. \int_{-\infty}^{\infty} \frac{\phi(x) - \phi(0)}{x^2} dx.$$
 312

Prove that $P_{x^2}^1$ is a distribution.

Problem 2.5 Define *u* by

$$u(\phi) = \int_{|x| \le 1} \phi(x) dx \quad \forall \phi \in \mathscr{C}_0^{\infty}(\mathbb{R}^n).$$
 315

Prove that $u \in D'(\mathbb{R}^n)$.

Problem 2.6 Define

$$u(\phi) = \int_{|x| < 1} D^{\alpha} \phi(x) dx \quad \forall \phi \in \mathscr{C}_0^{\infty}(\mathbb{R}^n),$$
 318

where α is a multi-index. Show that $u \in D'(\mathbb{R}^n)$.

Problem 2.7 Prove that $H \in D'^{0}(\mathbb{R}^{1})$.

Problem 2.8 Let

$$u(\phi) = \sum_{q=0}^{\infty} \phi^{(q)} \left(\frac{1}{q}\right) \quad \forall \phi \in \mathscr{C}_0^{\infty}(0,1).$$
 322

Prove that *u* belongs to D'(0, 1) but not to $D'_{E}(0, 1)$.

Problem 2.9 Let $P(x, D) = \sum_{|\alpha| \leq q} a_{\alpha}(x) D^{\alpha}$, where $q \in \mathbb{N} \cup \{0\}$ is fixed, and 324 $a \in \mathcal{C}(\mathbb{R}^n)$. Let u be defined on $\mathcal{C}_0^{\infty}(\mathbb{R}^n)$ by 325

$$u(\phi) = \int_{\mathbb{R}^n} u(x)P(x,D)\phi(x)dx.$$
 326

Prove that $u \in D'^q(\mathbb{R}^n)$.

334

336

338

343

345

Problem 2.10 Let $u \in D'(X)$ and suppose $u(\phi) \ge 0$ for every nonnegative function $\phi \in \mathscr{C}_0^{\infty}(X)$. Prove that u is a measure, i.e., a distribution of order 0.

Proof Let $K \subset X$ be a compact set. Then there exists a function $\chi \in \mathscr{C}_0^{\infty}(X)$ such 330 that $0 \le \chi(x) \le 1$ on X and $\chi = 1$ on K. Then

$$\chi \sup_{K} |\phi| \pm \phi \ge 0 \tag{332}$$

for every $\phi \in \mathscr{C}_0^{\infty}(K)$, and therefore

$$u(\chi \sup_{K} |\phi| \pm \phi) \ge 0. \tag{2.6}$$

On the other hand,

$$u(\chi \sup_{K} |\phi| \pm \phi) = \sup_{K} |\phi| u(\chi) \pm u(\phi).$$
 335

Consequently, using (2.6),

$$\pm u(\phi) \le u(\chi) \sup_{K} |\phi|.$$
 337

Therefore $u \in D'^0(X)$, i.e., u is a measure.

Problem 2.11 Take $\phi(x, y) \in \mathscr{C}^{\infty}(X \times Y)$, where Y is an open set in \mathbb{R}^m , $m \ge 1$. 339 Suppose there is a compact set $K \subset X$ such that $\phi(x, y) = 0$ for every $x \notin K$. Prove 340 that the map

$$y \longmapsto u(\phi(\cdot, y))$$
 342

is a \mathscr{C}^{∞} function for every $u \in D'(X)$ and

$$D_{\nu}^{\alpha}u(\phi(\cdot,y)) = u(D_{\nu}^{\alpha}\phi(\cdot,y))$$
344

for every multi-index α .

Proof Since $u \in \mathcal{D}'(X)$ and $\phi \in \mathscr{C}_0^{\infty}(X \times Y)$, we have that $u(\phi(x, y))$ is continuous 346 in the variable y. We will prove 347

$$\frac{\partial}{\partial y_j} u(\phi(x, y)) = u\left(\frac{\partial}{\partial y_j} \phi(x, y)\right) \quad \text{for} \quad x \in K$$

and $j \in \{1, ..., m\}$. For $y \in Y$ given,

$$\phi(x, y+h) = \phi(x, y) + \sum_{j=1}^{m} h_j \frac{\partial \phi}{\partial y_j}(x, y) + o(|h|^2)$$
 350

349

351

353

355

357

for $\phi \in \mathscr{C}_0^{\infty}(K \times Y)$. Let $h = (0, \dots, 0, h_i, 0, \dots, 0)$. Then

$$\frac{\phi(x,y+h) - \phi(x,y)}{h} = \frac{\partial \phi}{\partial y_i}(x,y) + \frac{1}{h}o(h_j^2).$$
 352

Since *u* is linear, we have

$$u\left(\frac{\phi(x,y+h)-\phi(x,y)}{h}\right) = u\left(\frac{\partial\phi}{\partial y_j}(x,y)\right) + \frac{1}{h}u\left(o(h_j^2)\right).$$
 354

From this equality we obtain

$$u\left(\frac{\partial}{\partial y_j}\phi(x,y)\right) = \frac{\partial}{\partial y_j}u(\phi(x,y))$$
 356

as $h \longrightarrow 0$. By induction

$$u\Big(D_y^{\alpha}\phi(x,y)\Big) = D_y^{\alpha}u(\phi(x,y)).$$
 358

Problem 2.12 Prove that a linear map $u: \mathscr{C}_0^{\infty}(X) \longrightarrow \mathbb{C}$ is a distribution if and 359 only if $u(\phi_j) \longrightarrow_{j \longrightarrow \infty} 0$ for every sequence $\{\phi_j\}_{j=1}^{\infty}$ of elements of $\mathscr{C}_0^{\infty}(X)$ with 360 $\phi_j \longrightarrow_{j \longrightarrow \infty} 0$ in $\mathscr{C}_0^{\infty}(X)$.

Proof Let $u \in D'(X)$ and $\left\{\phi_n\right\}_{n=1}^{\infty}$ be a sequence in $\mathscr{C}_0^{\infty}(X)$ tending to 0 in $\mathscr{C}_0^{\infty}(X)$. 362 There is a compact subset K of X such that supp $\phi_n \subset K$ for every natural number 363 n and $D^{\alpha}\phi_n \longrightarrow_{n \longrightarrow \infty} 0$ for every multi-index α . Hence using (2.1) there exist 364 constants C and K for which

$$\left| u(\phi_n) \right| \le C \sum_{|\alpha| < k} \sup_{K} \left| D^{\alpha} \phi_n \right| \longrightarrow_{n \longrightarrow \infty} 0.$$
 366

Now suppose that for every sequence $\{\phi_n\}_{n=1}^{\infty}$ in $\mathscr{C}_0^{\infty}(X)$ tending to 0 in $\mathscr{C}_0^{\infty}(X)$, 367 we have $u(\phi_n) \longrightarrow_{n \longrightarrow \infty} 0$. Let us assume there exists a compact subset K of X 368 such that

$$|u(\phi_n)| > C \sum_{|\alpha| < k} \sup_{K} \left| D^{\alpha} \phi_n \right|$$
 370

375

377

379

388

390

for every constants C > 0 and $k \in \mathbb{N} \cup \{0\}$. When C = n and k = n, we get

$$|u(\phi_n)| > n \sum_{|\alpha| < n} \sup_K \left| D^{\alpha}(\phi_n) \right|.$$
 372

Let 373

$$\psi_n = \frac{\phi_n}{\sum_{|\alpha| \le n} \left| D^{\alpha} \phi_n \right|}.$$
 374

Since *u* is linear on $\mathscr{C}_0^{\infty}(X)$, we obtain

$$\left| u(\psi_n) \right| = \frac{|u(\phi_n)|}{\sum_{|\alpha| \le n} \left| D^{\alpha} \phi_n \right|} > n,$$
 376

which is a contradiction because

$$\psi_i \longrightarrow_{i \longrightarrow \infty} 0$$
 378

in
$$\mathscr{C}_0^{\infty}(X)$$
 and $u(\psi_i) \longrightarrow_{i \to \infty} 0$.

Problem 2.13 Prove that a linear map $u:\mathscr{C}_0^\infty(X)\longmapsto C$ is a distribution if and 380 only if there exist functions $\rho_\alpha\in\mathscr{C}(X)$ such that

$$|u(\phi)| \le \sum_{\alpha} \sup_{K} \left| \rho_{\alpha} D^{\alpha} \phi \right| \quad \forall \phi \in \mathscr{C}_{0}^{\infty}(K),$$
 (2.7)

for every compact set $K \subset X$, and only a finite number of the ρ_{α} vanish identically. 382 Proof

1. Let u be a linear map from $\mathscr{C}_0^{\infty}(X)$ to C and $\rho_{\alpha} \in \mathscr{C}(X)$ be such that inequality 384 (2.7) holds for every $\phi \in \mathscr{C}_0^{\infty}(X)$ and every compact K. Since $\rho_{\alpha} \in \mathscr{C}(X)$, there 385 exists a constant C such that

$$\sup_{\nu} |\rho_{\alpha}| \le C. \tag{387}$$

From this and (2.7) it follows that

$$|u(\phi)| \le C \sum_{\alpha} \sup_{K} \left| D^{\alpha} \phi \right|.$$
 389

As only finitely many ρ_{α} are zero, there is a constant k such that

$$|u(\phi)| \le C \sum_{|\alpha| < k} \sup_{K} \left| D^{\alpha} \phi(x) \right|,$$
 391

i.e.,
$$u \in \mathcal{D}'(X)$$
.

2. Let $u \in D'(X)$ and $\{K_i\}$ be compact subsets of X such that any compact subset is contained in some K_j . Take maps $\chi_j \in \mathscr{C}_0^{\infty}(X)$ with $\chi_j \equiv 1$ on K_j and define 394

$$\psi_j = \chi_j - \chi_{j-1} \quad j > 1,$$

 $\psi_1 = \chi_1.$

Any $\phi \in \mathscr{C}_0^{\infty}(X)$ satisfies

$$\phi = \sum_{i=1}^{\infty} \psi_i \phi. \tag{2.8}$$

396

399

404

Note that only a finite number of summands in (2.8) vanish identically. Moreover, 397

$$\psi_j \neq 0$$
 on $K_j \setminus K_{j-1}$ for $j > 1$, $\psi_1 \neq 0$ on K_1 .

Consequently

$$\operatorname{supp}(\psi_i \phi) \subset \operatorname{supp} \psi_i. \tag{400}$$

As $\psi_i \phi$ has compact support, for every compact K there are constants C and k_i 401 such that 402

$$|u(\psi_j\phi)| \le C \sum_{|\alpha| \le k_j} \sup_K \left| D^{\alpha}(\psi_j\phi) \right|.$$
 403

From this and (2.8) we obtain

$$|u(\phi)| = \left| \sum_{j} u(\psi_{j}\phi) \right| \leq \sum_{j} |u(\psi_{j}\phi)|$$

$$\leq C \sum_{j} \sum_{|\alpha| \leq k_{j}} \sup_{K} \left| D^{\alpha}(\psi_{j}\phi) \right|$$
 405

$$|u(\phi)| = \left| \sum_{j} u(\psi_{j}\phi) \right| \leq \sum_{j} |u(\psi_{j}\phi)|$$

$$\leq C \sum_{j} \sum_{|\alpha| \leq k_{j}} \sup_{K} \left| D^{\alpha}(\psi_{j}\phi) \right|$$

$$\leq C \sum_{j} \sum_{|\alpha| \leq k_{j}} \sum_{\beta \leq \alpha} {\alpha \choose \beta} \sup_{K} \left| D^{\beta}\psi_{j} \right| \sup_{K} \left| D^{\alpha-\beta}\phi \right|.$$

If we set 406

$$\rho_{\beta} = \sum_{j} \sum_{|\alpha| < k_{j}} {\alpha \choose \beta} D^{\beta} \psi_{j} \tag{407}$$

we obtain 408

$$|u(\phi)| \le C \sum_{\beta \le \alpha} \sup_{K} \left| \rho_{\beta} D^{\alpha - \beta} \phi \right|.$$

Problem 2.14 Prove that $u \in D'^k(X)$ can be extended in a unique way to a linear and map on $\mathscr{C}_0^k(X)$ so that inequality (2.1) holds for every $\phi \in \mathscr{C}_0^k(X)$.

Proof Since the space $\mathscr{C}_0^{\infty}(X)$ is everywhere dense in $\mathscr{C}_0^k(X)$, for every $\phi \in \mathscr{C}_0^k(X)$ 412 there exists a sequence $\left\{\phi_n\right\}_{n=1}^{\infty}$ in $\mathscr{C}_0^{\infty}(X)$ for which $\phi_n \longrightarrow_{n \longrightarrow \infty} \phi$ in $\mathscr{C}_0^k(X)$. 413 Hence

$$|u(\phi_n) - u(\phi_l)| \le C \sum_{|\alpha| \le k} \sup_K \left| D^{\alpha} \phi_n - D^{\alpha} \phi_l \right| \longrightarrow_{n,l \to \infty} 0.$$

Therefore $\{u(\phi_n)\}_{n=1}^{\infty}$ is a Cauchy sequence in \mathbb{R}^1 , and as such it converges to, say,

$$u(\phi) = \lim_{n \to \infty} u(\phi_n). \tag{2.9}$$

The claim is that (2.9) is consistent. In fact, let $\left\{\phi_n\right\}_{n=1}^{\infty}$, $\left\{\psi_n\right\}_{n=1}^{\infty}$ be two sequences 417 in $\mathscr{C}_0^{\infty}(X)$ for which

$$\lim_{n \to \infty} \phi_n = \lim_{n \to \infty} \psi_n = \phi$$
 419

in $\mathscr{C}_0^k(X)$. Then $u(\phi) = \lim_{n \to \infty} u(\gamma_n) = \lim_{n \to \infty} u(\phi_n) = \lim_{n \to \infty} u(\psi_n)$, 420 where $\left\{ \gamma_n \right\}_{n=1}^{\infty} = \left\{ \phi_n \right\}_{n=1}^{\infty} \cup \left\{ \psi_n \right\}_{n=1}^{\infty}$. For the sequence γ_n we have

$$\left|u(\gamma_n)\right| \le C \sum_{|\alpha| \le k} \sup_{K} \left|D^{\alpha} \gamma_n\right|,$$
 422

SO 423

$$\left| u(\phi) \right| \le C \sum_{|\alpha| \le k} \sup_{K} \left| D^{\alpha} \phi \right|$$
 424

when $n \longrightarrow \infty$.

Problem 2.15 Let $u_n \in D'(X)$, $u_n(\phi) \ge 0$ for every nonnegative $\phi \in \mathscr{C}_0^{\infty}(X)$ and 426 $u_n \longrightarrow_{n \longrightarrow \infty} u$ in D'(X). Prove that $u \ge 0$ and $u_n(\phi) \longrightarrow_{n \longrightarrow \infty} u(\phi)$ for every 427 $\phi \in \mathscr{C}_0^0(X)$.

Problem 2.16 Prove that the functions

1.
$$f = e^{\frac{1}{x}}$$
.

2.
$$f = e^{\frac{1}{x^2}}$$
, 431

3.
$$f = e^{\frac{1}{x^m}}, m \in \mathbb{N}$$

do not define distributions, i.e. $f \notin D'(\mathbb{R}^1 \setminus \{0\})$ in all cases.

1. Proof Take $f(x) = e^{\frac{1}{x}}$ and suppose—by contradiction—that $f \in D'(\mathbb{R}^1 \setminus \{0\})$. 434 Pick $\phi_0 \in \mathscr{C}_0^{\infty}(\mathbb{R}^1 \setminus \{0\})$ such that $\phi_0(x) \geq 0$ for every $x \neq 0$, $\phi_0(x) = 0$ for 435 x < 1 and x > 2, and

$$\int_{-\infty}^{\infty} \phi_0(x) dx = 1.$$

429

433

446

Define the sequence $\left\{\phi_k\right\}_{k=1}^{\infty}$ by

$$\phi_k(x) = e^{-\frac{k}{2}} k \phi_0(kx). \tag{439}$$

It satisfies 440

$$\phi_k(x) \longrightarrow_{k \longrightarrow \infty} 0$$

in
$$\mathscr{C}_0^{\infty}(\mathbb{R}^1\setminus\{0\})$$
, so

$$f(\phi_k) \longrightarrow_{k \longrightarrow \infty} 0.$$

On the other hand,

$$f(\phi_k(x)) = \int_{-\infty}^{\infty} e^{\frac{1}{x}} \phi_k(x) dx$$

$$= \int_{1}^{2} e^{k\left(\frac{1}{y} - \frac{1}{2}\right)} \phi_0(y) dy \ge \int_{1}^{\frac{3}{2}} e^{k\left(\frac{1}{y} - \frac{1}{2}\right)} \phi_0(y) dy \ge e^{\frac{k}{6}} \int_{1}^{\frac{3}{2}} \phi_0(y) dy.$$
445

By this and the definition of $\phi_0(x)$ we conclude

$$\lim_{k \to \infty} f(\phi_k(x)) = \infty,$$

which is a contradiction.

$$\phi_k(x) = e^{-\frac{k^2}{4}} k \phi_0(kx).$$
 450

452

453

454

455

3. Hint. Use

Hint. Use the previous problem.

Problem 2.18 Show that 456 1. $\lim_{\epsilon \longrightarrow 0} \int_{\mathbb{R}^1} \frac{\phi(x)}{x - i\epsilon} dx = i\pi\phi(0) + P.V. \int_{\mathbb{R}^1} \frac{\phi(x)}{x} dx, \phi \in \mathscr{C}_0^{\infty}(\mathbb{R}^1),$ 2. $\lim_{\epsilon \longrightarrow 0} \int_{\mathbb{R}^1} \frac{\phi(x)}{x + i\epsilon} dx = -i\pi\phi(0) + P.V. \int_{\mathbb{R}^1} \frac{\phi(x)}{x} dx, \phi \in \mathscr{C}_0^{\infty}(\mathbb{R}^1).$ 457 458 1. *Proof* Take $\phi \in \mathscr{C}_0^{\infty}(\mathbb{R}^1)$ with supp $\phi \subset [-R, R]$. Then 459 $\int_{\mathbf{D}^1} \frac{\phi(x)}{x - i\epsilon} dx = \int_{-R}^{R} \frac{(x + i\epsilon)\phi(x)}{x^2 + \epsilon^2} dx$ 460 $= \int_{-R}^{R} \frac{(x+i\epsilon)(\phi(x)-\phi(0))}{x^2+\epsilon^2} dx + \int_{-R}^{R} \frac{(x+i\epsilon)\phi(0)}{x^2+\epsilon^2} dx.$ From this 461 $\lim_{\epsilon \to 0} \int_{-R}^{R} \frac{(x+i\epsilon)(\phi(x)-\phi(0))}{x^2+\epsilon^2} dx = P.V. \int_{-\infty}^{\infty} \frac{\phi(x)}{x} dx.$ 462 What is more, 463 $\lim_{\epsilon \to 0} \int_{-R}^{R} \frac{(x+i\epsilon)\phi(0)}{x^2+\epsilon^2} dx = 2i\phi(0) \lim_{\epsilon \to 0} \operatorname{arctg} \frac{R}{\epsilon} = i\pi\phi(0) = i\pi\delta(\phi).$ 464 2. **Hint.** Use the solution of part 1. 465 Problem 2.19 Prove that 466 $\frac{1}{r-i0} = i\pi\delta + P\left(\frac{1}{r}\right), \qquad \frac{1}{r+i0} = -i\pi\delta + P\left(\frac{1}{r}\right).$ 467 **Hint.** Use the previous problem. 468 **Problem 2.20** Prove that 469 1. $\lim_{\epsilon \to +0} \frac{1}{2\sqrt{\pi\epsilon} \exp^{-\frac{x^2}{4\epsilon}}} = \delta(x)$, $\lim_{\epsilon \to +0} \frac{1}{\pi x} \sin \frac{x}{\epsilon} = \delta(x)$, 470 2. $\lim_{\epsilon \to +0} \frac{1}{\pi} \frac{\epsilon}{x^2 + \epsilon^2} = \delta(x)$, $\lim_{\epsilon \to +0} \frac{\epsilon}{\pi x^2} \sin^2 \frac{x}{\epsilon} = \delta(x)$, 471 3. $\lim_{t \to \infty} \frac{\exp^{ixt}}{x - i0} = 2\pi i \delta(x)$, $\lim_{t \to \infty} \frac{\exp^{-ixt}}{x - i0} = 0$, 472

 $\phi_k(x) = e^{-\left(\frac{k}{2}\right)^m} k \phi_0(kx).$

 $f = a_1 e^{\frac{1}{x}} + a_2 e^{\frac{1}{x^2}} + \dots + a_m e^{\frac{1}{x^m}} \notin D'(\mathbb{R}^1 \setminus \{0\}).$

Problem 2.17 Given constants $m \in \mathbb{N}$, a_i , $i = 1, 2, \dots, m$, prove that

4.
$$\lim_{t \to \infty} \frac{\exp^{ixt}}{x+i0} = 0$$
, $\lim_{t \to \infty} \frac{\exp^{-ixt}}{x+i0} = -2\pi i\delta(x)$,

5.
$$\lim_{t \to \infty} t^m \exp^{ixt} = 0, m \ge 0, \lim_{t \to \infty} P\left(\frac{\cos tx}{x}\right) = 0,$$

6.
$$\lim_{\epsilon \to +0} \frac{1}{\epsilon} \omega\left(\frac{x}{\epsilon}\right) = \delta(x), \lim_{n \to \infty} \frac{2n^3 x^2}{\pi(1+n^2 x^2)^2} = \delta(x),$$

7.
$$\lim_{n \to \infty} \frac{n}{\pi(1+n^2x^2)} = \delta(x)$$
, $\lim_{n \to \infty} \frac{1}{n\pi} \frac{\sin^2 nx}{x^2} = \delta(x)$,

8.
$$\lim_{n \to \infty} f_n(x) = \delta(x)$$
, where $f_n(x) = \begin{cases} \frac{n}{2} & \text{for } |x| \le \frac{1}{n} \\ 0 & \text{otherwise;} \end{cases}$

9.
$$\lim_{n \to \infty} \frac{n}{\sqrt{2\pi}} \exp^{-\frac{n^2 x^2}{2}} = \delta(x)$$
, $\lim_{n \to \infty} \frac{\sin nx}{\pi x} = \delta(x)$,

10.
$$\lim_{n \to \infty} \frac{1}{2} n \exp^{-n|x|} = \delta(x), \lim_{n \to \infty} \frac{1}{\pi} \frac{n}{\exp^{nx} + \exp^{-nx}} = \delta(x),$$

11.
$$\lim_{n \to \infty} \sqrt{\frac{n}{\pi}} \exp^{-nx^2} = \delta(x), \lim_{n \to \infty} \frac{n}{n^2 x^2 + 1} = \delta(x)\pi.$$

479

1. Proof Take $\phi(x) \in \mathscr{C}_0^{\infty}(\mathbb{R}^1)$. Then there exists R>0 such that $\mathrm{supp}\phi\subset [-R,R]$. 481 Now,

$$\left(\frac{1}{2\sqrt{\pi\epsilon}}e^{-\frac{x^2}{4\epsilon}},\phi(x)\right) = \int_{-R}^{R} \frac{e^{-\frac{x^2}{4\epsilon}}}{2\sqrt{\pi\epsilon}}\phi(x)dx$$

$$= \frac{1}{\sqrt{\pi}} \int_{-R}^{R} \frac{e^{-\left(\frac{x}{2\sqrt{\epsilon}}\right)^2}}{2\sqrt{\epsilon}} \left[\phi(x) - \phi(0)\right] dx + \frac{\phi(0)}{\sqrt{\pi}} \int_{-R}^{R} \frac{e^{-\left(\frac{x}{2\sqrt{\epsilon}}\right)^2}}{2\sqrt{\epsilon}} dx$$

$$= \frac{1}{\sqrt{\pi}} \int_{-R}^{R} \frac{e^{-\left(\frac{x}{2\sqrt{\epsilon}}\right)^2}}{2\sqrt{\epsilon}} x^{\frac{\phi(x) - \phi(0)}{x}} dx + \frac{\phi(0)}{\sqrt{\pi}} \int_{-R}^{R} e^{-\left(\frac{x}{2\sqrt{\epsilon}}\right)^2} d\left(\frac{x}{2\sqrt{\epsilon}}\right)$$

$$= \frac{1}{\sqrt{\pi}} \int_{-R}^{R} \frac{e^{-\left(\frac{x}{2\sqrt{\epsilon}}\right)^2}}{2\sqrt{\epsilon}} x^{\frac{\phi(x) - \phi(0)}{x}} dx + \frac{\phi(0)}{\sqrt{\pi}} \int_{-\frac{R}{2\sqrt{\epsilon}}}^{\frac{R}{2\sqrt{\epsilon}}} e^{-y^2} dy.$$
483
$$= \frac{1}{\sqrt{\pi}} \int_{-R}^{R} \frac{e^{-\left(\frac{x}{2\sqrt{\epsilon}}\right)^2}}{2\sqrt{\epsilon}} x^{\frac{\phi(x) - \phi(0)}{x}} dx + \frac{\phi(0)}{\sqrt{\pi}} \int_{-\frac{R}{2\sqrt{\epsilon}}}^{\frac{R}{2\sqrt{\epsilon}}} e^{-y^2} dy.$$

Therefore 484

 $\lim_{\epsilon \to 0} \left(\frac{1}{2\sqrt{\pi\epsilon}} e^{-\frac{x^2}{4\epsilon}}, \phi(x) \right)$

$$= \lim_{\epsilon \to 0} \frac{1}{\sqrt{\pi}} \int_{-R}^{R} \frac{e^{-\left(\frac{x}{2\sqrt{\epsilon}}\right)^{2}}}{2\sqrt{\epsilon}} x^{\frac{\phi(x) - \phi(0)}{x}} dx + \frac{\phi(0)}{\sqrt{\pi}} \lim_{\epsilon \to 0} \int_{-\frac{R}{2\sqrt{\epsilon}}}^{\frac{R}{2\sqrt{\epsilon}}} e^{-y^{2}} dy$$

$$= \frac{\phi(0)}{\sqrt{\epsilon}} \int_{-\infty}^{\infty} e^{-y^{2}} dy = \phi(0) = \delta(\phi).$$
⁴⁸⁵

Problem 2.21 Let $\{X_i\}_{i\in I}$ be an open cover of \mathbb{R}^n , and suppose $u_i \in D'(X_i)$ satisfy 486 $u_i = u_j$ on $X_i \cap X_j$. Prove that there exists a unique distribution $u \in D'(X)$ such that 487 $u|_{X_i} = u_i$ for every $i \in I$.

Proof Take $\phi \in \mathscr{C}_0^{\infty}(X)$ and $\phi_i \in \mathscr{C}_0^{\infty}(X_i)$ and define

$$\phi = \sum_{i} \phi_{i}$$
 490

and 491

$$u(\phi) = \sum_{i} u_i(\phi_i). \tag{2.10}$$

We claim that definition (2.10) does not depend on the choice of the sequence $\{\phi_i\}$. 492 For this purpose it is enough to prove that

$$\sum_{i} \phi_i = 0$$

implies 495

$$u\Big(\sum_{i}\phi_{i}\Big)=0.$$

Set 497

$$K = \bigcup_{i} \operatorname{supp} \phi_i,$$
 498

clearly a compact set. There exist functions $\psi_k \in \mathscr{C}_0^\infty(X_k)$ such that $0 \le \psi_k \le 1$ 499 and

$$\sum_{k} \psi_k = 1 \quad \text{on} \quad K.$$

By compactness only a finite number of the above summands are different from 502 zero. Moreover, 503

$$\psi_k \phi_i \in \mathscr{C}_0^{\infty}(X_k \bigcap X_i)$$
 504

and 505

$$u_k(\psi_k\phi_i)=u_i(\psi_k\phi_i).$$

Therefore 507

$$\sum_{i} u_{i}(\phi_{i}) = \sum_{i} u_{i} \left(\sum_{k} \psi_{k} \phi_{i}\right) = \sum_{i} \sum_{k} u_{i}(\psi_{k} \phi_{i}) = \sum_{i} \sum_{k} u_{k}(\psi_{k} \phi_{i})$$

$$= \sum_{k} \sum_{i} u_{k}(\psi_{k} \phi_{i}) = \sum_{k} u_{k} \left(\psi_{k} \sum_{i} \phi_{i}\right) = \sum_{k} u_{k}(0) = 0.$$
508

Consequently definition (2.10) is consistent.

Let $\phi \in \mathscr{C}_0^{\infty}(K)$. Then

$$\phi = \sum_{k} \phi \psi_{k},$$
 511

509

514

521

and 512

$$\begin{aligned} \left| u(\phi) \right| &= \left| \sum_{i} u_{i}(\psi_{i}\phi) \right| \leq \sum_{i} \left| u_{i}(\phi\psi_{i}) \right| \\ &\leq \sum_{i} C_{i} \sum_{|\alpha| \leq k} \sup \left| \partial^{\alpha}(\phi\psi_{i}) \right| \leq \sum_{i} C_{i} \sum_{|\alpha| \leq k} \sup \left| \partial^{\alpha}\phi \right| \\ &\leq C \sum_{|\alpha| \leq k} \sup \left| \partial^{\alpha}\phi \right|, \end{aligned}$$

showing u is a distribution. We also have

$$u = u_i$$
 on X_i . 515

Now we will prove the uniqueness of u. Suppose there are two distributions u and \tilde{u} 516 with the previous properties. We conclude 517

$$u_{|_{X_i}}=u_i,\quad \tilde{u}_{|_{X_i}}=u_i,$$
 518

SO 519

$$(u-\tilde{u})_{|_{X_i}} = 0 \quad \forall i.$$

Since X is open in \mathbb{R}^n , it follows that

$$u \equiv \tilde{u}$$
 on X , 522

proving uniqueness. 523

539

540

Problem 2.22 Take $u \in D'(X)$ and let F be a relatively open subset of X with $\sup u \subset F$. Prove there exists a unique linear map \tilde{u} on $\sup u \subset F$.

$$\left\{\phi:\phi\in\mathscr{C}^{\infty}(X),F\cap\operatorname{supp}\phi\subset X\right\}$$
 526

such that 527

1.
$$\tilde{u}(\phi) = u(\phi)$$
 for $\phi \in \mathscr{C}_0^{\infty}(X)$,

2.
$$\tilde{u}(\phi) = 0$$
 for $\phi \in \mathscr{C}^{\infty}(X), F \cap \operatorname{supp} \phi = \emptyset$.

Proof

1. (uniqueness) Let $\phi \in \mathscr{C}^{\infty}(X)$ and $F \cap \operatorname{supp} \phi = K$. As K is compact, there 531 exists $\psi \in \mathscr{C}^{\infty}_{0}(X)$ such that $\psi \equiv 1$ on a neighbourhood of K. Let 532

$$\phi_0 = \psi \phi$$
,

$$\phi_1 = (1 - \psi)\phi$$

SO 534

$$\phi = \phi_0 + \phi_1. \tag{2.11}$$

Therefore 535

$$\tilde{u}(\phi) = \tilde{u}(\phi_0) + \tilde{u}(\phi_1). \tag{536}$$

Note $\tilde{u}(\phi_1) = 0$, so

$$\tilde{u}(\phi) = \tilde{u}(\phi_0) = u(\phi_0).$$
 538

Now suppose that there are two such distributions \tilde{u} , $\tilde{\tilde{u}}$. Then

$$\tilde{u}(\phi)=\tilde{u}(\phi_0),$$

$$\tilde{\tilde{u}}(\phi) = \tilde{\tilde{u}}(\phi_0),$$

and consequently 541

$$\tilde{u}(\phi) = \tilde{\tilde{u}}(\phi)$$
 542

for every $\phi \in \mathscr{C}^{\infty}(X)$ so that $F \cap \operatorname{supp} \phi = \emptyset$. Therefore $\tilde{u} = \tilde{u}$.

2. (existence) Let

$$\phi = \phi_0' + \phi_1' \tag{545}$$

be another decomposition of kind (2.11) and define

$$\chi = \phi_0 - \phi_0'. \tag{547}$$

546

554

556

563

Then 548

$$\chi \in \mathscr{C}_0^{\infty}(X), \quad F \cap \operatorname{supp}\chi = F \cap \operatorname{supp}(\phi_1 - \phi_1') = \emptyset$$
 549

and so 550

$$u(\chi) = u(\phi_0) - u(\phi'_0) = 0.$$
 551

Define $\tilde{u}(\phi)$ by

$$\tilde{u}(\phi) = u(\phi_0). \tag{553}$$

This is makes sense since

$$\tilde{u}(\phi) = u(\phi) = u(\phi_0),$$

$$\tilde{u}(\phi) = 0 \quad \text{if} \quad \phi \in \mathscr{C}^{\infty}(X), \quad F \cap \text{supp}\phi = \emptyset.$$

Problem 2.23 Prove that supp $\delta = \{0\}$.

Problem 2.24 Let $\phi \in \mathscr{C}_0^{\infty}(X)$ and $\operatorname{supp}(u) \cap \operatorname{supp}(\phi) = \emptyset$. Prove that $u(\phi) = 0$. 557

Proof Since $\operatorname{supp}(u) \cap \operatorname{supp}(\phi) = \emptyset$, we have $\phi \in \mathscr{C}_0^{\infty}(X \setminus \operatorname{supp}(u))$. If $x \in 558$ $\operatorname{supp}(u)$, then $\phi(x) = 0$, so $u(\phi) = 0$. If $x \in X \setminus \operatorname{supp}(u)$, then $u(\phi)(x) = 0$.

Problem 2.25 Prove that the set of distributions on X with compact support some coincides with the dual space of $\mathscr{C}^{\infty}(X)$ with the topology

$$\phi \mapsto \sum_{|\alpha| \le k} \sup_{K} \left| \partial^{\alpha} \phi \right|,$$
 562

where K is a compact set in X.

Proof Let u be a distribution with compact support and take $\phi \in \mathscr{C}^{\infty}(X)$ and $\psi \in \mathcal{C}^{\infty}(X)$, $\psi \equiv 1$ on a neighbourhood of suppu. Then

$$\phi = \psi \phi + (1 - \psi)\phi \tag{566}$$

and 567

$$u(\phi) = u(\psi\phi + (1 - \psi)\phi) = u(\psi\phi) + u((1 - \psi)\phi) = u(\psi\phi).$$
 568

573

575

580

586

588

Define u on $\mathscr{C}^{\infty}(X)$ via

$$u(\phi) = u(\psi\phi) \tag{570}$$

for $\phi \in \mathscr{C}^{\infty}(X)$. Since *u* is a distribution and $\psi \phi \in \mathscr{C}^{\infty}_{0}(X)$, we have

$$|u(\phi)| = |u(\psi\phi)| \le C \sum_{|\alpha| \le k} \sup_{K} \left| \partial^{\alpha}(\phi\psi) \right| \le C_1 \sum_{|\alpha| \le k} \left| \partial^{\alpha}\phi \right|.$$
 572

Now we suppose that v is a linear operator on $\mathscr{C}^{\infty}(X)$ for which

$$|v(\phi)| \le C \sum_{|\alpha| < k} \sup_{K} \left| \partial^{\alpha} \phi \right|$$
 574

for $\phi \in \mathscr{C}^{\infty}(X)$ and K a compact set. Then

$$v(\phi) = 0 576$$

when supp $\phi \cap K = \emptyset$. If $\phi \in \mathscr{C}_0^{\infty}(X) \subset \mathscr{C}^{\infty}(X)$, v is a distribution. Therefore 577 there exists a unique distribution $u \in D'(X)$ such that

$$u(\phi) = v(\phi)$$
 579

for every $\phi \in \mathscr{C}^{\infty}(X)$.

Problem 2.26 Let u be a distribution with a compact support of order $\leq k$, ϕ a \mathscr{C}^k map with $\partial^{\alpha} \phi(x) = 0$ for $|\alpha| \leq k$, $x \in \text{supp}\phi$. Prove that $u(\phi) = 0$.

Proof Let $\chi_{\epsilon} \in \mathscr{C}_{0}^{\infty}(X)$, $\chi_{\epsilon} \equiv 1$ on a neighbourhood U of suppu, while $\chi_{\epsilon} = 0$ on 583 $X \setminus U$. Define the set M_{ϵ} , $\epsilon > 0$ by 584

$$M_{\epsilon} = \left\{ y : |x - y| \le \epsilon, \quad x \in \text{supp}u \right\},$$

making M_{ϵ} an ϵ -neighbourhood of suppu. Moreover,

$$\left|\partial^{\alpha}\chi_{\epsilon}\right| \leq C\epsilon^{-|\alpha|}, \quad |\alpha| \leq k,$$
 587

for some positive constant C. Since

$$\operatorname{supp} u \cap \operatorname{supp} (1 - \chi_{\epsilon}) \phi = \emptyset,$$
 589

we have 590

$$u(\phi) = u(\phi \chi_{\epsilon}) + u((1 - \chi_{\epsilon})\phi) = u(\phi \chi_{\epsilon}),$$

$$|u(\phi)| \le C \left| \sum_{|\alpha| \le k} \sup \left(\partial^{\alpha} (\phi \chi_{\epsilon}) \right) \right|$$

$$\leq C_1 \sum_{|\alpha|+|\beta|\leq k} \sup \left| \partial^{\alpha} \phi \right| \left| \partial^{\beta} \chi_{\epsilon} \right|$$

$$\leq C_2 \sum_{|\alpha|+|\beta|\leq k} \sup \left| \partial^{\alpha} \phi \right| \epsilon^{|\alpha|-k} \longrightarrow_{\epsilon \to 0}, \quad |\alpha| \leq k.$$

Consequently $u(\phi) = 0$.

Problem 2.27 Let u be a distribution of order k with support $\{y\}$. Prove that $u(\phi) = \sum_{|\alpha| < k} a_{\alpha} \partial^{\alpha} \phi(y), \phi \in \mathscr{C}^{k}$.

Proof For $\phi \in \mathcal{C}^k$ we have

$$\phi(x) = \sum_{|\alpha| \le k} \partial^{\alpha} \phi(y) \frac{(x - y)^{\alpha}}{\alpha!} + \psi(x),$$
 596

where 597

$$\partial^{\alpha} \psi(y) = 0 \quad \text{for} \quad |\alpha| \le k.$$

Hence, 599

$$u(\psi) = 0. ag{60}$$

591

592

595

Therefore 601

$$u(\phi(x)) = u\left(\sum_{|\alpha| \le k} \partial^{\alpha} \phi(y) \frac{(x-y)^{\alpha}}{\alpha!} + \psi(x)\right)$$

$$= u\left(\sum_{|\alpha| \le k} \partial^{\alpha} \phi(y) \frac{(x-y)^{\alpha}}{\alpha!}\right) + u(\psi(x))$$

$$= \sum_{|\alpha| \le k} u\left(\frac{(x-y)^{\alpha}}{\alpha!}\right) \partial^{\alpha} \phi(y).$$
602

Let 603

$$a_{\alpha} = u\left(\frac{(x-y)^{\alpha}}{\alpha!}\right).$$
 604

615

617

621

Then 605

$$u(\phi) = \sum_{|\alpha| \le k} a_{\alpha} \partial^{\alpha} \phi(y).$$
 606

Problem 2.28 Write $x = (x', x'') \in \mathbb{R}^n$. Prove that for every distribution $u \in D'(\mathbb{R}^n)$ 607 of order k with compact support contained in the plane x' = 0, we have

$$u(\phi) = \sum_{|\alpha| < k} u_{\alpha}(\phi_{\alpha}), \tag{2.12}$$

where $\alpha=(\alpha',0), u_{\alpha}$ is a distribution in the variables x'', of order $k-|\alpha|$, with 609 compact support with and $\phi_{\alpha}(x'')=\partial^{\alpha}\phi(x',x'')_{|x'=0}$.

Proof For $\phi \in \mathscr{C}^{\infty}$ we have

$$\phi(x) = \sum_{|\alpha'| \le k, \alpha'' = 0} \partial^{\alpha} \phi(0, x'') \frac{x'^{\alpha}}{\alpha!} + \Phi(x),$$
 612

where 613

$$\partial^{\alpha} \Phi(x)_{|_{x'=0}} = 0$$
 for $|\alpha| \le k$.

This implies

$$u(\Phi) = 0. ag{616}$$

Since u is a distribution,

$$u(\phi) = \sum_{|\alpha'| \le k, \alpha'' = 0} u\left(\partial^{\alpha}\phi(0, x'') \frac{x'^{\alpha}}{\alpha!}\right).$$
 618

Now let

$$u_{\alpha}(\phi) = u\left(\partial^{\alpha}\phi(0, x'')\frac{x'^{\alpha}}{\alpha!}\right).$$
 620

We want to show u_{α} is a distribution of order $k - |\alpha|$. Set

$$\psi(x) = \phi(0, x'') \frac{x'^{\alpha}}{\alpha!} + O(|x'|^{k+1}) \quad \text{for} \quad x' \longrightarrow 0.$$

Then 623

$$u(\psi) = u_{\alpha}(\phi) \quad \text{for} \quad \psi \in \mathscr{C}^{\infty}$$
 (2.13)

and 624

$$\sum_{|\gamma| \le k} \sup_{K} \left| \partial^{\gamma} \phi \right| \le C \sum_{|\beta| \le k - |\alpha|} \sup_{K} \left| \partial^{\beta} \psi \right|, \tag{625}$$

SO 626

$$\sup_{K} \left| \partial^{\alpha} \phi \right| \leq C \sum_{|\beta| \leq k - |\alpha|} \sup_{K} \left| \partial^{\beta} \psi \right|. \tag{627}$$

Consequently

$$u_{\alpha}(\psi) \le C' \sum_{|\beta| \le k - |\alpha|} \sup_{K} \left| \partial^{\beta} \psi \right|$$
 629

for every $\psi \in \mathscr{C}_0^{\infty}$, proving u_{α} is a distribution of order $k - |\alpha|$ in the variable x''. 630 From (2.13) it follows that u_{α} has compact support.

Problem 2.29 Let K be a compact set in \mathbb{R}^n which cannot be written as union of 632 finitely many compact connected domains. Prove that there exists a distribution $u \in 633$ $\mathscr{E}'(K)$ of order 1 that does not satisfy

$$u(\phi) \le C \sum_{|\alpha| \le k} \sup_{K} \left| \partial^{\alpha} \phi \right|, \quad \phi \in \mathscr{C}^{\infty}(X)$$
 635

636

644

for any constants C and k.

Problem 2.30 Let K be a compact set in \mathbb{R}^n and u_{α} , $|\alpha| \leq k$, continuous functions 637 on K. For $|\alpha| \leq k$ we set

$$U_{\alpha}(x,y) = \left| u_{\alpha}(x) - \sum_{|\beta| \le k - |\alpha|} u_{\alpha+\beta}(y) \frac{(x-y)^{\beta}}{\beta!} \right| |x-y|^{|\alpha|-k},$$
 639

for $x, y \in K$, $x \neq y$, and $U_{\alpha}(x, x) = 0$ for $x \in K$. Supposing every function U_{α} , 640 $|\alpha| \leq k$, is continuous on $K \times K$, prove that there exists $v \in \mathscr{C}^k(\mathbb{R}^n)$ such that 641 $\partial^{\alpha}v(x) = u_{\alpha}(x)$ for $x \in K$, $|\alpha| \leq k$. Then prove that v can be chosen so that

$$\sum_{|\alpha| \le k} \sup \left| \partial^{\alpha} v \right| \le C \left(\sum_{|\alpha| \le k} \sup_{K \times K} U_{\alpha} + \sum_{|\alpha| \le k} \sup_{K} u_{\alpha} \right), \tag{643}$$

where C is a constant depending on K only.

647

654

657

658

660

663

665

Problem 2.31 Prove that

$$|u(\phi)| \leq C \Big(\sum_{|\alpha| \leq k} \sup_{x, y \in K, x \neq y} \left| \partial^{\alpha} \phi(x) - \sum_{|\beta| \leq k - |\alpha|} \partial^{\alpha + \beta} \phi(y) \frac{(x - y)^{\beta}}{\beta!} \right|$$

$$\times |x - y|^{|\alpha| - k} + \sum_{|\alpha| \leq k} \sup_{K} \left| \partial^{\alpha} \phi \right| \Big), \quad \phi \in \mathscr{C}^{\infty}(\mathbb{R}^{n}),$$

$$(646)$$

for every distribution u of order k with compact support $K \subset \mathbb{R}^n$.

Problem 2.32 Let K be a compact set in \mathbb{R}^n with finitely many connected components, such that every two points x and y in the same component can be joined by a rectifiable curve in K of length $\leq C|x-y|$. Prove that for every distribution u of 650 order k with $\mathrm{supp} u \subset K$ the estimate

$$|u(\phi)| \le C \sum_{|\alpha| \le k} \sup_{K} \left| \partial^{\alpha} \phi \right|, \quad \phi \in \mathcal{C}^{k}(\mathbb{R}^{n})$$
 652

holds.

Problem 2.33 Let $a \in \mathbb{C}^n$. Prove that $\delta_a(x), x \in \mathbb{R}^n$, is a singular distribution.

Problem 2.34 Let $u_1, u_2 \in \mathcal{D}'(X)$ with u_1 regular and u_2 singular. Prove that

$$\alpha_1 u_1 + \alpha_2 u_2 \tag{656}$$

is singular for every $\alpha_1, \alpha_2 \in \mathbb{C}$.

Problem 2.35 Let $f_n, f \in L^1_{loc}(X)$ and

$$\int_{K} |f_{n}(x) - f(x)| dx \longrightarrow_{n \longrightarrow \infty} 0$$
659

for every compact subset *K* of *X*. Prove that

$$f_n \longrightarrow_{n \longrightarrow \infty} f$$
 661

in $\mathscr{D}'(X)$.

Problem 2.36 Prove that

$$1. \ \delta(-x) = \delta(x), \tag{664}$$

2.
$$(\delta(ax - x_0), \phi) = \phi(\frac{x_0}{a})$$
, for any $\phi \in \mathscr{C}_0^{\infty}(X)$ and any constant $a \neq 0$.

Proof 666

1. Let
$$\phi \in \mathscr{C}_0^{\infty}(X)$$
. Then

$$\left(\delta(-x),\phi(x)\right) = \left(\delta(x),\phi(-x)\right) = \phi(0) = \left(\delta(x),\phi(x)\right).$$

Consequently

$$\delta(-x) = \delta(x). \tag{670}$$

671

673

676

681

686

688

690

2. Let $\phi \in \mathscr{C}_0^{\infty}(X)$. Then

$$\left(\delta(ax - x_0), \phi(x)\right) \qquad (ax = y + x_0)$$

$$= \left(\delta(y), \phi\left(\frac{y + x_0}{a}\right)\right) = \phi\left(\frac{x_0}{a}\right).$$
672

Problem 2.37 Prove that

1.
$$\delta(x^2 - a^2) = \frac{1}{2a} \left[\delta(x - a) + \delta(x + a) \right], a \neq 0,$$

$$2. \ \delta(\sin x) = \sum_{k=-\infty}^{\infty} \delta(x - k\pi).$$

Problem 2.38 Prove that $\delta(x)$, $x \in \mathbb{R}^1$, is a measure.

Problem 2.39 Prove that H(x), $x \in \mathbb{R}^1$, is a measure.

Problem 2.40 Let $\{f_n\}_{n=1}^{\infty}$ be a sequence in $\mathscr{D}'(X)$ such that $|f_n(\phi)| \leq c_{\phi}$ for every 678 $\phi \in \mathscr{C}_0^{\infty}(X)$, and $\{\phi_n\}_{n=1}^{\infty} \subset \mathscr{C}_0^{\infty}(X)$ a sequence converging to 0 in $\mathscr{C}_0^{\infty}(X)$ as 679 $n \to \infty$. Prove that $f_n(\phi_n) \to 0$, $n \to \infty$.

Proof We suppose the contrary. Then there exists a constant c > 0 such that

$$|f_n(\phi_n)| \ge c > 0, \tag{682}$$

for n large enough. Since $\phi_n \longrightarrow 0$ in $\mathscr{C}_0^{\infty}(X)$ as $n \longrightarrow \infty$, there exists a compact 683 set X' such that $\operatorname{supp} \phi_n \subset X'$ for every n and

$$D^{\alpha}\phi_{n}\longrightarrow_{n\longrightarrow\infty}0,$$

for every $x \in X$ and every $\alpha \in \mathbb{N}^n \cup \{0\}$. Hence

$$|D^{\alpha}\phi_n(x)| \le \frac{1}{4^n}, \quad |\alpha| \le n = 0, 1, 2, \dots,$$

for *n* large enough and every $x \in X'$. We set

$$\psi_n = 2^n \phi_n. \tag{689}$$

We have $\operatorname{supp} \psi_n \subset X'$ and

$$|D^{\alpha}\psi_n(x)| \le \frac{1}{2^n}, \quad |\alpha| \le n = 0, 1, 2, \dots,$$
 (2.14)

$$|f_n(\psi_n)| = 2^n |f_n(\phi_n)| \ge 2^n c \longrightarrow_{n \longrightarrow \infty} \infty.$$
 (2.15)

702

Let us find subsequences $\{f_{k_{\nu}}\}_{\nu=1}^{\infty}$ of $\{f_{n}\}_{n=1}^{\infty}$ and $\{\psi_{k_{\nu}}\}_{\nu=1}^{\infty}$ of $\{\psi_{n}\}_{n=1}^{\infty}$ so that 692 $|f_{k_{\nu}}(\psi_{k_{\nu}})| \geq 2^{\nu}$ for $\nu = 1, 2, \ldots$ As $\psi_{k} \longrightarrow_{k \longrightarrow \infty} 0$ in $\mathscr{C}_{0}^{\infty}(X)$, we have 693 $f_{k_{j}}(\psi_{k}) \longrightarrow_{k \longrightarrow \infty} 0$ for $j = 1, 2, \ldots, \nu - 1$. Therefore there exists $N \in \mathbb{N}$ such 694 that for every $k \geq N$

$$|f_{k_j}(\psi_k)| \le \frac{1}{2^{\nu-j}}, \quad j = 1, 2, \dots, \nu - 1.$$
 (2.16)

We note that $|f_k(\psi_{k_j})| \le c_{k_j}, j = 1, 2, ..., \nu - 1$. From (2.15), we can choose $k_{\nu} \ge N$ 696 so that

$$|f_{k_{\nu}}(\psi_{k_{\nu}})| \ge \sum_{1 \le j \le \nu - 1} c_{k_j} + \nu + 1.$$
 (2.17)

From (2.16) and (2.17) we have

$$|f_{k_j}(\psi_{k_\nu})| \le \frac{1}{2^{\nu-j}}, \quad j = 1, 2, \dots, \nu - 1,$$
 (2.18)

 $|f_{k_{\nu}}(\psi_{k_{\nu}})| \ge \sum_{1 \le j \le \nu - 1} |f_{k_{\nu}}(\psi_{k_{j}})| + \nu + 1.$ (2.19)

We set

$$\psi = \sum_{j \ge 1} \psi_{k_j}.$$
 701

From (2.14) it follows that ψ is a convergent series, $\psi \in \mathscr{C}_0^{\infty}(X)$ and

$$f_{k_{\nu}}(\psi) = f_{k_{\nu}}(\psi_{k_{\nu}}) + \sum_{j \ge 1, j \ne \nu} f_{k_{\nu}}(\psi_{k_{j}}).$$
 703

Therefore 704

$$|f_{k_{\nu}}(\psi)| \ge |f_{k_{\nu}}(\psi_{k_{\nu}})| - \sum_{1 \le j \le \nu - 1} |f_{k_{\nu}}(\psi_{k_{j}})| - \sum_{j \ge \nu + 1} |f_{k_{\nu}}(\psi_{k_{j}})|$$

$$\ge \nu + 1 - \sum_{j \ge \nu + 1} \frac{1}{2^{j - \nu}} = \nu,$$
705

and then

$$(f_{k_v}, \psi) \longrightarrow_{v \longrightarrow \infty} \infty,$$
 707

which contradicts $|f_{k_{\nu}}(\psi)| \leq c_{\psi}$.

Problem 2.41 Let $\{f_n\}_{n=1}^{\infty}$ be a sequence in $\mathscr{D}'(X)$ such that $\{f_n(\phi)\}_{n=1}^{\infty}$ converges 709 for every $\phi \in \mathscr{C}_0^{\infty}(X)$. Prove that the functional 710

$$f(\phi) = \lim_{n \to \infty} f_n(\phi), \quad \phi \in \mathscr{C}_0^{\infty}(X)$$
 711

is an element of $\mathcal{D}'(X)$.

Proof Let $\alpha_1, \alpha_2 \in \mathbb{C}$ and $\phi_1, \phi_2 \in \mathscr{C}_0^{\infty}(X)$. Then

$$f(\alpha_1\phi_1 + \alpha_2\phi_2) = \lim_{n \to \infty} f_n(\alpha_1\phi_1 + \alpha_2\phi_2) = \lim_{n \to \infty} (\alpha_1f_n(\phi_1) + \alpha_2f_n(\phi_2))$$

$$= \alpha_1 \lim_{n \to \infty} f_n(\phi_1) + \alpha_2 \lim_{n \to \infty} f_n(\phi_2) = \alpha_1 f(\phi_1) + \alpha_2 f(\phi_2).$$
714

Therefore f is a linear map on $\mathscr{C}_0^\infty(X)$. Now we will prove that f is a continuous 715 functional on $\mathscr{C}_0^\infty(X)$. Let $\{\phi_n\}_{n=1}^\infty$ be a sequence in $\mathscr{C}_0^\infty(X)$ such that $\phi_n \longrightarrow_{n \longrightarrow \infty}$ 716 0 in $\mathscr{C}_0^\infty(X)$. We claim $f(\phi_n) \longrightarrow_{n \longrightarrow \infty} 0$, so suppose the contrary. There exists a 717 constant a > 0 such that

$$|f(\phi_{\nu})| \ge a, \tag{719}$$

720

722

for every $\nu = 1, 2, \dots$ Since

$$f(\phi_{\nu}) = \lim_{k \to \infty} f_k(\phi_{\nu}), \tag{721}$$

there is $k_{\nu} \in \mathbb{N}$ such that

$$|f_{k_{\nu}}(\phi_{\nu})| \ge a \tag{723}$$

for every $\nu=1,2,\ldots$, which is in contradiction with the result of the previous 724 problem. Consequently $f(\phi_n) \longrightarrow_{n \longrightarrow \infty} 0$ and $f \in \mathscr{D}'(X)$.

Problem 2.42 Let $u \in \mathcal{D}'(X)$ and $b \in \mathcal{C}^{\infty}(X)$ be such that $b(x) \equiv 1$ on a 726 neighbourhood of suppu. Show

$$u = b(x)u. 728$$

Proof For the function 1 - b(x) we have that $1 - b(x) \equiv 0$ on suppu. Then for 729 $\phi \in \mathscr{C}_0^{\infty}(X)$ we have

$$0 = u((1 - b(x))\phi) = u(\phi - b(x)\phi) = u(\phi) - u(b(x)\phi) = u(\phi) - b(x)u(\phi),$$
 731

SO 732

$$u(\phi) = b(x)u(\phi) \tag{733}$$

for every $\phi \in \mathscr{C}_0^{\infty}(X)$. Therefore u = b(x)u.

738

740

747

750

Problem 2.43 Compute

$$(x^4 + x^2 + 3)\delta(x) + xP\frac{1}{x}, \quad x \in \mathbb{R}^1.$$

Answer $3\delta + 1$.

Problem 2.44 Let $b \in \mathscr{C}^{\infty}(\mathbb{R}^1)$. Compute

$$b(x)\delta(x), \quad x \in \mathbb{R}^1.$$

Answer $b(0)\delta$.

Problem 2.45 Let $a \in \mathscr{C}^{\infty}(X)$, $u \in D'(X)$. Prove that $\operatorname{supp}(au) \subset \operatorname{supp} a \cap \operatorname{supp} u$. 74

Problem 2.46 Let $f, u \in D'(X)$ and singsupp $u \cap \text{singsupp} f = \emptyset$. Prove that $f \circ u \in {}^{742}D'(X)$.

Problem 2.47 Let $f \in \mathscr{C}^{\infty}(X)$, $u \in D'(X)$ and supp $u \cap \text{supp} f \subset X$. Prove that 744 u(f) can be defined by u(f) = (fu)(1).

Problem 2.48 Let $f \in \mathcal{C}^k(X)$, $u \in D'^k(X)$. Prove that $fu \in D'^k(X)$.

Problem 2.49 Solve the equation

$$(x-3)u = 0 748$$

in $\mathscr{D}'(X)$.

Solution Let $\phi \in \mathscr{C}_0^{\infty}(\mathbb{R}^1)$. Then we have

$$(x-3)u(\phi) = 0$$
 or $u((x-3)\phi) = 0$. (2.20)

Let now $\psi \in \mathscr{C}_0^{\infty}(\mathbb{R}^1)$, and choose $\eta \in \mathscr{C}_0^{\infty}(\mathbb{R}^1)$ so that $\eta \equiv 1$ on $[3-\epsilon,3+\epsilon]$ and 751 $\eta \equiv 0$ on $\mathbb{R}^1 \setminus [3-\epsilon,3+\epsilon]$, for a small enough $\epsilon > 0$. Then the function $\frac{\psi(x)-\eta(x)\psi(3)}{(x-3)}$ 752 belongs in $\mathscr{C}_0^{\infty}(\mathbb{R}^1)$. From this and (2.20) we have that

$$u\Big((x-3)\frac{\psi(x) - \eta(x)\psi(3)}{(x-3)}\Big) = 0.$$

Hence 755

$$u(\psi) = u\left((x-3)\frac{\psi(x) - \eta(x)\psi(3)}{(x-3)} + \eta(x)\psi(3)\right)$$

$$= u\left((x-3)\frac{\psi(x) - \eta(x)\psi(3)}{(x-3)}\right) + u(\eta(x)\psi(3))$$

$$= \psi(3)u(\eta) = C\psi(3) = C\delta(x-3)(\psi).$$
756

Here $C = u(\eta) = \text{const. Since } \psi \in \mathscr{C}_0^{\infty}(\mathbb{R}^1)$ was chosen arbitrarily, $u = C\delta(x-3)$. 757

Problem	2.50	Solve	the	equation
I I ODICIII	4.00	DOLVE	uic	cquation

$$(x-3)u = P\frac{1}{x-3}$$
 759

758

765

in
$$\mathscr{D}'(\mathbb{R}^1)$$
.

Solution By using the previous problem the corresponding homogeneous equation 761 (x-3)u = 0 is solved by $u = C\delta(x-3)$, C = const, and a particular solution is 762 $P\frac{1}{(x-3)^2}$. Therefore 763

$$u = C\delta(x-3) + P\frac{1}{(x-3)^2}.$$

Problem 2.51 Solve the equations

1.
$$(x-1)(x-2)u = 0$$
,

2.
$$x^2u = 2$$
,

3.
$$(\sin x)u = 0$$
.

Answer 769

1.
$$u = C_1 \delta(x-1) + c_2 \delta(x-2), C_1, C_2 = \text{const},$$

2.
$$u = C_0 \delta(x) + C_1 \delta'(x) + 2P^{\frac{1}{2}}, C_0, C_1 = \text{const},$$

1.
$$u = C_1 \delta(x - 1) + C_2 \delta(x - 2), C_1, C_2 = 0.0000,$$

2. $u = C_0 \delta(x) + C_1 \delta'(x) + 2P \frac{1}{x^2}, C_0, C_1 = 0.0000,$
3. $\sum_{k=-\infty}^{\infty} C_k \delta(x - k\pi), C_k = 0.0000,$
771

http://www.springer.com/978-3-319-18731-0

Modeling and Stochastic Learning for Forecasting in High Dimensions

Antoniadis, A.; Poggi, J.-M.; Brossat, X. (Eds.)

2015, X, 339 p. 105 illus., 49 illus. in color., Softcover

ISBN: 978-3-319-18731-0