
Chapter 2
Computational Models for Just-Noticeable
Differences

The growing demand for transmission and storage of images has spurred much
effort in improving image compression techniques. To achieve this goal, one
promising approach is to integrate properties of the HVS into image compression
techniques [JJS93]. The central idea of such approach is to embed coding distortion
beneath the spatial visibility threshold of the HVS. This threshold is commonly
referred as the JND threshold [JJS93] as it specifies the minimum sensory difference
that is detectable by the HVS. In the context of image compression, a perceptually
perfect image is obtained at the lowest possible bit-rate [JJS93] if the coding error
of each pixel in a compressed image is exactly at level of JND. Over the years,
several computational models for JND have been developed and employed in
image compression. These computational models for JND models are computed
using subbands [SJ89, Wat93, TS96, HK00, HK02, ZLX05, ZLX08, WN09] and
pixels [CL95, CC96, CB99, YLL03, YLL05, LLP10] of an image.

The first few models of the HVS [Sch56, MS74, Fau79] were developed using a
single channel approach. Such models regard the HVS as a single spatial filter,
which is defined by the CSF. One of the first few HVS based image quality metrics
for luminance images was developed by Mannos and Sakrison [MS74]. By infer-
ring some properties of the human vision from psychophysical experiments,
Mannos and Sakrison derived a closed-form expression describing the contrast
sensitivity of the HVS as a function of spatial frequency.

It is later argued that the HVS is a multi-channel system with each channel tuned
to different ranges of spatial frequencies and orientations [Dau80], and many multi-
channel models were subsequently proposed. Multi-channel HVS models are
employed in metrics such as visual differences predictor (VDP) proposed by Daly
[Dal92, Dal93], and the visual discrimination model (VDM) proposed by Lubin
[Lub93, Lub95]. These image quality metrics are intended for general applicability,
but are computationally expensive to implement.

A priori knowledge of the image processing algorithm (such as image com-
pression) permits the use of specialized vision models. Although specialized vision
models are not as versatile as the generalized models, specialized models can
perform very well in a given application scope. Such vision models are usually
simpler and computationally efficient. One example of an image coder based on a
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specialized vision model is the DCTune [Wat93], which permits higher image
compression by exploiting the limitations of the HVS.

The general block diagram of a computational model for JND is shown in
Fig. 2.1. Before the computational model for JND is applied, pre-processing such as
color space transformation and frequency decomposition might be performed on the
input image. In general, most JND models incorporate four properties of the HVS,
namely, spatial contrast sensitivity, luminance adaptation, contrast masking, and
temporal masking [Bov05]. The last three properties of the HVS are considered as
elevation parameters of the base threshold which are determined by the spatial
contrast sensitivity.

Since no masking is present in the measurement of contrast sensitivity, the effect
of the background luminance on contrast sensitivity is typically accounted as
luminance adaptation, or luminance masking [Wat93]. Contrast masking refers to
the change of visibility of one image component due to the presence of another. The
strongest contrast masking occurs when both components are of the same or at
similar spatial frequency, orientation, and location. Temporal masking refers to the
reduced contrast sensitivity due to the temporal variation of light intensity falling
into the eye, and is commonly adopted in video compression. Since this monograph
focuses on image processing, only the first three properties of the HVS shall be
introduced in the following sections of this chapter.

The input image is decomposed into several components (also known as channels
or subbands) in multi-channel HVS models. Numerous decomposition methods are
used in PICs and image quality metrics, which include Fourier decomposition
[CR68, MS74], Gabor decomposition [Dau88, LB90], DCT [Wat93, HK02, YLL03,
YLL05, ZLX05, ZLX08], wavelet transform [TH94a, WHM97, LK00], and polar
separable wavelet transform [Wat87, TH94b]. To combine the error of each spatial
frequency, orientation band, and location into a single number or a distortion map
[Wat79, RG81], many image quality metrics and PICs implement error pooling after
CSF, luminance adaptation, and contrast masking.

This chapter begins with a review of the concepts on psychophysics of the
human vision that are applied to image quality metrics and computational models
for JND. In particular, this chapter emphasizes on image quality metrics and
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Fig. 2.1 Block diagram of a computational model for JND
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computational models for JND that are designed specifically for image compres-
sion. As DCT is widely used in image and video compression standards (e.g. JPEG,
MPEG-1/2/4, H.261/3), we focus our discussion in this chapter on image quality
metrics computed using DCT subbands. It is also useful to consider pixel-based
image quality metrics since it is possible to convert the contrast sensitivity from the
pixel domain to the DCT subband domain and vice versa.

The cortex filters, which provide a good approximation of the multi-channel
response of HVS, and the frequency decomposition using cortex filters are intro-
duced in Sect. 2.1. This is followed by mapping of the cortex filters to DCT-II
subbands (or coefficients). In Sect. 2.2, the widely adopted spatial CSF proposed by
Ahumada and Peterson [AP92] is discussed. The detection threshold of every DCT
subband is inversely proportional to contrast sensitivity, and can be derived from
the spatial CSF. Apart from the contrast sensitivity, the detection threshold is varied
by the local mean luminance and local spatial content, which are referred as
luminance adaptation and contrast masking, respectively. Section 2.3 illustrates the
effects of luminance adaptation using Weber’s law. Subsequently, several tech-
niques estimating luminance adaptation from the subbands and pixels of an image
are reviewed. Next, intra- and inter-band contrast masking are discussed in
Sect. 2.4. Intra-band contrast masking is typically adopted in many PICs due to its
simple formulation. Discussions on estimating inter-band masking using cortex
filters and block classification are also included. The final step of many image
quality metrics, known as error pooling, is presented in Sect. 2.5.

2.1 Frequency Decomposition

The multi-channel response of HVS approximates a dyadic system [Dau80] that is
well-matched by a multi-resolution filterbank or a wavelet decomposition.
Examples of multi-resolution filterbank are cortex transform [Wat87] and cortex
filter [Dal92, Dal93]. The cortex transform was first conceived by Watson [Wat87],
which was inspired by neurophysiology [HW62, DAT82] and psychophysical
studies in masking [BC69, SJ72]. The cortex transform is then adapted by Daly as
the cortex filters in VDP. The decomposition of the frequency plane adopted by
Watson and Daly is shown in Fig. 2.2. The main difference between Watson’s and
Daly’s implementations of the cortex filtering is that Daly used six orientation
bands [PDT77, DYH82], instead of four (in the case of Watson’s cortex transform),
to better approximate the orientation selectivity of the HVS. Several HVS models
[WR84, Wat87, Dal92, Dal93] use six spatial channels, and it was found that six
spatial channels show good agreement with psychophysical data [WLM90].
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2.1.1 Cortex Filters

The cortex filters model the spatial (or radial) frequency selectivity and the orien-
tational selectivity of the HVS. These filters are formed by cascading two filters,
which model the radial frequency bands and orientation bands of the HVS. The
radial frequency filters are formed by the difference of two dimensional (2-D) low-
pass mesa filters. The mesa filter possesses a flat passband, a Hanning window
transition band, and a flat stopband as shown in Fig. 2.3.

The mesa filter [Dal92] is completely characterized by its half-amplitude fre-
quency d1/2 and transition width tw. Let s denote the spatial frequency in cycles per
degree (cpd). The mesa filter mesa(s) is expressed as

(a) (b)

(c)

Fig. 2.2 Decomposition of the frequency plane corresponding to a Watson’s cortex transform
[Wat87]. b Daly’s cortex filters [Dal92, Dal93], and c DCT-II. Range of each axis is from −fs/2 to
fs/2, where fs is the sampling frequency
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mesa sð Þ ¼
1; for s\s1=2 � tw

2 ;

1
2 1þ cos

p s� s1=2 � tw=2ð Þ
tw

� �� �
; for s1=2 � tw

2 � s� d1=2 þ tw
2 ;

0; for s[ s1=2 þ tw
2 ;

8>><
>>: ð2:1Þ

where tw ¼ 2s1=2
�
3: The radial frequency selectivity of the HVS is modelled by the

difference of two mesa filters with different half amplitude frequencies. The dif-
ference of the mesa (DOM) filter dom d; sð Þ is given by

dom d; sð Þ ¼ mesa sð Þjs1=2¼2� d�1ð Þ �mesa sð Þjs1=2¼2�d ; ð2:2Þ

where d = 0, 1,…, D − 1, and D is the number of DOM filters. The choice of tw
yields a set of cortex bands with approximately constant behaviour on a log fre-
quency axis with a bandwidth of one octave [SJ72, MTT78, DAT82]. The orien-
tation sensitivity of the HVS can be modelled by a set of fan filters [Dal92], which
is expressed as

fan f ; hð Þ ¼
1
2 1� cos p h� hcr fð Þj j

htw

� �� �
; h� hc fð Þj j � htw;

0; otherwise,

(
ð2:3Þ

where htw is the angular transition width in degree; hcr fð Þ is the orientation of the
center angular frequency of the fth fan filter in degree, f = 0, 1,…, F − 1, and F is
the number of fan filters. hcr fð Þ is given by

hcr fð Þ ¼ f � 1ð Þhtw � 90�; ð2:4Þ

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Frequency response of mesa filter

G
ai

n

Normalized Frequency

Hanning Window 
Transition

Flat Passband

Flat Stopband

Fig. 2.3 Frequency response
of a mesa filter [Dal92,
Dal93]

2.1 Frequency Decomposition 7



where htw ¼ 180�=F: The cortex filter at the bth band cortex b; s; hð Þ is formed by
the product of the dth DOM and fth fan filters, which is given as

cortex b; s; hð Þ ¼ dom d; sð Þfan f ; hð Þ; for d ¼ 1; . . .;D� 1; f ¼ 0; 1; . . .F � 1;
base sð Þ; for d ¼ D;

�
ð2:5Þ

where b ¼ d; fð Þ; and base(s) is the cortex filter having the lowest spatial frequency
without orientational selectivity. In [TS96], the base(s) filter is implemented using a
truncated Gaussian function, which is given as

base sð Þ ¼ e�
s2

2r2 ; for s\s1=2 þ tw
2 ;

0; for s� s1=2 þ tw
2 ;

(
ð2:6Þ

where r ¼ 2�D þ tw=2ð Þ=3. Six spatial channels (D = 6) and six orientation bands
(F = 6) are used in Daly’s implementation of the cortex filters.

Since the cortex filters model the spatial frequency selectivity and orientation
selectivity of the HVS, it would be useful to consider the mapping of DCT-II
coefficients to the cortex bands. The general idea behind mapping of DCT-II
coefficients to the cortex bands is to group the DCT-II coefficients that belong to the
same cortex bands [TS96].

An example of this mapping is illustrated in Fig. 2.4. In order to map the
partially covered DCT-II coefficients that fall within a cortex band, Tran and
Safranek divide each DCT-II coefficients into M × M smaller blocks (referred as
sub-bins). Subsequently, these sub-bins are grouped into corresponding bth band of
the cortex filters. Let k denote the kth DCT-II coefficient of an N × N DCT-II block,
where k ¼ k1; k2ð Þ and k1; k2 ¼ 0; 1; . . .;N � 1. The overlapping area between the
kth DCT coefficient and the corresponding band cortex band is computed as

Fig. 2.4 Mapping of DCT
coefficients (thin line) to
cortex bands (thick line)
[TS96]. The shaded area
denotes the DCT coefficients
which fall within the same
cortex band. Dashed lines
denote the sub-bins of each
DCT coefficient
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overlap k; bð Þ ¼
Xk1þ1ð ÞM

m1¼k1M

Xk2þ1ð ÞM

m2¼k2M

cortex b;m1;m2ð Þ; ð2:7Þ

which leads to TCF N × N matrices, where TCF is the number of cortex filters. Each
TCF matrix contains the information of the overlapping area of the N2 DCT-II
coefficients.

2.2 Spatial Contrast Sensitivity Function

In this section, we shall review the widely adopted spatial CSF [Wat93, HK02,
YLL03, YLL05, ZLX05, ZLX08], which was proposed by Ahumada and Peterson
[AP92]. Their formulation of the CSF is very useful as it takes into account of
display luminance levels, veiling luminance levels, and spatial frequencies.

We consider the base detection threshold TD k; nð Þ of the kth DCT-II subband
located at n of an image, where n ¼ n1; n2ð Þ; n1 ¼ 0; 1; . . .;H=N�1;
n2 ¼ 0; 1; . . .;W=N�1; H denotes the height of an image and W denotes the width
of an image. Let f kð Þ and h kð Þ denote the spatial frequency of a grating and the
angle between two gratings, respectively. Based on van Nes and Bouman’s mea-
surements [NB67], Ahumada and Peterson approximated the detection threshold
using a parabola in log spatial frequency, and they expressed the detection threshold
TD k; nð Þ as

log10 TD k; nð Þð Þ ¼ log10
Tmin nð Þ

0:7þ 0:3 cos2 h kð Þ
� �

þ K nð Þ log10 f kð Þ � log10 fmin nð Þð Þ2;

k1 ¼ 0 or k2 ¼ 0;

ð2:8Þ

where h kð Þ ¼ sin�1 2f k1; 0ð Þf 0; k2ð Þ�f 2 kð Þ� 	
, f kð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1=wxð Þ2þ k2

�
wy

� 	2q
, wx

and wy are the horizontal width and vertical height of a pixel, respectively. Tmin nð Þ,
K nð Þ, and fmin nð Þ are the functions of the total luminance L nð Þ, where L nð Þ is the
sum of veiling luminance and the luminance of the image located at n. Based on
Ahumada and Peterson’s formulation, Tmin nð Þ, K nð Þ, and fmin nð Þ are computed as

Tmin nð Þ ¼ 0:0263L nð Þ0:649; L nð Þ� 13:45 cd/m2;
0:0106L nð Þ; otherwise;

�
ð2:9Þ

fmin nð Þ ¼ 2:401L nð Þ0:182; L nð Þ� 300 cd/m2;
6:78; otherwise;

�
ð2:10Þ
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and

K nð Þ ¼ 2:0891L nð Þ0:0706; L nð Þ� 300 cd/m2;
3:125; otherwise:

�
ð2:11Þ

Since van Nes and Bouman found negligible difference between the CSFs for
luminance ranging from 290 to 1880 cd/m2, (2.10) and (2.11) are clipped at 300 cd/
m2. It should be noted that Kelly [Kel85] stated that this parabola model of the CSF
may not be valid for low spatial frequencies, and Peterson et al. [PMP91] suggested
a conservative estimate for TD 0; 0; nð Þ, which is the smaller value of TD 1; 0; nð Þ and
TD 0; 1; nð Þ.

Watson [Wat93] used the DC DCT-II coefficient to estimate the local luminance
of an image. Höntsch and Karam [HK02] estimated the local luminance from the
foveal region, which typically covers two degrees of the visual angle, as

L nð Þ ¼ Lmin þ Lmax � Lmin

M

X
0;0;m1;m2ð Þ2F 0;0;nð Þ

C 0; 0;m1;m2ð Þ
NFN

þ �m

0
@

1
A; ð2:12Þ

where F 0; 0; nð Þ denotes the foveal region centers at n in DC subband;
C 0; 0;m1;m2ð Þ denotes the DC DCT-II coefficient at m1;m2ð Þ; NF denotes the
number of DCT-II coefficients at n in DC subband that fall inside the foveal region;
and �m is the mean of the image; M is the number of gray levels in the image; Lmax

and Lmin are the maximum and minimum luminance levels of the display,
respectively. NF is computed as

NF ¼ 2VRx

N
tan

hf
2

� �� �� �
2VRy

N
tan

hf
2

� �� �� �
; ð2:13Þ

where the operator :b c returns the nearest smallest integer; V is the viewing distance
in inches; Rx and Ry are the height and width of the display resolution in pixel per
inch, respectively; and hf is the visual angle (approximately 2°) covered by the
foveal region.

Assuming an image is displayed on a gamma corrected screen, we can linearly
map signal intensity values into luminance levels. Thereby, the base detection
threshold Tb k;nð Þ for the kth DCT-II subband located at n is computed as

Tb k; nð Þ ¼ MTD k; nð Þ
ak1ak2 Lmax � Lminð Þ : ð2:14Þ

To ensure the quantization error remains invisible to the HVS, the quantization
of each DCT-II coefficient should not be greater than 2Tb k; nð Þ.

The JND threshold for DCT-II subband is formulated as a product of the
detection threshold Tb k; nð Þ and its elevation parameters given by luminance
adaptation and contrast masking. Let ela nð Þ and ecm k; nð Þ denote the luminance
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adaption and contrast masking, respectively. Hence, the JND threshold T k; nð Þ for
the kth DCT-II subband located at n is given as

T k;nð Þ ¼ Tb k; nð Þela nð Þecm k; nð Þ: ð2:15Þ

Since the luminance of a digital image spans a small luminance range of the
spatial CSF experiment conducted by van Nes and Bouman [NB67], a single spatial
CSF (based on the mean luminance of the image) can be used for the whole image
[ZLX05]. Therefore, the detection threshold TD k; nð Þ can be simplified to TD kð Þ by
replacing the total luminance L nð Þ with the mean luminance L of the display
[Wat93, ZLX05, ZLX08].

2.3 Luminance Adaptation

Weber’s law is widely used to model luminance adaptation, and the Weber fraction
K ¼ DI

�
Ibg is found to be nearly constant for a wide range of intensities [Hec24],

where Ibg is the background intensity and DI is the just-noticeable incremental
intensity over the background. However, Weber’s law does not hold for a wide
range of background intensities and spatial frequencies. For an 8-bit grayscale
image, it is found that the Weber’s fraction stays fairly constant for gray levels from
50 to 235; and higher contrast sensitivity [SW96] is found for gray levels lower and
higher than 50 and 235, respectively. These observations are similar to those
reported in [SJ89, CL95]. From the empirical model of the CSF in [Bar04], it is also
observed that the contrast sensitivity remains relatively constant at low spatial
frequencies for luminance levels between 10 and 1000 cd/m2. However, the con-
trast sensitivity for these luminance levels vary significantly as the spatial frequency
increases.

In the DCT domain, Watson [Wat93] estimated the luminance adaptation for nth
DCT-II block using

eWat
la nð Þ ¼ C 0; 0; nð Þ

�CL

� �0:649

; ð2:16Þ

where �CL refers to the DC DCT-II coefficient corresponding to the mean luminance
(�CL = 1024 for a 8-bit image). On the other hand, Zhang et al. [ZLX05, ZLX08]
considered different luminance adaptation at low and high luminance, and they
estimated the luminance adaptation as

eZLXla nð Þ ¼
2 1� C 0;0;nð Þ

128N

� �3
þ1; for C 0; 0; nð Þ� 128N;

0:8 C 0;0;nð Þ
128N � 1

� �2
þ1; otherwise:

8><
>: ð2:17Þ
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Using a similar approach, Wei and Ngan [WN09] computed luminance adap-
tation using

eWN
la nð Þ ¼

60N�C 0;0;nð Þ
150N

� �
þ 1; for C 0; 0; nð Þ� 60N;

1; for 60N\C 0; 0; nð Þ\170N;
C 0;0;nð Þ�170N

425N

� �
þ 1; for C 0; 0; nð Þ� 170N:

8>><
>>: ð2:18Þ

In the pixel domain, Chou and Li [CL95, YLL05] empirically determined the
luminance adaptation of a pixel at x, where x ¼ x1; x2ð Þ, x1 ¼ 0; 1; . . .;H�1, and
x2 ¼ 0; 1; . . .;W�1, using the following:

eCLla xð Þ ¼ 17 1�
ffiffiffiffiffiffiffiffi
Ls xð Þ
127

q� �
þ 3; for Ls xð Þ� 127;

3
128 Ls xð Þ � 127ð Þ þ 3; for Ls xð Þ[ 127;

8<
: ð2:19Þ

where Ls xð Þ is the local luminance at x, and (2.19) was obtained for a distance of
six times of the image height. Chou and Li determined the local luminance Ls xð Þ as

Ls xð Þ ¼ 1
32

X4
p1¼0

X4
p2¼0

i x1 � 2þ p1; x2 � 2þ p2ð ÞB p1; p2ð Þ; ð2:20Þ

where i xð Þ denotes the pixel of an image at x and the operator B is depicted in
Fig. 2.5.

1 1 1 1 1

1 2 2 2 1

1 2 2 1

1 2 2 2 1

1 1 1 1 1

B

0

Fig. 2.5 Operator to
determine average local
luminance (B) [CL95]
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2.4 Contrast Masking

Contrast masking refers to the reduction of visibility of one image signal due to the
presence of another signal. The masking characteristic of the HVS is known to be
strongest when both signals are of the same spatial frequency, orientation, and
location [LF80]. Contrast masking can be classified as inter- and intra-band
masking. Sometimes, the term “texture masking” (inter-band masking) is used to
refer to a “broadband” masker, where the masking effect is contributed by multiple
frequency and orientation channels. On the other hand, intra-band masking refers to
the masking due to a masker within the same frequency and orientation channel.
Based on the estimation of contrast masking reported in [SJ89], Höntsch and Karam
[HK00] proposed a more elaborate adjustment for contrast masking, which incor-
porates both intra- and inter-band masking. Let einter k; nð Þ and eintra k; nð Þ denote the
amount of intra- and inter-band masking at n of kth subband of an image,
respectively. The elevation parameter ecm k; nð Þ is computed as

ecm k; nð Þ ¼ einter k; nð Þeintra k; nð Þ: ð2:21Þ

In [SJ89], Safranek and Johnston proposed a subband image coder that employs
a 4 × 4 band generalized QMF (GQMF) to decompose an image into 16 subbands.
Let texSJ b; n0ð Þ denote the texture energy of the bth subband at location n0; and
wCSF bð Þ is the bth weighting factor empirically derived from a CSF [Cor90],
where n0 ¼ n01; n

0
2

� 	
, n01 ¼ 0; 1; . . .;H=2�1, n02 ¼ 0; 1; . . .;W=2�1, b ¼ b1; b2ð Þ,

and 0� b1; b2 � 3. Safranek and Johnston defined contrast masking (only inter-
band masking is considered) as follows:

eSJinter b; n
0ð Þ ¼ max 1;

X
b

wCSF bð ÞtexSJ b; n0ð Þ
 !0:15

8<
:

9=
;: ð2:22Þ

The texture energy of the bth subband at location n0 is computed as

texSJ b; n0ð Þ ¼ var n0ð Þ; for b ¼ 0; 0ð Þ;
energy b; n0ð Þ; otherwise,

�
ð2:23Þ

where energy b; n0ð Þ computes the energy of the bth subband at n0 and var n0ð Þ
computes the variance at n0 of subband zero over the area given by n01; n

0
2

� 	
,

n01 þ 1; n02
� 	

, n01; n
0
2 þ 1

� 	
, and n01 þ 1; n02 þ 1

� 	
.

Based on the masking model in [LF80], Watson [Wat93] adjusted the base
detection threshold to account for contrast masking (only intra-band masking is
considered) using the following:
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eWat
intra k; nð Þ ¼

1; k ¼ 0; 0ð Þ;
max 1; C k; nð Þj j

Tb k; nð ÞeWat
1 nð Þ

� �0:7� 
; k 6¼ 0; 0ð Þ:

8<
: ð2:24Þ

It is assumed that there is no contrast masking in the DC DCT-II coefficient.
However, the DC DCT-II coefficient indirectly affects contrast masking via eWat

1 nð Þ
in the denominator of (2.24) for all DCT-II coefficients except for the DC DCT-II
coefficient.

In [HK00], Höntsch and Karam estimated intra-band masking using

eHKintra k; nð Þ ¼
1; k ¼ 0; 0ð Þ;
max 1; C k; nð Þj j

Tb k; nð Þ
� �0:36� 

; k 6¼ 0; 0ð Þ;

8<
: ð2:25Þ

and inter-band masking is computed using (2.22) with an exponent of 0.035.
Taking into account of the foveal region for intra-band masking, Höntsch and
Karam [HK02] proposed the adjustment for intra-band masking as

eHK2intra k; nð Þ ¼
1; k ¼ 0; 0ð Þ;
max 1;

�CF k; nð Þj j
Tb k; nð Þ

� �0:6� 
; k 6¼ 0; 0ð Þ;

8<
: ð2:26Þ

where �CF k; nð Þ is the average magnitude of the DCT-II coefficients in the foveal
region.

Yang et al. [YLL05] improved their estimate of contrast masking by differen-
tiating the contribution of masking from edge and texture. Edges are structurally
simpler than textures, and it is generally observed that edges tend to be easily
recognized by the HVS. Furthermore, a typical observer would have prior
knowledge of how an edge looks like [EB98]. Girod [Gir93] found that the HVS
has acute sensitivity at or near the luminance edge. Based on these observations in
[EB98, Gir93], Yang et al. defined the JND threshold at a texture region to be three
times higher than those at an edge region.

To date, classification of plain, edge, and texture blocks are performed in
[YLL05, ZLX05, ZLX08, WN09, LLP10] to effectively estimate contrast masking
in an image. Zhang et al. [ZLX05, ZLX08] employed a block classification method
in the DCT domain [TV98], which was first proposed in [PJJ94]. To perform block
classification in the DCT domain, the DCT-II coefficients of an N × N sub-image
are divided into four groups as shown in Fig. 2.6. Let LT nð Þ, MT nð Þ, and HT nð Þ
denote the sum of DCT-II coefficients (absolute magnitude) in the low-frequency
(LF), mid-frequency (MF), and high-frequency (HF) groups, respectively, of the
nth DCT-II block. Based on these sums, three measures are formulated to determine
the texture energy of the nth DCT-II block, and these measures are defined as
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texZLX1 nð Þ ¼ MT nð Þ þ HT nð Þ;

texZLX2 nð Þ ¼
�LT nð Þ þ �MT nð Þð Þ

�HT nð Þ ;

texZLX3 nð Þ ¼
�LT nð Þ
�MT nð Þ ;

ð2:27Þ

where �LT nð Þ, �MT nð Þ, and �HT nð Þ are the means of LT nð Þ, MT nð Þ, and HT nð Þ,
respectively.

Each DCT-II block is classified into PLAIN, EDGE, or TEXTURE class using
texZLX1 nð Þ, texZLX2 nð Þ, and texZLX3 nð Þ as shown in Table 2.1. DCT-II blocks that are
generally smooth with few spatial activities are classified as PLAIN, DCT-II blocks
containing a lot of complex spatial activities are classified as TEXTURE, and DCT-
II blocks containing clear edges are classified as EDGE.

Based on the block classification result, inter-band contrast masking is computed
by

Fig. 2.6 DCT-II block
classification for contrast
masking. LF, MF, and HF are
represented by the dark gray,
light gray and white boxes,
respectively [ZLX05, ZLX08]

Table 2.1 Conditions used in classification of DCT-II blocks [ZLX05, ZLX08]

Case Conditions Block classification

I texZLX1 ðnÞ� 125 DCT-II block is classified as PLAIN

II 125\texZLX1 nð Þ� 290 and

max texZLX2 nð Þ; texZLX3 nð Þ� 	� 7

min texZLX2 nð Þ; texZLX3 nð Þ� 	� 5

or texZLX2 nð Þ� 16

DCT-II block is classified as EDGE, otherwise
PLAIN

III 290\texZLX1 nð Þ� 900 and

max texZLX2 nð Þ; texZLX3 nð Þ� 	� 7

min texZLX2 nð Þ; texZLX3 nð Þ� 	� 5

or texZLX2 nð Þ� 16

DCT-II block is classified as EDGE, otherwise
TEXTURE

IV texZLX1 nð Þ[ 900 and

max texZLX2 nð Þ; texZLX3 nð Þ� 	� 0:7

min texZLX2 nð Þ; texZLX3 nð Þ� 	� 0:5

or texZLX2 nð Þ� 16

DCT-II block is classified as EDGE, otherwise
TEXTURE
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eZLXinter nð Þ ¼
1þ texZLX1 nð Þ�290

1208 ; for TEXTURE block,
1:25; for EDGE block and L nð Þ þM nð Þ[ 400;
1:125; for EDGE block and L nð Þ þM nð Þ� 400;
1; for PLAIN block:

8>><
>>:

ð2:28Þ

Zhang et al. considered similar adjustment as (2.24) for intra-band contrast
masking, and the amount of adjustment for contrast masking is computed as

eZLXintra k; nð Þ ¼
1;

for EDGE block
at k 2 LF [MF;

max 1; C k;nð Þj j
Tb k;nð ÞeZLXla k;nð Þ
� �0:36� 

; otherwise:

8>><
>>: ð2:29Þ

To avoid over-estimation of JND threshold at the EDGE block, the LF and MF
regions of the EDGE block are excluded from the estimation of intra-band contrast
masking.

Differing from Zhang’s method, Wei and Ngan [WN09] performed block
classification in the pixel domain. Using an edge map of the image obtained with
the Canny edge detector [Can86], Wei and Ngan computed the edge density
�pedge nð Þ at n as the ratio of the number of edge pixels in each N × N sub-image to
N2. Based on the edge density, the nth DCT-II block is classified as

Block Type nð Þ ¼
PLAIN for �pedge nð Þ� 0:1;
EDGE for 0:1\�pedge nð Þ� 0:2;
TEXTURE for �pedge nð Þ[ 0:2:

8<
: ð2:30Þ

Using the block classification results from (2.30), the inter-band masking is
computed as

eWN
inter k;nð Þ ¼

1 for PLAIN and EDGE block;
2:25 for k21 þ k22

� 	� 16 in TEXTURE block,
1:25 for k21 þ k22

� 	
[ 16 in TEXTURE block:

8<
: ð2:31Þ

Finally, Wei and Ngan computed intra-band contrast masking as

eWN
intra k; nð Þ ¼

1; for k21 þ k22
� 	� 16 in

PLAIN and EDGE block;

min 4;max 1; C k;nð Þj j
Tb k;nð ÞeWN

la k;nð Þ
� �0:36� � 

; otherwise:

8>><
>>:

ð2:32Þ
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For a viewing distance of six times of the image height, Chou and Li [CL95]
estimated contrast masking in the pixel domain using the following expression:

eCL2 xð Þ ¼ 0:01L xð Þ 0:01G xð Þ � 1ð Þ þ 0:115G xð Þ þ 0:5; ð2:33Þ

where G xð Þ is the maximal weighted average of the gradient around the pixel at
x. G xð Þ is calculated by

G xð Þ ¼ max
j¼1;2;3;4

gradj xð Þ�� ��� �
; ð2:34Þ

where

gradj xð Þ ¼ 1
16

X4
p1¼0

X4
p2¼0

c x1 � 2þ p1; x2 � 2þ p2ð ÞGj p1; p2ð Þ; ð2:35Þ

and Gj xð Þ are the four directional highpass filters shown in Fig. 2.7.

2.5 Error Pooling

The final step of many image quality metrics is to combine the errors normalized by
T k; nð Þ computed for every spatial frequency (from DCT-II subbands) at all spatial
location n into a single distortion measure [SJ89, Wat93]. Alternatively, these
normalized errors can be combined into an error map using error pooling, which
describes the amount of error of each pixel in the image.

An example of error pooling using the Minkowski metric can be expressed as

P nð Þ ¼
X
k

C k; nð Þ � Ĉ k; nð Þ
T k; nð Þ

����
����
bf

 !1=bf

; ð2:36Þ

0 0 0 0 0
1 3 8 3 1
0 0 0 0 0
-1 -3 -8 -3 1
0 0 0 0 0

0 0 1 0 0
0 8 3 0 0
1 3 0 -3 1
0 0 -3 -8 0
0 0 -1 0 0

G1 G2 G3 G4

0 0 1 0 0
0 0 3 8 0
1 3 0 -3 1
0 -8 -3 0 0
0 0 -1 0 0

0 1 0 -1 0
0 3 0 -3 0
1 8 0 -8 1
0 3 0 -3 0
0 1 0 -1 0

Fig. 2.7 Operators to determine weighted average of luminance changes (Gp)
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where Ĉ k; nð Þ is the quantized kth DCT-II coefficient of the nth DCT-II block and
βf is a constant for summation across frequency bands. For summation across
frequency band, it is found that βf ≈ 4 [Wat82, GRN78, Leg78a, Leg78b, RG81,
PAW93b, RAW97]. By summing all the errors in (2.36) over n, a single value
describing the distortion of an image is then obtained. For spatial error pooling over
n, several values of βs have been adopted. Teo and Heeger [TH94b], Lubin [Lub93,
Lub95], and Watson [Wat93] adopted βs as 2, 2.4, and 4, respectively.
Alternatively, error pooling can be performed over n, followed by over frequency
bands [Wat93].

At near JND threshold, probability summation is well accepted as the basis for
summation of signal energy (or distortion) across frequency and spatial domains
[EB98]. For summation across frequency band, it is reported in [GRN78, Leg78a,
Leg78b, RG81] that βf = 3.5 [Wat82] is consistent with subjective evaluation. It has
been found that summation across frequency bands with DCT-II basis functions is
well modeled with βf = 2.4 [PAW93b]. In target detection experiments [RAW97], it
is found that βs = 4 provides the closest match to psychophysical results for spatial
summing.

To obtain a single distortion value describing the amount of distortion in a
compressed image, spatial summing is performed after summation across frequency
bands or vice versa. If summation across frequency bands is first performed, the
perceptual distortion score P1 of an image becomes

P1 ¼
X
n

P nð Þbs
 !1=bs

: ð2:37Þ

Alternatively, localized pooling of an image can be performed. One such
example is found in [HK02], where spatial summing is performed within the foveal
region F k; nð Þ: The distortion within the foveal region is given as

PF k; nð Þ ¼
X

k0;n0ð Þ2F k;nð Þ

C k0; n0ð Þ � Ĉ k0; n0ð Þ
T k0; n0ð Þ

����
����
bF

0
@

1
A

1=bF

; ð2:38Þ

where βF = 4. Using the foveal distortion PF k; nð Þ; the distortion for the kth DCT-II
coefficient is computed as

PF kð Þ ¼ max
n

PF k; nð Þf g; ð2:39Þ

and the single distortion measure of the image becomes

PF ¼ max
k

PF kð Þf g: ð2:40Þ
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Zhang et al. [ZLX05, ZLX08] suggested the following expression for spatial
summing:

P kð Þ ¼
P
n

dJND k; nð Þj j2:3
� �1=2:3

; for k ¼ 0; 0ð Þ; 1; 0ð Þ; 0; 1ð Þ;
P
n

dJND k; nð Þj j4
� �1=4

; otherwise;

8>>><
>>>:

ð2:41Þ

where dJND k; nð Þ ¼ C k; nð Þ � Ĉ k; nð Þ� 	�
T k; nð Þ. In this case, the perceptual dis-

tortion score P2 is computed as:

P2 ¼
X
k

P kð Þbf
 !1=bf

: ð2:42Þ

2.6 Summary

In this chapter, we reviewed three properties of the HVS, namely, CSF, luminance
adaptation, and intra- and inter-band contrast masking. These properties play
important roles in the design of image quality metric and computational model for
JND. It is known that DCT does not match the channel decomposition mechanism
of the HVS. To mitigate the issues arise from the mismatch of frequency decom-
position of the HVS and DCT, Tran and Safranek [TS96] introduced a mapping
from DCT-II coefficients to the cortex bands. Section 2.1 introduced the cortex
filters, and reviewed the mapping of DCT-II coefficients to the cortex bands.
Section 2.2 presented a widely adopted CSF proposed by Ahumada and Peterson
[AP92], which is used to compute the base detection threshold of DCT subband.

Elevation in the base detection threshold is attributed by the luminance adap-
tation and contrast masking. These elevation parameters were reviewed in Sects. 2.3
and 2.4, respectively. Luminance adaptation refers to the variation of the base
detection threshold due to the local luminance. Two forms of contrast masking,
namely, the intra- and inter-band contrast masking were described in Sect. 2.4.
Most PICs account for intra-band contrast masking due to its simple formulation;
however more accurate representation of the JND threshold should also include
inter-band contrast masking. Two estimations of the inter-band contrast masking
using block classification and cortex filtering were shown in Sect. 2.4.

In Sect. 2.5, we discussed how a PIC uses a single distortion measure or dis-
tortion map to determine the permissible compression of an entire image (using a
single distortion measure) or different regions of the image (using a distortion map)
at a predefined image quality. The next chapter shall review the integration of these
computational models in DCT-based image coders.
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