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Abstract. Online matching on a line involves matching an online stream
of items of various sizes to stored items of various sizes, with the objective
of minimizing the average discrepancy in size between matched items.
The best previously known upper and lower bounds on the optimal
deterministic competitive ratio are linear in the number of items, and
constant, respectively. We show that online matching on a line is essen-
tially equivalent to a particular search problem, that we call k-lost cows.
We then obtain the first deterministic sub-linearly competitive algorithm
for online matching on a line by giving such an algorithm for the k-lost
cows problem.

1 Introduction

The classic Online Metric Matching problem (OMM) is set in a metric space
(V, d), containing a set of servers S = {s1, s2, . . . , sn} ⊆ V . A set of requests
R = {r1, r2, . . . , rn} ⊆ V arrive one by one online. When a request ri arrives it
must irrevocably be matched to some previously unmatched server sj . The cost
of matching request ri to sj is d(ri, sj), and the objective is to minimize the
total (equivalently, average) cost of matching all requests. There is a determin-
istic (2n − 1)-competitive algorithm, and this competitive ratio is optimal for
deterministic algorithms [7,11].
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The Online Matching on a Line problem (OML) is a special case of OMM
where V is the real line and d(ri, sj) = |ri − sj |. The original motivation for
considering OML came from applications where there is an online stream of
items of various sizes, and the goal is to match each item as it arrives to a
stored item of approximately the same size; For example, matching skiers, as
they arrive in a ski rental shop, to skis of approximately their height. It is
acknowledged that OML is perhaps the most interesting instance of OMM (see,
e.g., [12]). Despite some efforts, there has been no progress in obtaining a better
deterministic upper bound for this special case, and thus the best known upper
bound on the competitive ratio for deterministic algorithms is inherited from
the upper bound for OMM, namely 2n − 1.

In the classical cow-path problem, also known as the Lost Cow problem (LC),
a short-sighted cow is standing at a fence (formally, the real line) that contains a
single gate at some unknown distance. The cow needs to traverse the fence until
she finds the gate (formally, the algorithm needs to specify a walk on the real line).
The objective is to minimize the distance traveled until the gate is found. There
is a 9-competitive algorithm for LC, and this is optimal for deterministic algo-
rithms [1]. Kalyanasundaram and Pruhs [8] observed that LC is a special case of
OML where there is an optimal matching with only one positive cost edge.

In 1996, [8] conjectured that the hardest instances for OML are LC instances,
and thus that there should be a 9-competitive algorithm for OML. In 2003,
[5] refuted this conjecture by giving a rather complicated adversarial strategy
that gives a lower bound of 9.001 on the competitive ratio of any determinis-
tic algorithm for OML. This is currently the best known lower bound on the
deterministic competitive ratio for OML.

1.1 Our Results

Upon further reflection, the lower bound in [5] can be intuitively understood as
giving a lower bound on the competitive ratio for a search problem involving two
lost cows (instead of one), and showing that the optimal deterministic competitive
ratio for OML is at least the optimal deterministic competitive ratio for this two
lost cows problem. This motivates us to ask the question of whether there is some
natural search problem that is equivalent to OML. As search problems seem easier
to reason about than online matching, we hypothesize that perhaps one can make
progress on online matching by attacking the equivalent search problem. We show
that the following search problem is essentially equivalent to OML:

k-Lost Cows (k-LC): k short-sighted cows arrive at a fence (formally, the real
line) at potentially different times. The fence contains k gates in unknown posi-
tions. At each point in time, the online algorithm can specify a particular cow
that has already arrived, and a direction, and then that cow will move one unit
in that direction.1 When a cow finds a gate, she will cross the fence, and this

1 Allowing the cows to instead move simultaneously would not affect our results.
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gate cannot be used by other cows. Each cow must cross the fence through a
gate. The objective is to minimize the total distance traveled by the k cows.

More precisely we show that:

– If there is a deterministic (resp., randomized) f(k)-competitive algorithm for
k-LC then there is a deterministic (resp., randomized) f(n)-competitive algo-
rithm for OML.

– If there is a deterministic (resp., randomized) f(p)-competitive algorithm for
OML, where the parameter p is the minimum number of positive cost edges
one can have in an optimal matching, then there is a deterministic (resp.,
randomized) f(k)-competitive algorithm for k-LC.

This shows that OML is essentially equivalent to a search problem involving
many lost cows, instead of one lost cow (modulo the difference in the parameters
n and p).

We give the first sublinearly-competitive, O
(
nlog2(3+ε)−1/ε

)
-competitive for

any ε > 0 to be more precise, deterministic online algorithm for OML, which we
obtain by first giving a deterministic O

(
klog2(3+ε)−1/ε

)
-competitive algorithm

for k-LC. Our algorithm for k-LC is a reasonably natural greedy algorithm, but
the resulting OML algorithm is not particularly intuitive. This provides mild
support for the hypothesis that it is easier to reason about online matching via
search rather than online matching directly. We also obtain a lower bound of
Ω

(
nlog2(3+ε)−1

)
for our algorithm, showing that this analysis is essentially tight.

1.2 Other Related Work

For OML, it had been conjectured [8] that the generalized Work Function Algo-
rithm (WFA) of [13] is O(1)-competitive, but this was disproved in [12], where
it was shown that the WFA has a competitive ratio of Ω(log n).

Randomized algorithms for OML have also been investigated. In 2006, [15]
gave the first randomized algorithm and analysis giving a competitive ratio
of o(n) for general metric spaces (and thus for the line). More precisely, [15]
obtained an O

(
log3 n

)
-competitive randomized algorithm using randomized

embeddings into trees [4]. Bansal et al. [2] refined the approach in [15] to obtain
an O

(
log2 n

)
-competitive randomized algorithm for general metrics. Finally, [6]

gave two different O(log n)-competitive randomized algorithms for the line met-
ric, one again using randomized embeddings, and one being the natural harmonic
algorithm. Kao et al. [10] gave a randomized algorithm for LC with competi-
tive ratio of approximately 4.5911, and proved a matching lower bound. Many
variants of searching problems such as the LC problem have been extensively
studied (e.g., [14]).

OMM also has been studied within the framework of resource augmentation,
where the online algorithm is given additional servers. Kalyanasundaram and
Pruhs [9] showed that a modified greedy algorithm is O(1)-competitive if the
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online algorithm gets twice as many servers. Chung et al. [3] showed that poly-
log competitiveness is achievable if the online algorithm gets an additive number
of additional servers.

Our algorithm for k-LC is similar to the natural offline greedy algorithm,
which repeatedly matches the two closest points. More precisely, if all the cows
arrived at the same time and ε was zero, then our algorithm for k-LC would
give the same matching as the offline greedy algorithm. Reingold and Tarjan
[16] showed that the approximation ratio of the offline greedy algorithm for
non-bipartite matching is essentially the same as the competitive ratio as our
algorithm for k-LC. The first step of the two analyses is the same, looking at the
cycles formed by the algorithm’s matching and the optimal matching, but they
diverge from there. A corollary of our analysis is that the natural offline greedy
algorithm is a Θ

(
nlog2 3−1

)
-approximation for bipartite matching.

2 Overview

In this section we present an informal overview of both our algorithms and
analyses for k-LC and OML.

In Sect. 3 we consider the problem of k-Lost Cows Without Arrivals (k-LCWA),
which is a restriction of k-LC in which each cow arrives at time t = 0. Our algo-
rithm for OML is based on simulating an algorithm for k-LC, which in turn is based
on simulating an algorithm for k-LCWA. Recall that the optimal deterministic
algorithm for 1-LC switches directions at increasing powers of 2 (i.e., switch direc-
tions at points −1, 2, −4, etc.). For k-LCWA, we consider the algorithm A where
each cow independently and in parallel uses this optimal single cow algorithm, but
switches directions at powers of 1+ ε instead of 2. One nice feature of A is that for
any ε ≤ 1, the cost for A will be within a factor of O(1/ε) of the cost of the final
matching M between cows’ starting positions and the corresponding gates that
the cows used in A. To analyze the cost of M we consider the union of M and the
optimal matching OPT. It is easy to see that these edges can be decomposed into a
set of disjoint cycles. We give directions to edges in M and OPT based on whether
a cow’s starting position is on the left or on the right of the matched gate. We then
prove some structural properties regarding the directions of edges in M and OPT.
We can then charge the cost of M ’s edges to the cost of OPT’s edges based on the
order in which A matches cows.

As an example, consider the base case of the first cow c that finds a gate in
this cycle, and let � denote the length of the edge corresponding to this matching.
Since c’s search is never biased more than 1+ε in either direction from its origin,
we know that the closest gate to c is at least distance �/(1 + ε) away. Also since
A has all cows walking in parallel and no other cow has found a gate, we know
that no other cow has a gate closer than �/(1 + ε). Using this argument we can
charge the cost of this edge to any edge in OPT. As we proceed inductively,
the inequalities become more complicated since we now may have to charge to
multiple edges in both M and OPT. To aid our analysis we define a weighted
binary tree for each cycle, with the property that the sum of the leaf costs



A o(n)-Competitive Deterministic Algorithm for Online Matching on a Line 15

is OPT’s cost, and the sum of the internal nodes is an upper bound on M ’s
cost. We show that if each tree is perfect (complete and balanced) then M is
O

(
klog2(3+ε)−1

)
-competitive. The last step is to show that perfect trees are the

worst case. Although this is somewhat intuitive, this is by far the most technical
aspect of the analysis, and involves showing that given an arbitrary tree, we can
make a sequence of transformations such that the resulting tree is perfect, and
at each step we do not decrease the competitive ratio.

In Sect. 4 we then show how to extend the algorithm for k-LCWA to an
algorithm for k-LC. Dealing with the online arrival of cows is a bit tricky since
the charging argument used in the analysis of the algorithm A for k-LCWA is
delicately based on the order in which cows find their gates. To cope with this,
we simulate the state that A would be in had all the cows arrived at time 0,
and use this state to change how the cows walk. More specifically, if a cow c
is walking in the k-LC setting and finds a gate occupied by some cow c′, the
algorithm determines which cow would have found this gate first in the no arrivals
case, and allows this cow to stay there, “kicking out” the other cow to continue
walking. It is then relatively straightforward to see that the matching produced
by the simulation is identical to the matching that A would have produced had
all the cows arrived at time 0.

In Sect. 5 we show how to reduce k-LC to OML, and OML to k-LC. To
convert an algorithm for k-LC into an algorithm for OML, one can release a
cow for every request r in the OML instance, and wait until this cow hits an
unoccupied server s. Then, by matching r to s, the matchings in the two settings
are equivalent, and the number of cows k will be equal to the number of servers n.
To convert an algorithm for OML into an algorithm for k-LC one can continually
issue requests at a cow’s current location until a request is matched with a server
corresponding to an unoccupied gate.

Due to space constraints, many of the proofs are deferred to the full version
of the paper.

3 Analysis of Parallel Cows Algorithm for k-Lost Cows
Without Arrivals

We now define the (1 + ε)-Parallel Cows algorithm for the k-LCWA problem.
The algorithm is to have every cow move according to the (1+ ε)-cow algorithm
independently and in parallel (i.e., simulate moving all cows at the same time
by choosing cows to move in a round-robin fashion, and have each cow make one
step to their left, then 1 + ε steps to the right of their starting location, etc.). In
particular,this means that every cow ignores every other cow or any used gates
that she finds. Throughout this section, we assume ε is some fixed parameter
and so remove reference to it when possible to lighten notation (e.g., Parallel
Cows algorithm is a shorthand for (1 + ε)-Parallel Cows algorithm).

In this section we analyze the Parallel Cows algorithm, and prove the follow-
ing theorem:

Theorem 1. For ε ≤ 1, the (1+ε)-Parallel Cows algorithm is O
(
klog2(3+ε)−1/ε

)
-

competitive for k-LCWA.
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In Subsect. 3.1 we prove that we can view the matchings of cows to gates found
by the Parallel Cows algorithm and OPT as a set of disjoint weighted cycles. We
show these cycles have special structure, which allows us to use weighted binary
trees to analyze the total cost of the Parallel Cows algorithm in relation to OPT,
where the leaves of a tree correspond to the edges in OPT and the internal nodes
correspond to edges in the Parallel Cows matching. In Subsect. 3.2 we analyze this
tree in the case when it is a perfect binary tree and all of OPT’s edges have the same
cost, which intuitively seems like worst case. In Subsect. 3.3 we prove that we do
indeed obtain the worst case matching for the Parallel Cows algorithm when the
cycle analysis yields a perfect binary tree. The competitive ratio for the Parallel
Cows algorithm then follows from observing that the walking costs are only O(1/ε)
times the matching costs.

3.1 Cycle Property

In this subsection we will show some useful properties about the combination of
the matchings produced by OPT and by the Parallel Cows algorithm, denoted
with A. In addition to building some intuition for the problem, these properties
will show that our analysis is tight.

We first define some notation. Let C = {c1, . . . , ck} ⊆ Z denote the set of
cow starting locations. We use ci to both refer to the cow as it is walking and
as the starting location, specifying when it is not clear from context. Let G =
{g1, . . . , gk} ⊆ Z denote the set of gate locations. When referring to a specific
algorithm, we use g(ci) : C → G to denote the gate that cow ci matches to. Con-
sider the graph with vertices V = C ∪ G. Let EOPT = {eOPT

1 , eOPT
2 , . . . , eOPT

k }
be OPT’s edges in the graph, where eOPT

i = (ci, g(ci)) and has weight |ci−g(ci)|.
We can similarly define EA for A. It is easy to see that the graph with vertices
V and edges EOPT ∪ EA is a disjoint union of cycles.

We now argue that there exists an optimal solution OPT where, loosely
speaking, edges eOPT do not cross, where by crossing we mean a pair of edges
(ei, ej) such that exactly one of the two endpoints of one edge lies between the
two endpoints of the other edge. Formally, we have the following lemma.

Lemma 1. There exists an optimal matching eOPT
1 , eOPT

2 , . . . , eOPT
k where for

each i, j ∈ {1, 2, . . . , k}, with i ≤ j, the following holds:

min {cj , g(cj)} ≤ min {ci, g(ci)} ⇒
either max {cj , g(cj)} ≤ min {ci, g(ci)}or max {cj , g(cj)} ≥ max {ci, g(ci)}.

Henceforth, we may assume that OPT does not have crossings.
It is easy to show that, by the definition of the algorithm, the same non-

crossing property holds for the Parallel Cows algorithm. Given an input instance,
consider both the solutions produced by OPT and by A. By leveraging the above
property, we can partition the arcs of the two solutions into single cycles, where
by cycle we mean a set of arcs from both A and OPT such that the undirected
graph induced by them is a cycle. Figure 1 depicts one such cycle.
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c1 g1 c2 g2 c3 g3 c4 g4 c5 g5 c6 g6

eOPT
1 eOPT

2 eOPT
3 eOPT

4 eOPT
5 eOPT

6

eA1 eA2 eA3 eA4 eA5

eA6

v0 v1 v2 v3

v4 v5

Fig. 1. A cycle and the corresponding MVST.

Finally, we will argue that any such cycle looks like the one in Fig. 1. We say
that two edges ei and ej are in the same direction if either (i) ci ≤ g(ci) and
cj ≤ g(cj) or (ii) ci ≥ g(ci) and cj ≥ g(cj), and the opposite direction if this is
not the case.

Lemma 2. Fix a cycle in the graph of A’s and OPT’s matchings. Let A’s edges
be eA

1 , eA
2 , . . . , eA

� and OPT’s edges be eOPT
1 , . . . , eOPT

� . Then eA
1 , . . . , eA

�−1 are all
in one direction and eA

� , eOPT
1 , . . . , eOPT

� are all in the opposite direction.

3.2 Perfect Tree Case

In this subsection, we show how to associate a cycle as described in the previous
section with a weighted binary tree, where the sum of the weights of the leaves
of the tree is the cost of the optimal matching in that cycle, and the sum of the
weights of the internal nodes of the tree provides an upper bound on the cost
of the matching found by the Parallel Cows algorithm. We additionally analyze
the cost of this tree when the tree is perfect.

Definition 1. A Full Weighted/ValuedBinaryTree (FWVBT) T is a full binary
tree, whose vertices are each associated with a weight and a value.

– The weight of T is defined as the sum of the values of all the vertices in T .
– The cost of T is defined as the sum of the values of all internal (non-leaf)

vertices of T .
– The total leaf value of T is defined as the sum of the values of all the leaves of T .
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Definition 2. A (1 + ε)-Minimum Value Subtree Tree ((1 + ε)-MVST) is an
FWVBT T with the following property: The value of a node i is equal to (1 +
ε)min (v1, v2), where v1 and v2 are the weights of the subtrees of i rooted at
the left and right child of i respectively (there is no constraint on the values of
leaves). A perfect (1+ ε)-MVST is a (1+ ε)-MVST where each leaf has the same
depth and the same value.

Since we assume ε is a fixed parameter, throughout we abbreviate (1+ ε)-MVST
by MVST.

Given a cycle as described in the previous section, one can associate it with
a MVST, as follows (see Fig. 1):

– Each edge eOPT
i of OPT corresponds to a vertex/leaf of value |ci−g(ci)|. Each

such leaf forms a distinct (connected) component.
– Consider the edges of A, except eA

� , in the order in which A adds them.
For each edge eA

i added, a vertex is introduced, and the two neighboring
connected components become its children in the tree. This merges the two
connected components into a single one. The value of this new vertex is set
to be (1 + ε)min (v1, v2), where v1 and v2 are the weights of the two subtrees
of the vertex.

– It can be easily verified that for each edge eA
i the total number of connected

components gets decreased by one, and that the tree is indeed binary and full.

We have the following lemma:

Lemma 3. With respect to this cycle and the corresponding MVST, the cost of
the optimal matching OPT is the total leaf value of the tree, while the cost of
A’s matching is upper bounded by the cost of the tree.

Let us now assume that the cycle produced by A has a length that is a power
of two, and that the above construction produces a perfect binary tree, where
each leaf has a value of 1. We prove the following lemma:

Lemma 4. AperfectMVSTwhere each leaf has a value of 1 has costΘ
(
klog2(3+ε)

)
.

Combined with Lemma 2, the above lemma also implies that the cost of the
matching returned by the algorithm for this particular class of cycles (the ones
corresponding to a perfect binary tree with leaf values of 1) is a Θ

(
nlog2(3+ε)−1

)
-

approximation with respect to the optimal matching. As we will see in the next
subsection, this particular class of cycles is actually the worst case.

3.3 Perfect Trees are the Worst Case

The result of this section is the following lemma:

Lemma 5. The cost of any MVST T is at most the cost of the smallest (in
terms of number of nodes) perfect MVST with size at least that of T and total
leaf value the same as T .
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To prove this, one can show that any MVST that has maximum cost for a fixed
tree with fixed total leaf value must have certain structure. One can then show
that a series of transformations can be performed on the tree such that the final
tree is a perfect MVST and that each transformation results in a new tree with
same or greater cost. The first transformation removes any nodes in the tree
with value 0, and the second transformation creates a balanced tree by replacing
leaves of maximum depth in the tree with leaves at a minimum possible depth
in the tree. The final transformation creates a perfect tree by adding leaves until
the tree is perfect.

3.4 Proof of Parallel Cows Competitiveness

We can now prove Theorem 1.

Proof (Theorem1). Fix some instance of k-LCWA where the value of the opti-
mal solution is OPT, and let A be the cost of the Parallel Cows algorithm on
this instance and MA be the cost of the matching found by the Parallel Cows
algorithm on this instance. Note that the cost of the optimal matching and the
cost of the optimal solution are the same. By Lemma 3, MA is the sum of the
costs of the MVSTs built on the cycles induced by the algorithm’s and optimal’s
matchings, while OPT is the sum of the leaves of those same MVSTs. Fix one
cycle, and let T be the MVST for that cycle. By Lemma 5, the cost of T can
be upper bounded by the cost of the minimum perfect MVST larger than T ,
while the cost of the optimal solution on that cycle remains fixed. Thus we have
by Lemma 4 that the cost of the algorithm’s matching on this cycle is at most
O

(
k
log2(3+ε)−1
c

)
times that of the optimal’s, where kc is the number of cows and

gates in the cycle. Thus MA is at most O
(
klog2(3+ε)−1OPT

)
.

Since each cow only stops when it finds an unused gate, the walking cost of
each cow in the Parallel Cows algorithm is the same as if that cow and the gate
it finds were the only ones present. Thus when ε ≤ 1 its walking cost is O(1/ε)
times its matching cost and we obtain that A = O

(
klog2(3+ε)−1OPT/ε

)
. 	


4 Extending the Algorithm for k-Lost Cows Without
Arrivals to k-Lost Cows

In this section we show how to extend the solution for the k-LCWA problem
to the k-LC problem. The basic idea is to maintain the state of our Parallel
Cows algorithm assuming all cows arrived at time 0. When a cow finds a gate
(occupied or unoccupied) we stop the cow and figure out who would match there
in the Parallel Cows algorithm. Based on this we update our state and continue
searching. We formalize this below.

While there is a cow c that is released and not matched to a gate, have c
walk as a (1 + ε)-biased cow. If during this walk c finds a gate g there are two
cases to consider. If g does not yet have a cow matched to it, then match c to g.
Otherwise, if there is some cow c′ currently matched to h, we calculate which
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cow would have reached location h first if both c and c′ were released at time
0. If c′ would reach this location first, then c continues her walk. If c would find
h first, then c “kicks” c′ out who continues his walk. Since we cannot actually
remove c′ from this gate once it is matched, we simply have c walk as c′, and
record that c is really matched to g.

The first observation is that the offline optimal matching does not change if
there are release times associated with the cows. So to show that this algorithm
has the same competitive ratio of the Parallel Cows algorithm, we only need to
show that the matching cost of this simulation is equal to the matching cost if
all cows were released at time 0. The result then follows from Theorem 1.

Lemma 6. Let I = (C,G) be an instance to the generalized cow problem with
release time ai for cow ci. The walking cost of the above simulation algorithm on
I is equal to the walking cost of the parallel cow algorithm on I with zero release
times.

Proof. Let M ⊂ C × G be the matching found by the Parallel Cows algorithm
on I with zero release times. For each c ∈ C, recall that g(c) ∈ G is the gate that
c matches to in M , that is (c, g(c)) ∈ M . We first show that if c ever reaches
the point g(c) in the simulation, then it will remain there for the rest of the
simulation, i.e., if c reaches its gate it will match there. To see this, assume by
contradiction that some cow c reaches g(c) but later leaves this location. Further,
assume c is the first cow to do this, and let c′ be the cow that causes c to leave
g(c). By definition of the simulation, this means that c′ would reach location
g(c) first in the parallel cows algorithm. However, since c′ does not match to
g(c), this means that c′ has already reached and left location g(c′) contradicting
that c was the first cow to leave its gate.

With this we can now prove the desired lemma, that the matching is indeed
the same. Let Ms ⊂ C × G denote the matching found by the simulation. Let
c1, c2, . . . , ck ∈ C such that ci is the i-th cow to find its gate in the parallel cows
algorithm. We show by induction that, for all i, (ci, g(ci)) ∈ Ms. For the base
case, note that since c1 is the first cow to find a gate in the parallel algorithm,
c1 will find g(c1) before any other gate in G. However by the above argument,
once c1 finds g(c1) it will match there in Ms. Now for the inductive hypothesis,
assume the first j − 1 cows match the same in M and Ms. Note that since cj

is the j-th cow to find its gate in the parallel algorithm, it sees at most j − 1
gates before reaching g(cj) in the parallel algorithm, and these all belong to
g(c1), g(c2), . . . , g(cj−1). However, by the inductive hypothesis, c1, c2, . . . , cj−1

will match there in Ms, so cj can not match to any of those. This means that cj

must reach g(cj) and by the above argument (cj , g(cj)) ∈ Ms. 	


5 Comparing k-Lost Cows and Online Matching
on a Line

In this section we explore the relationship between the k-LC and OML problems.
In particular we show that positive results in the k-LC setting carry over to
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positive results in the OML setting (assuming the competitive ratio is defined
in terms of the number of servers, n). We also show that lower bounds in the
k-LC setting carry over to lower bounds in the OML setting, however here the
competitive ratio for OML is defined in terms of the minimum number of positive
requests in an optimal matching.

Theorem 2. Let p be the minimum number of positive requests in an optimal
solution to OML. The following two implications hold.

1. If there is an f(p)-competitive algorithm for OML then there is an f(k)-
competitive algorithm for k-LC.

2. If there is an f(k)-competitive algorithm for k-LC then there is an f(n)-
competitive algorithm for OML.

Proof. For the first implication, assume that we have an f(p)-competitive algo-
rithm A for OML and let I = (C,G) be an instance to the k-LC problem.
To obtain an f(k)-competitive algorithm, we create an instance I ′ in the OML
problem with a server at every integer. When a cow arrives, at some location c
we have two requests for location c in I ′. It can easily be shown that A can be
converted to an algorithm where every request is matched with the left most or
right most server with no increase in cost. Assuming this, we now have c walk
to the server that A matches the second request with, which will either be one
unit to the left or right. While c has not yet found a gate, we continue to have
a request in I ′ at c’s current location, always having c walk to the server that is
used to match the latest request. Once c finds a gate, we stop requesting to c’s
location. We continue to do this until all cows have been matched.

First note that by construction the total walking cost of the cows is within
a constant factor of the matching cost of A. Further, we claim that there is an
optimal solution to I ′ with k positive requests. To see this assume by contradic-
tion that the minimum (in terms of positive requests) optimal matching to I ′

has more than k positive requests. Since there are k gates, at least one positive
request, say ri, must be matched to a non-gate location, say s(ri). However every
used server that is not a gate receives a request. So there is another request at
location s(ri), say rj , that is matched to some positive cost sever s(rj). Note that
the optimal solution that matches ri to s(rj) and rj as cost 0 does not increase
the cost of the matching and has one less positive request. This contradicts our
choice of OPT. This shows that there is an algorithm A that is f(k)-competitive
on I ′ and therefore the corresponding cow algorithm is f(k)-competitive on I.

To prove the second implication assume that we have an f(k)-competitive
algorithm for the k-LC problem and as input to the OML problem we are given
an input I consisting of a set of servers S. Whenever a request ri arrives, we
release a cow c at location ri and it begins to walk. Whenever c reaches a location
corresponding to a server s ∈ S that no previous request has been matched to
s we match ri to s and place a gate location at s so c stops walking. It is clear
that the cost of the matching is at most the total walking cost of the cows and
further the number of cows is equal to the number of servers. 	
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Theorem 3. There is an O
(
nlog2(3+ε)−1/ε

)
-competitive algorithm for OML.

Proof. By Theorem 1 and Lemma 6, we have an O
(
klog2(3+ε)−1/ε

)
-competitive

algorithm for k-LC. The result follows from Theorem 2. 	

We note that, in a manner similar to that presented in Sect. 4, it is possible to
extend the Parallel Cows algorithm for k-LCWA to OML directly and obtain an
O

(
plog2(3+ε)−1/ε

)
-competitive algorithm for OML.
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