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1 Introduction

Most theorems have more than one proof and most theories have more than
one axiomatization. Certain proofs or axiomatizations are preferable to others
because they are shorter or more transparent or for some other reason. Our
aim is to describe or study the possible proofs of a theorem or the possible
axiomatizations of a theory. As the former is a special instance of the latter, by
considering a theory consisting of one theorem, it suffices to consider theories.

To describe the possible axiomatizations of a theory we first have to spec-
ify what we mean by a theory and what counts as an axiomatization of it. We
assume that theories are given by consequence relations, and consider an arbi-
trary consequence relation to be an axiomatization of the theory if it has the
same theorems as the consequence relation of the theory.

In [1] Avron argues convincingly that in general a logic is more than its set of
theorems, meaning that there exist logics which have the same set of theorems
but which nevertheless do not seem to be equal. For example, because the proofs
of certain theorems differ with the logic. Then the question what counts as an
axiomatization of a certain theory becomes more complex in that one wishes to
axiomatize certain other characteristics of the theory, such as certain inference
steps, rather than just its theorems.

In this paper, however, we restrict ourselves to the set of theorems as that
part of a theory that an axiomatization has to capture. And as we will see,
already in this case the variety of possible axiomatizations of a theory can be
quite complicated and is in many cases not yet well-understood.

Thus our main aim is a description of the consequence relations that have
the same theorems as a given consequence relation. As it turns out, admissible
rules are the central notion here, where a rule is admissible in a theory if it
can be added to a theory but no new theorems can be proved in the extension.
Clearly, such extensions are axiomatizations of the original theory, which is why
admissible rules are so important in this setting.
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The notion of admissibility, although sometimes under a different name, goes
back to the 1930’s, but a systematic study of the subject was first undertaken
by Rybakov in the 1980’s [24] and is continued by him and many others till
today (see the bibliography for references). The first major results on this sub-
ject concerned the decidability of admissibility in certain intermediate and modal
propositional logics, such as intuitionistic logic, modal logic K4, GL and S4. Later,
the description of admissible rules in terms of bases was obtained for many of
these logics and their fragments. Nowadays there are many aspects of admissi-
bility that are studied. The work of Ghilardi [6] established a firm connection
between admissibility and unification theory, and provided an algebraic app-
roach to the issues discussed above. This algebraic approach to admissibility has
flourished over the last decade and has been especially successful in the setting
of substructural logics.

This paper is organized as follows. In Sect. 2 consequence relations and admis-
sible rules are defined, and the main aim is formulated in these terms. Section 3
contains some of the main results in the area, a summary that, because of lack
of space, is by no means complete. The paper ends with a brief discussion of
topics that have been omitted in the main exposition. I thank Emil Jeřábek for
useful comments on an earlier draft of this note.

2 Framework

To maintain a certain level of generality we assume that there is a language
L, which contains propositional variables or atoms p, q, r, . . . , and possibly some
connectives, constants or operators. There is a set of expressions FL in this
language that at least contains the propositional variables. In this way, what
we discuss below applies to various consequence relation, such as consequence
relations for propositional intermediate and modal logics, to mention the main
examples. But also consequence relations that are relations on sequents rather
than formulas are captured by this approach. Although some of what we are
going to say also applies to predicate logics, we restrict ourselves in this paper
to propositional logics. Substitutions σ are maps from FL to FL that commute
with all logical symbols in the language.

2.1 Consequence Relations

Multi-conclusion consequence relations are relations � between sets of expres-
sions. We write Γ � Δ if the pair (Γ,Δ) belongs to the relation. We also write
Γ/Δ for the pair (Γ,Δ), and A,Γ for {A} ∪ Γ, and Γ,Π for Γ ∪ Π. A finitary
multi-conclusion structural consequence relation (mcr) is a relation � between
finite sets of expressions that satisfies, for all finite sets of expressions Γ,Γ′,Δ,Δ′

and expressions A:

reflexivity A � A,
weakening if Γ � Δ, then Γ′,Γ � Δ,Δ′,
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transitivity if Γ � Δ, A and Γ′, A � Δ′, then Γ′,Γ � Δ,Δ′,
structurality if Γ � Δ, then σΓ � σΔ for all substitutions σ.

A finitary single-conclusion consequence relation (scr) is a relation between
finite sets of expressions and expressions satisfying the variants of the three
properties above where there is a singleton to the right of �, and Γ � {A} is
replaced by Γ � A. We often omit the word “finitary” in what follows, and when
we speak about “consequence relations” we refer to both multi-conclusion and
single-conclusion ones.

Although most logics we discuss can be represented via a single-conclusion
consequence relation, the multi-conclusion analogue allows us to express cer-
tain properties more naturally, such as the disjunction property. It follows from
Proposition 1 below that an intermediate logic has the disjunction property if
and only if {p ∨ q}/{p, q} is admissible, and similarly for modal logic and the
modal disjunction property, expressed by the admissibility of {�p ∨ �q}/{p, q}.

The minimal single-conclusion and multi-conclusion consequence relations �m
and �mm are defined as follows.

Γ �m A ≡def A ∈ Γ Γ �mm Δ ≡def Γ ∩ Δ �= ∅.

A is a theorem if ∅ � A, which we write as � A. The set of all theorems of
a consequence relation is denoted by Th(�). Δ is a multi-conclusion theorem
if � Δ, which is short for ∅ � Δ. The set of all multi-conclusion theorems is
denoted by Thm(�). When we speak about consequence relations in general we
use the word theorem, meaning theorem in case the relation is single-conclusion
and multi-conclusion theorem in case the relation is multi-conclusion.

Given a logic L with set of theorems Th( L), there are in general many multi-
conclusion consequence relations � such that Th(�) = Th( L). Natural examples
are

Γ � Δ ≡def Δ ∩ Th( L) �= ∅,

or, in case the language contains implication and conjunction,

Γ � Δ ≡def ∃A ∈ Δ(
∧

Γ → A) ∈ Th(�).

Both these consequence relations are saturated, meaning that

Γ � Δ ⇒ ∃A ∈ ΔΓ � A.

Clearly, every single-conclusion consequence relation is saturated. And if one
starts with a single-conclusion consequence relation or logic and wishes to asso-
ciate a saturated multi-conclusion consequence relation with it (meaning with
the same theorems as the single-conclusion consequence relation or logic), then
the two consequence relations given in the previous paragraph provide examples.
In the next section we encounter multi-conclusion consequence relations that are
no longer saturated, such as the admissibility relation.



Tutorial on Admissible Rules in Gudauri 13

2.2 Admissible and Derivable Rules

A (multi-conclusion) rule is an ordered pair of finite sets of expressions, written
Γ/Δ or Γ

Δ . It is single-conclusion if |Δ| = 1, in which case we also write Γ/A for
Γ/{A}. For R = Γ/Δ and a substitution σ, σR is short for σΓ/σΔ, and similarly
for sets of rules.

Given a multi-conclusion consequence relation � and a set of rules R, �R

is the smallest consequence relation extending � for which Γ � Δ holds for all
Γ/Δ in R. Similarly for single-conclusion rules and single-conclusion consequence
relations. In case of a single rule R we write �R for �{R}. Given a consequence
relation �, a set of rules R is a basis for a consequence relation �′ ⊇� or axioma-
tizes �′ over � if �′ = �R. A rule R = Γ/Δ is derivable if Γ � Δ. It is admissible,
written Γ |∼Δ, if Thm(�) = Thm(�R), and Th(�) = Th(�R) in case � and
R are single-conclusion. A set of rules is admissible if all of its members are.

As can be seen from the definition, a rule is admissible when one can add it
to the consequence relation without obtaining new theorems, just (possibly) new
derivations. This shows that admissibility solely depends on the theorems of a
consequence relation, while derivability does not. The admissibility relation |∼
itself is a consequence relation, namely the largest consequence relation with
the same theorems as �. Therefore, the main topic of this paper, the possible
axiomatizations of a theory, can now be reformulated in exact terms as the
admissible rules of consequence relations.

The following proposition provides the link between admissibility and unifi-
cation.

Proposition 1. For every saturated consequence relation �,

Γ |∼Δ ⇔ ∀σ : ∀A ∈ Γ (� σA) ⇒ ∃B ∈ Δ(� σB).

Therefore every single-conclusion consequence relation satisfies

Γ |∼A ⇔ ∀σ : ∀B ∈ Γ (� σB) ⇒ � σA.

In the literature admissibility is often defined via the equivalence above.
A single-conclusion consequence relation � is structurally complete [19] if all

proper extensions in the same language have new theorems. It is not difficult
to see that � is structurally complete if and only if it coincides with |∼ . Thus
structural completeness means that there are no “hidden” principles of inference,
no underivable admissible rules, all valid inferences are already captured by the
consequence relation itself.

3 Results

Classical propositional logic as well as a certain formulation of classical predicate
logic in which substitution is an explicit rule, are structurally complete [19,20].
Or, to be precise, for any rule Γ/A admissible in classical logic, (

∧
Γ → A) is

a theorem of classical logic, and therefore Γ/A is derivable in any consequence
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relation for classical logic in which the deduction theorem holds. Nonderivable
admissible rules appear as soon as one turns from classical logic to extensions
such as modal logic or weaker logics such as intermediate logics. There do exist,
though, some proper intermediate and modal logics that are structurally com-
plete, Gödel-Dummett logic LC being an example [5].

3.1 Decidability

Rybakov proved numerous results on admissibility, most importantly the decid-
ability of the admissibility relation of intuitionistic propositional logic IPC, the
modal logics K4, GL, S4 and several other intermediate and modal logics [24]. He
thereby answered a question by Harvey Friedman from 1975 about the decid-
ability of admissibility in intuitionistic logic positively. Rybakov’s method can
be adapted to many other logics, as has been done in [2,18,25,26], where the
decidability of admissibility in various temporal logics and minimal logic is estab-
lished. Ghilardi constructed a transparent algorithm for deciding admissibility in
IPC [7], and Metcalfe and the author developed proof systems for admissibility
for several well-known intermediate and modal logics, from which decision algo-
rithms can be obtained as well [11,12]. Jeřábek proved that the complexity of
the admissibility relation is coNEXP-complete in many modal and intermediate
logics such as K4, S4, GL and IPC [15], thus showing that in these logics checking
admissibility is strictly more complex than checking derivability.

Derivability is a special case of admissibility, and therefore decidability of
the latter implies the decidability of theoremhood in the former. That the other
direction does not hold has been shown in [3], and later also in [34], where certain
modal logics are shown to be instances of this phenomenon.

3.2 Bases

An explicit description of the admissible rules is a next step in the investiga-
tion of logics for which the admissibility relation is decidable. Even in the case
that admissibility is undecidable it cannot be excluded that there exists a useful
description of them, but until now the logics for which such an explicit descrip-
tion has been found all have a decidable admissibility relation.

Rybakov in [24] showed that various modal and intermediate logics, including
IPC and K4, cannot have a finite basis for their admissible rules. This, of course,
does not imply that these logics do not have an infinite basis that still can be
described in a compact way. As we will see, they often do.

Roziére [23] was the first to provide a concrete basis for the admissible rules
for a logic for which the problem is not trivial, by proving that the set V of the
so-called Visser rules is a basis for the admissible rules of IPC. This result was
not published and was independently but later obtained by the author, who,
using techniques from [6], strengthened it by showing that in every intermediate
logic in which these rules are admissible they form a basis [10]. This theorem
has implications for several intermediate logics. It implies, for example, that the
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rules are a basis for the admissible rules in the logics of frames with exactly n
maximal nodes. In particular, they are a basis for KC.

The Visser rules also appeared in the work of Visser [30,31], who proved that
the admissible rules of IPC and Heyting Arithmetic are equal, and Skura [27],
who used them in the context of refutation systems. Examples of intermediate
logics in which not all Visser Rules are admissible are the Gabbay–de Jongh
logics [9] and Medvedev logic, which is structurally complete [10,22,33].

Using similar techniques, Jeřábek provided bases for many transitive modal
logics, including well-known logics such as K4, S4 and GL [14]. For modal logics
below K4 much less is known about admissibility. Some partial answers can be
found in [16,32].

As one would expect, admissibility is very sensitive to the language one uses.
It has long been known that the implicational fragment of IPC is hereditarily
structurally complete [21]. The same holds for the implication–conjunction and
some other fragments of IPC [17,29]. In [17] Mints showed that any admissible
underivable rule of IPC must contain both implication and disjunction. Inter-
estingly, the implication–negation fragment of IPC is not structurally complete,
as was first observed by Wroński. In [4] Cintula and Metcalfe proved that the
so-called Wroński Rules are a basis for the admissible rules of this fragment.
A nontrivial example of a logic for which the implication–negation fragment is
structurally complete is relevant logic [28].

4 Furthermore

The above is but a brief summary of some of the highlights in the area of admis-
sibility. I have mainly covered the topics that I have treated in my tutorial in
beautiful Gudauri. Several equally important aspects of admissibility have been
omitted due to lack of space. Over the last twenty years, admissibility has been
studied in various other contexts than the ones mentioned above, such as sub-
structural logics, canonical rules and predicate logic. Unification theory has been
central in some of the results described above. Also, the algebraic view on admis-
sibility has been explored and lead to various beautiful results. I hope that the
exposition above has made the reader wish to know more about this field and
that the bibliography may provide a guideline towards that aim.
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