
Analysing and Compiling Coroutines with
Abstract Conjunctive Partial Deduction

Danny De Schreye, Vincent Nys(B), and Colin Nicholson

Department of Computer Science, KU Leuven,
Celestijnenlaan 200A, 3001 Heverlee, Belgium

{danny.deschreye,vincent.nys}@cs.kuleuven.be

Abstract. We provide an approach to formally analyze the computa-
tional behavior of coroutines in Logic Programs and to compile these
computations into new programs, not requiring any support for corou-
tines. The problem was already studied near to 30 years ago, in an analy-
sis and transformation technique called Compiling Control. However, this
technique had a strong ad hoc flavor: the completeness of the analysis
was not well understood and its symbolic evaluation was also very ad
hoc. We show how Abstract Conjunctive Partial Deduction, introduced
by Leuschel in 2004, provides an appropriate setting to redefine Com-
piling Control. Leuschel’s framework is more general than the original
formulation, it is provably correct, and it can easily be applied for simple
examples. We also show that the Abstract Conjunctive Partial Deduc-
tion framework needs some further extension to be able to deal with
more complex examples.

1 Introduction

The work reported on in this paper is an initial step in a new project, in which we
aim to formally analyze and automatically compile certain types of coroutining
computations. Coroutines are a powerful means of supporting complex computa-
tion flows. They can be very useful for improving the efficiency of declaratively
written programs, in particular for generate-and-test based programs. On the
other hand, obtaining a deep understanding of the computation flows underly-
ing the coroutines is notoriously difficult.

In this paper we restrict our attention to pure, definite Logic Programs. In
this context, the problem was already studied nearly 30 years ago. Bruynooghe
et al. (1986) and Bruynooghe et al. (1989) present an analysis and transformation
technique for coroutines, called Compiling Control (CC for short). The purpose
of the CC transformation is the following: transform a given program, P , into a
program P ′, so that computation with P ′ under the standard selection rule mimics
the computation with P under a non-standard selection rule. In particular, given
a coroutining selection rule for a given Logic Program, the transformed program
will execute the coroutining if it is evaluated under the standard selection rule of
Prolog.

c© Springer International Publishing Switzerland 2015
M. Proietti and H. Seki (Eds.): LOPSTR 2014, LNCS 8981, pp. 21–38, 2015.
DOI: 10.1007/978-3-319-17822-6 2

22 D. De Schreye et al.

To achieve this, CC consists of two phases: an analysis phase and a synthesis
phase. The analysis phase analyzes the computations of a program for a given
query pattern and under a (non-standard) selection rule. The query pattern is
expressed in terms of a combination of type, mode and aliasing information.
The selection rule is instantiation-based, meaning that different choices in atom
selection need to be based on different instantiations in these atoms. The analysis
results in what is called a “trace tree”, which is a finite upper part of a symbolic
execution tree that one can construct for the given query pattern, selection rule
and program. In the synthesis phase, a finite number of clauses are generated,
so that each clause synthesizes the computation in some branch of the trace tree
and such that all computations in the trace tree have been synthesized by some
clause. The technique was implemented, formalized and proven correct, under
certain fairly technical conditions.

Unfortunately, the CC transformation has a rather ad hoc flavor. It was very
hard to show that the analysis phase of the transformation was complete, in the
sense that a sufficiently large part of the computation had been analyzed to be
able to capture all concrete computations that could possibly occur at run time.
Even the very idea of a “symbolic execution” had an ad hoc flavor. It seemed
that it should be possible to see this as an instance of a more general framework
for analysis of computations.

Fortunately, since the development of CC a number of important advances
have been achieved in analysis and transformation:

– General frameworks for abstract interpretation (e.g. Bruynooghe 1991) were
developed. It is clear that abstract interpretation has the potential to provide
a better setting for developing the CC analysis.

– Partial deduction of Logic Programs was developed (e.g. Gallagher 1986). Par-
tial deduction seems very similar to CC, but the exact relationship was never
identified. When John Lloyd and John Shepherdson formalized the issues of
correctness and completeness of partial deduction in Lloyd and Shepherdson
(1991), this provided a new framework for thinking about a complete analysis
of a computational behavior and it was clear that some variant of this could
improve the CC analysis.

– Conjunctive partial deduction (see De Schreye et al. 1999) seems even closer
to CC. In an analysis for a CC transformation, one really does not want to
split up the conjunctions of atoms into separate ones and then analyze the
computations for these atoms separately. It is crucial that one can analyze
the computation for certain atoms in conjunction (which is how conjunctive
partial deduction generalizes partial deduction), so that their behavior under
the non-standard selection rule may be observed.

– Finally, abstract (conjunctive) partial deduction (Leuschel 2004) brings all
these features together. It provides an extension of (conjunctive) partial deduc-
tion in which the analysis is based on abstract interpretation, rather than on
concrete evaluation.

In this paper we will demonstrate – mostly on the basis of examples – that
abstract conjunctive partial deduction (ACPD for short) is indeed a suitable

Analysing and Compiling Coroutines 23

framework to redefine CC in such a way that the flaws of the original approach
are overcome. We show that for simple problems in the CC context, ACPD
can, in principle, produce the transformation automatically. We also show that
for more complex CC transformations, ACPD is still not powerful enough. We
suggest an extension to ACPD that allows us to solve the problem and illustrate
with an example that this extension is very promising.

After the preliminaries, in Sect. 3, we introduce a fairly refined abstract
domain, including type, mode and aliasing information, and we show, by means
of an example, how ACPD allows us to analyze a coroutine and compile the
transformed program. In Sect. 4 we propose a more complex example and show
why it is out of scope for ACPD. We introduce an additional abstraction in our
domain and illustrate that this abstraction solves the problem. This abstrac-
tion, however, does not respect the requirements of the formalization of ACPD
in Leuschel (2004). We end with a discussion.

2 Preliminaries

We assume that the reader is familiar with the basics of Logic Programming
(Lloyd 1987). We also assume knowledge of the basics of abstract interpretation
(Bruynooghe 1991) and of partial deduction (Lloyd and Shepherdson 1991).

In this paper, names of variables will start with a capital. Names of constants
will start with a lower case character. Given a logic program P , Conp, V arp,
Funp and Predp respectively denote the sets of all constants, variables, functors
and predicate symbols in the language underlying P . Termp will denote the set
of all terms constructable from Conp, V arp and Funp. Atomp denotes the set of
all atoms which can be constructed from Predp and Termp. We will often need
to refer to conjunctions of atoms of Atomp and we denote the set of all such
conjunctions as ConAtomp.

We will introduce an abstract domain in the following section. The abstract
domain will be based on a set of abstract constant symbols, AConp. Based on
these, there is a corresponding set of abstract terms, ATermp, which consists
of the terms that can be constructed from AConp and Funp. AAtomp will
denote the set of abstract atoms, being the atoms which can be constructed
from ATermp and Predp. Finally, AConAtomp denotes the set of conjunctions
of elements of AAtomp.

3 An Example of a CC Transformation, Using ACPD

In this section, we provide the intuitions behind our approach by means of a
simple example. We use permutation sort as an illustration. The intention is to
transform this program so that calls to perm/2 and ord/1 are interleaved.

Example 1 (Permutation sort).

24 D. De Schreye et al.

sort(X,Y) ←− perm(X,Y), ord(Y).

perm([],[]).

perm([X|Y],[U|V]) ←−
del(U,[X|Y],W),perm(W,V).

del(X,[X|Y],Y).

del(X,[Y|U],[Y|V]) ←− del(X,U,V).

ord([]).

ord([X]).

ord([X,Y|Z]) ←−
X ≤ Y, ord([Y|Z]).

We now introduce the abstract domain. This domain consists of two types of
new constant symbols: g and ai, i ∈ N. The symbol g denotes any ground term
in the concrete language. The basic intuition for the symbols ai is that they are
intended to represent variables of the concrete domain. However, as we want the
abstract domain to be closed under substitution (if an abstract term denotes
some concrete term, then it should also denote all of its instances), an abstract
term ai will actually represent any term of the concrete language.

The subscript i in a term ai is used to represent aliasing. If an abstract term,
abstract atom or abstract conjunction of atoms contains ai several times (with
the same subscript), the denoted concrete terms, atoms or conjunctions of atoms
contain the same term in all positions corresponding to those occupied by ai.
For instance, the abstract conjunction perm(g, a1), ord(a1) denotes the concrete
conjunctions {perm(t1, t2), ord(t2)|t1, t2 ∈ Termp and t1 is ground}.

In addition to g and ai, we will include all concrete constants in the abstract
domain, so Conp ⊆ AConp. This is not essential for the approach: we could
develop a sound and effective ACPD for the CC transformation based on the
abstract constants g and ai, i ∈ N, alone. However, including Conp in AConp

makes the analysis more precise: some redundant paths in the analysis are
avoided.

Definition 1 (Abstract domain). The abstract domain consists of:

– AConp = Conp ∪ {g} ∪ {ai|i ∈ N}.
– ATermp, AAtomp and AConAtomp are defined as the sets of the terms, atoms

and conjunctions of atoms constructable from AConp, Funp and Predp.

Next, we define the semantics of the abstract domain, through a concretiza-
tion function γ. With slight abuse of notation, we use the same symbol γ to
denote the concretization functions on ATermp, AAtomp and AConAtomp.

In order to formalize the semantics of the aliasing, we need two auxiliary
concepts: the subterm selection sequence and the aliasing context.

Definition 2 (Subterm selection sequence). Let t be a term, atom or con-
junction of atoms (either concrete or abstract).

– i ∈ N0 is a subterm selection sequence for t, if t = f(t1, ..., tn) and i ≤ n. The
subterm of t selected by i is ti.

– i1.i2.....in is a subterm selection sequence for t, if t = f(t1, ..., tn), i1 ≤ n,
i1 ∈ N0 and i2.....in is a subterm selection sequence for ti1 . With an induc-
tively defined notation, we denote by ti1.i2.....ik the subterm of ti1....ik−1 selected
by ik, with 1 < k ≤ n. We also refer to ti1.i2.....in as the subterm of t selected
by i1.i2.....in.

Analysing and Compiling Coroutines 25

Note that, in this definition, we assume that a conjunction of atoms A1,
A2,...,An is denoted as ∧(A1, A2, ..., An).

Example 2 (Subterm selection sequence). Let t = f(g(h(X), 5), f(h(a), Y)), then
t1.1.1 = X, t2.1.1 = a.

Definition 3 (Aliasing context). Let t be an abstract term, atom or conjunc-
tion of atoms. The aliasing context of t, denoted AC(t), is the finite set of pairs
(sss1, sss2) of subterm selection sequences of t, such that tsss1 = tsss2 = ai for
some i ∈ N.

Example 3 (Aliasing context). Let t = p(f(a2, g), a1, a2, g(h(a1))), then AC(t) =
{(1.1, 3), (2, 4.1.1)}.
Definition 4 (Concretization function). The concretization function γ :
ATermp ∪AAtomp ∪AConAtomp → 2Termp ∪2Atomp ∪2ConAtomp is defined as:

– γ(c) = {c}, for any c ∈ Conp

– γ(g) = {t ∈ Termp|t is ground}
– γ(ai) = Termp, i ∈ N

– γ(f(at1, ..., atn)) = {f(t1, ..., tn)|ti ∈ γ(ati), i = 1...n, and let t denote
f(t1, ..., tn), then for all (sss1, sss2) ∈ AC(f(at1, ..., atn)) : tsss1 = tsss2}

Example 4 (Concretization function). γ(p(f(a2, g), a1, a2, q(h(a1)))) = {p(f(t1,
t2), t3, t1, q(h(t3)))|t1, t3 ∈ Termp, t2 ground term of Termp}
The abstract domain introduced above is infinitely large. There are two causes for
this. Terms can be nested unboundedly deep, therefore infinitely many different
terms exist. In addition, there are infinitely many ai, i ∈ N, symbols.

If so desired, the abstract domain can be refined, so that it becomes finite.
This is done by using depth-k abstraction and by defining an equivalence relation
on {ai|i ∈ N}. For the purpose of this paper, the infinite size of the abstract
domain is not a problem.

Let us return to the permutation sort example. ACPD requires a top-level
abstract atom (or conjunction) to start the transformation. Let sort(g, a1) be
this atom. In the context of the A-coveredness condition of partial deduction,
our initial set A is {sort(g, a1)}.

Below, we construct a finite number of finite, abstract partial deduction
derivation trees for abstract (conjunctions of) atoms. The construction of these
trees assumes an “abstract unification” and an “abstract unfold” operation.
Their formal definitions can be found in Annex (2014). For now, we only show
their effects in abstract partial derivation trees.

Next, we need an “oracle” that decides on the selection rule applied in the
abstract derivation trees. This oracle mainly has two functions:

– to decide whether an obtained goal should be unfolded further, or whether it
should be kept residual (to be split and added to A),

– to decide which atom of the current goal should be selected for unfolding.

26 D. De Schreye et al.

sort(g, a1)

perm(g, a1), ord(a1)

del(a2, g, a4), perm(a4, a3), ord([a2|a3])

perm(g, a3), ord([g|a3])
a2 = g, a4 = g

ord([])

�

a1 = [] a1 = [a2|a3]

Fig. 1. Abstract tree for sort(g, a1)

perm(g, a3), ord([g|a3])

del(a5, g, a7), perm(a7, a6), ord([g, a5|a6])

perm(g, a6), ord([g, g|a6])
a5 = g, a7 = g

ord([g])

�

a3 = [] a3 = [a5|a6]

Fig. 2. Abstract tree for perm(g, a3),
ord([g|a3])

In fact, we will use a third type of decision that the oracle may make: it
may decide to “fully evaluate” a selected atom. This type of decision is not
commonly supported in partial deduction. What it means is that we decide not
to transform a certain predicate of the original program, but merely keep its
original definition in the transformed program. In partial deduction, this can be
done by never selecting these atoms, including them in A and including their
original definition in the transformed program.

In our setting, however, we want to know the effect that solving the atom
has on the remainder of the goal. Therefore, we will assume that an abstract
interpretation over our abstract domain computes the abstract bindings that
solving the atom results in. These are applied to the remainder of the goal. Note
that this cannot easily be done in standard partial deduction, as fully evaluating
an atom during (concrete) partial deduction may not terminate. In Vidal (2011),
a similar functionality is integrated in a hybrid approach to conjunctive partial
deduction.

For now, we simply assume the existence of the oracle. Figures 1, 2 and 3 show
the abstract partial derivation trees that ACPD may build for permutation sort
and top level A = {sort(g, a1)}.

In these figures, in each goal, the atom selected for abstract unfolding is
underlined. If an atom is underlined twice, this expresses that the atom was
selected for full abstract interpretation.

Both unfolding and full abstract evaluation may create bindings. Our abstract
unification only collects bindings made on the ai terms. Bindings created on g
terms are not relevant.

In the left branch of the tree in Fig. 1 we see the effect of including the
concrete constants in the abstract domain. As a result, the binding for a1 is [],
instead of g. If we had not included Conp in AConp, then ord(g) would have
required a full analysis, using the three clauses for ord/1.

A goal with no underlined atom indicates that the oracle selects no atom and
decides to keep the conjunction residual. After the construction of the tree in
Fig. 1, ACPD adds the abstract conjunction perm(g, a3), ord([g|a3]) to A. ACPD
starts a new tree for this atom. This tree is shown in Fig. 2.

The tree is quite similar to the one in Fig. 1. The main difference is that, in
the residual leaf, the ord atom now has a list argument with two g elements.

Analysing and Compiling Coroutines 27

perm(g, a6), ord([g, g|a6])

perm(g, a6), g ≤ g, ord([g|a6])

perm(g, a6), ord([g|a6])

Fig. 3. Abstract tree for perm(g, a6), ord([g, g|a6])

This pattern does not yet exist in the current A and is therefore added to A.
A third abstract tree is computed for perm(g, a6), ord([g, g|a6]), shown in Fig. 3.

In Fig. 3, the residual leaf perm(g, a6), ord([g|a6]) is a renaming of the con-
junction perm(g, a3), ord([g|a3]), which is already contained in A. Therefore,
ACPD terminates the analysis, concluding A-coveredness for A = {sort(g, a1),
∧(perm(g, a3), ord([g|a3])),∧(perm(g, a6), ord([g, g|a6]))}.

In standard (concrete) conjunctive partial deduction, the analysis phase
would now be completed. In ACPD, however, we need an additional step. In the
abstract partial derivation trees, we have not collected the concrete bindings
that unfolding would produce. These are required to generate the resolvents.
Therefore, we need an additional step, constructing essentially the same three
trees again, but now using concrete terms and concrete unification.

We only show one of these concrete derivation trees in Fig. 4. It corresponds to
the tree in Fig. 2. We define the root of a concrete derivation tree corresponding
to an abstract tree as follows.

Definition 5 (Concrete conjunctions in the root). Let acon ∈ A, then the
conjunction in the root of the corresponding concrete tree, denoted as c(acon),
is obtained by replacing any g or ai symbol in acon by a fresh free variable,
ensuring that multiple occurrences of ai, with the same subscript i, are replaced
by identical variables.

When unfolding the concrete tree, every abstract unfolding of the abstract
tree is mimicked, using the same clauses, over the concrete domain.

The step of full abstract interpretation of the del(a5, g, a7) atom in Fig. 2 has
no counterpart in Fig. 4. The atom del(U, [X1|X2],W) is kept residual and the
del/3 clauses are added to the transformed program.

perm(X,Y), ord([Z|Y])

del(U, [X1|X2],W), perm(W,V), ord([Z,U |V])ord([Z])

�

X = [], Y = [] X = [X1|X2], Y = [U |V]

Fig. 4. Concrete tree corresponding to Fig. 2

28 D. De Schreye et al.

More specifically, using a renaming p1(X,Y,Z) for ∧(perm(X,Y), ord([Z|Y]))
and p2(W,V,Z, U) for ∧(perm(W,V), ord([Z,U |V])), we synthesize the following
resolvents from the tree in Fig. 4:
p1([], [], Z) ←− .
p1([X1|X2], [U |V], Z) ←− del(U, [X1|X2],W), p2(W,V,Z, U).
From the counterparts of the trees in Figs. 1 and 3, we obtain the following
additional resultants:
sort([], []).
sort([X1|X2], [Y1|Y2]) ←− del(Y1, [X1|X2], Z), p1(Z, Y2, Y1).
p2(U, V,W,X)W ≤ X, p1(U, V,X).

This transformation inherits correctness results from ACPD. In particular,
A-closedness and independence guarantee the completeness and correctness of
the analysis. In addition, the transformation preserves all computed answers
(in both directions) and finite failure of the transformed program implies finite
failure of the original.

4 A More Complex Example, Introducing the multi
Abstraction

In Sect. 3 we have shown that ACPD is indeed sufficient to formally revisit CC
for a simple example. However, for more complex examples, ACPD still lacks
expressivity. Consider the following prime number generator.

Example 5 (Prime numbers)

primes(N,P) ? integers(2,I),sift(I,P),len(P,N).

integers(N,[]).

integers(N,[N|I]) ? M is N+1, integers(M,I).

sift([N|Is],[N|Ps]) ? filter(N,Is ,F), sift(F,Ps).

sift ([] ,[]).

divides(N,M) ? X is M mod N, X is 0.

not_divide(N,M) ? X is M mod N, X > 0.

filter(N,[M|I],F) ? divides(N,M), filter(N,I,F).

filter(N,[M|I],[M|F]) ? not_divide(N,M), filter(N,I,F).

filter(N,[] ,[]).

len ([],0).

len([H|T],N) ? M is N - 1, len(T,M).

The program is intended to be called with a goal primes(N,P), with N
a positive integer and P a free variable. The integers/2 predicate generates
growing lists of integer numbers. filter/3 represents the removal of all multiples
of a single integer N from a list. sift/2 recursively filters out multiples of an
initial list element which is prime.

The complete ACPD style analysis is available in Annex (2014). We only
present some relevant parts.

Analysing and Compiling Coroutines 29

The top level goal for the abstract analysis is primes(g, a1), so that the
initial set A is {primes(g, a1)}. A first abstract derivation tree describes the
initialization for the computation. It contains a branch leading to an empty goal
(success branch) and a branch with the leaf: ∧(integers(g, a3), filter(g, a3, a5),
sift(a5, a4), len(a4, g)), which is added to A.

Next, we construct an abstract derivation tree for the latter conjunction. This
gives a successful branch with an empty conjunction in the leaf, a branch ending
in a renamed version of the above conjunction, and a third branch, with the
following leaf, which is added to A: ∧(integers(g, a4), filter(g, a4, a5), filter
(g, a5, a7), sift(a7, a6), len(a6, g)).

At this point it becomes clear that an analysis following only the steps shown
in Sect. 3 will not terminate. The two abstract conjunctions, most recently added
to A, are identical – up to renaming of ai’s – except that the latter conjunc-
tion contains two atoms filter(g, ai, aj), instead of just one. A further analysis,
building additional derivation trees, will result in the construction of continu-
ously growing conjunctions, with continuously increasing numbers of filter/3
atoms.

We could solve this by cutting the goal into two smaller conjunctions and
adding these to A. However, all these atoms are generators or testers in the
coroutine and depend on eachother. By splitting the conjunction, we would no
longer be able to analyze the coroutine.

One of the restrictions imposed by ACPD is that for any abstract con-
junction of atoms, acon ∈ AConAtomp, there exists a concrete conjunction,
con ∈ ConAtomp, such that: for all coni ∈ γ(acon): coni is an instance of con.
In practice, this means that an abstract conjunction is not allowed to represent a
set of concrete conjunctions whose elements have a distinct number of conjuncts.
However, in order to solve the problem observed in our example, we need the
ability to represent a set of conjunctions, with a growing number of atoms, by
an abstract atom. Therefore, we need to extend ACPD.

We extend our abstract domain and introduce a new abstraction, multi/4,
which makes it possible to represent growing conjunctions, with a number of
copies of a single abstract atom.

To define this abstraction is rather difficult. This is because we do not only
want to be able to represent a conjunction of multiple, identically instantiated
atoms, but also their aliasing with the context in which they occur, as well as
the aliasing between consecutive atoms in the conjunction.

We first introduce a parameterized naming scheme for ai constants and apply
this to abstract atoms.

Definition 6 (Parameterized naming and parameterized abstract
atom). Let A ∈ AAtomp. By Id(A), we denote a unique identifier associated
with A.

Let aj ∈ AConp, j ∈ N, such that aj occurs in A, then the parameterized
naming of aj is the symbol aId(A),i,j.

Let A ∈ AAtomp. The parameterized atom for A, p(A), is obtained by replac-
ing every aj occurring in A by its parameterized naming, aId(A),i,j.

30 D. De Schreye et al.

The new abstraction multi/4 will depend on the context (the abstract con-
junction) in which it occurs. This context may contain abstract constants, aj . It
may also contain parameterized namings of abstract constants, aId(A),i,j . This is
due to the fact that a multi/4 abstraction will typically contain parameterized
namings and that an abstract conjunction will be allowed to contain multiple
multi/4 abstractions. Therefore, the context of one multi/4 abstraction may
contain another multi/4 abstraction.

Definition 7 (Context). A context is an abstract conjunction and is denoted
as C. Given a context C, we denote a(C) = {aj ∈ AConp|aj occurs in C}, we
denote pa(C) = {aId(A),i,j |aId(A),i,j occurs in C}.
Definition 8 (multi abstraction). A multi abstraction is a construct of the
form multi(p(A), F irst, Consecutive, Last), where:

– p(A) is the parameterized atom for some A ∈ AAtomp.
– First is a conjunction of equalities aId(A),1,j = bj, where bj ∈ a(C) ∪ pa(C)

and all left-hand sides of the equalities are distinct.
– Consecutive is a conjunction of equalities aId(A),i+1,j = aId(A),i,j′ , where

j, j′ ∈ N and all left-hand sides of the equalities are distinct.
– Last is a conjunction of equalities aId(A),k,j = bj, where bj ∈ a(C) ∪ pa(C)

and all left-hand sides of the equalities are distinct.

Example 6 (multi/4 abstraction). We return to the primes example, with the
two abstract conjunctions already added to A. We can rename the indices of
the aj constants in one of these conjunctions in order to make the contexts
in which the filter(g, ai, aj) atoms occur identical for both conjunctions, e.g.:
∧(integers(g, a3), filter(g, a3, a5), sift(a5, a4), len(a4, g)) and ∧(integers(g, a3),
filter(g, a3, a6), filter(g, a6, a5), sift(a5, a4), len(a4, g)).

Now we can generalize these two abstract conjunctions using the multi/4
abstraction: Let A = filter(g, a3, a6). Then, the abstract conjunction is:∧

(integers(g, a3),multi(filter(g, aId(A),i,3, aId(A),i,6),∧(aId(A),1,3 = a3),
∧ (aId(A),i+1,3 = aId(A),i,6),∧(aId(A),k,6 = a5)), sift(a5, a4), len(a4, g))

Here, expressions such as ∧(aId(A),1,3 = a3) represent conjunctions with only
one conjunct.

Conversely, abstract conjunctions containing multi/4 abstractions, such as the
one above, represent infinitely many abstract conjunctions without the multi/4
abstraction. In the example, these contain either one or multiple filter(g, ai, aj)
atoms.

In what follows, we will omit the Id(A) subscript in the parameterized nam-
ings aId(A),i,j and just refer to ai,j instead. The Id(A) subscript is only relevant
for abstract conjunctions containing multiple multi/4 abstractions, a case which
we will not consider for the moment.

In order to describe the abstract conjunctions represented by an abstract
conjunction containing a multi/4 abstraction, we need the ability to map para-
meterized namings back to ordinary aj constants. This requires the following
concepts.

Analysing and Compiling Coroutines 31

Definition 9 (concrete index assignment mapping). Let n ∈ N. The con-
crete index assignment mapping, R(i, n), is a mapping defined on any syntactic
construct, S, containing parameterized namings ai,j. R(i, n) replaces every occur-
rence of a parameterized naming ai,j in S by the parameterized naming an,j.

Example 7 (concrete index assignment mapping). R(i, 1)(filter(g, ai,3, ai,6)) =
filter(g, a1,3, a1,6). R(i, k)(filter(g, ai,3, ai,6)) = filter(g, ak,3, ak,6).

Definition 10 (double-index mapping). The double-index mapping, ψ, is a
mapping defined on any syntactic construct, S, containing parameterized nam-
ings ai,j. ψ replaces every occurrence of a parameterized naming ai,j in S by aij ,
where ij denotes a fresh element of N, not occurring in any ai yet.

Example 8 (double-index mapping). ψ(filter(g, ai,3, ai,6)) = filter(g, ai3 , ai6),
with i3, i6 fresh elements of N.

Definition 11 (substitution corresponding to equality constraints). Let
Constraint be a conjunction of equality constraints, ai,j = bj, with ai,j parameter-
ized namings, and such that all left-hand sides of equalities are mutually distinct.
The substitution corresponding to Constraint is the substitution ΘConstraint =
{ψ(ai,j)/ψ(bj)|ai,j = bj ∈ Constraint}.

Note that this definition is meant to deal with the conjunctions of equalities
in the First, Consecutive and Last arguments of the multi/4 abstraction.

Example 9 (substitutions corresponding to equality constraints). For the conjunc-
tions of equality constraints in Example 6, the corresponding substitutions are:
ΘFirst = {a13/a3}, ΘConsecutive = {a(i+1)3/ai6}, ΘLast = {ak6/a5}.

With these notions, we can now describe the abstract conjunctions repre-
sented by a multi/4 abstraction.

Definition 12 (Abstract conjunctions represented by multi/4). The
abstract conjunctions represented by multi(p(A), F irst, Consecutive, Last) are:

– ψ(R(i, 1)(p(A)))ΘFirst ◦ ΘR(k,1)(Last), and
– ψ(R(i, 1)(p(A)))ΘFirst ∧ ψ(R(i, 2)(p(A)))ΘR(i,1)(Consecutive)∧

. . .∧ψ(R(i, k)(p(A)))ΘR(i,k−1)(Consecutive) ◦ ΘLast, with k > 1.

Example 10 (Abstract conjunctions represented by multi/4). For the multi/4
abstraction in Example 6,multi(filter(g, ai,3, ai,6),∧(a1,3 = a3),∧(ai+1,3 = ai,6),
∧(ak,6 = a5)), the represented abstract conjunctions are:

– filter(g, a3, a5), and
– filter(g, a3, a16) ∧ filter(g, a16 , a23) ∧ . . . ∧ filter(g, a(k−1)6 , a5), k > 1.

Next, we need to define the abstract unfolding of a multi/4 abstraction.
Unfolding a multi/4 abstraction makes a case split. Either the multi/4 abstrac-
tion represents only one abstract atom, or it represents more than one. In both
cases the bindings with the context and, in the latter case, the bindings between
consecutive atoms, need to be respected.

32 D. De Schreye et al.

Definition 13 (Abstract unfold of multi/4). Abstract unfold of multi pro-
duces a branching in the abstract derivation tree. An abstract atom multi(p(A),
F irst, Consecutive, Last) is replaced in one branch by
ψ(R(i, 1)(p(A)))ΘFirst ◦ ΘR(k,1)(Last) and in a second branch by
ψ(R(i, 1)(p(A)))ΘFirst ∧ multi(p(A), NewFirst, Consecutive, Last), where
NewFirst = ∧{a1,j = a1j′ |a(i+1),j = ai,j′ ∈ Consecutive}.
Example 11 (Abstract unfold of multi/4). Again returning to Example 6, abstract
unfold of multi(filter(g, ai,3, ai,6),∧(a1,3 = a3),∧(ai+1,3 = ai,6),∧(ak,6 = a5))
produces in one branch filter(g, a3, a5) and in the other branch filter(g, a3, a16)∧
multi(filter(g, ai,3, ai6),∧(a1,3 = a1,6),∧(ai+1,3 = ai,6),∧(ak,6 = a5)).

A few comments on this definition are in order. First, the definition of
NewFirst may seem strange, because both sides of the equalities have a “1”
index. However, note that on the left-hand side of the equality, it is in a para-
meterized naming, a1,j , referring to the first atom represented by the multi/4,
while on the right-hand side, it is in an abstract atom a1j′ , referring to an atom
that was just moved outside of the multi/4. Second, it is important to remem-
ber that the abstract constants a1j are produced by a ψ(a1,j) call and that their
index 1j needs to be a fresh index, not yet occurring in the expressions. This is
particularly important in cases where we perform several abstract unfoldings of
multi/4 in sequence. At each unfold, new fresh subscripts need to be introduced.

Finally, we need to define abstract generalization with multi/4, allowing us
to replace conjunctions of identically instantiated and similarly aliased abstract
atoms by a multi construct.

Definition 14 (Abstract generalization with multi/4). Let A ∈ AAtomp.
Let A1, ..., Ak ∈ AAtomp and let

∧
l=1,k Al occur in a context of abstract atoms

C. Let a(C) and pa(C) respectively be the abstract constants and the parame-
terized namings occurring in C. Let rl, l = 1, k, be renamings of A, such that
rl(A) = Al. In particular, for any ai occurring in A, rl(ai) occurs at the same
subterm selection sequence position in Al.

Gen(
∧

l=1,k Al) = multi(p(A), F irst, Consecutive, Last) is the abstract gen-
eralization with multi/4 of

∧
l=1,k Al in C if:

– for any bj ∈ a(C) ∪ pa(C), a1,j = bj ∈ First if and only if r1(aj) = bj
– ai+1,j = ai,j′ ∈ Consecutive if and only if ri+1(aj) = ri(aj′)
– for any bj ∈ a(C) ∪ pa(C), ak,j = bj ∈ Last if and only if rk(aj) = bj

We can extend the above definition to allow generalizations Gen(∧l=1,kAl

∧ multi(p(A), F irst, Consecutive, Last)) = multi(p(A), F irst′, Consecutive,
Last) and generalizations Gen(multi(p(A), F irst, Consecutive, Last),∧∧

l=1,k

Al) = multi(p(A), F irst, Consecutive, Last′). We omit the details for these gen-
eralizations. We illustrate abstract generalization with multi/4 in our running
example below.

Let us return to the prime numbers example. Observing the growing number
of filter/3 atoms in our last conjunction (w.r.t. the conjunction already present

Analysing and Compiling Coroutines 33

in A), we perform the generalization: Gen(∧(filter(g, a4, a5), filter(g, a5, a7)))
= multi(filter(g, a1,i,4, a1,i,5),∧(a1,1,4 = a4),∧(a1,i+1,4 = a1,i,5),∧(a1,k,5 =
a7)). Here, we include the Id(A) again, because we will have multiple multi/4
abstractions. We arbitrarily select Id(A) to be 1.

Then we construct a new abstract derivation tree for this conjunction, includ-
ing – among others – an abstract unfold of multi/4 and abstract generalizations
with multi/4. In Fig. 5, we show this abstract tree.

After abstract unfolding of integers(g, a1), the tree contains an abstract
unfolding of multi(filter(g, a1,i,1, a1,i,2),∧(a1,1,1 = [g|a4]),∧(a1,i+1,1 = a1,i,2),
∧(a1,k,2 = a2)). This unfolding can lead to one instance of filter/3 or several.
If there is only one filter, a full evaluation of divides(g, g) eventually leads to an
empty goal. A full evaluation of does not divide(g, g), on the other hand, leads
to a new generalization which produces a renaming of the root of this tree.

Eventually, the analysis ends up with a final set A:

{ ∧ (primes(g, a1)),
∧ (integers(g, a1),multi(filter(g, a1,i,1, a1,i,2),∧(a1,1,1 = a1),

∧ (a1,i+1,1 = a1,i,2),∧(a1,k,2 = a2)), sift(a2, a3), len(a3, g)),
∧ (multi(filter(g, a1,i,1, a1,i,2),∧(a1,1,1 = []),∧(a1,i+1,1 = a1,i,2),

∧ (a1,k,2 = a2)), sift(a2, a3), len(a3, g)),
∧ (integers(g, a4),multi(filter(g, a2,i,4, a2,i,6),∧(a2,1,4 = a4),

∧ (a2,i+1,4 = a2,i,6),∧(a2,k,6 = a6)),multi(filter(g, a1,i,1, a1,i,2),
∧ (a1,1,1 = [g|a2,k,6]),∧(a1,i+1,1 = a1,i,2),∧(a1,k,2 = a2)), sift(a2, a3),
len(a3, g))}

Fig. 5. Abstract unfolding of integers(g, a1),multi(filter(g, a1,i,1, a1,i,2),∧(a1,1,1 =
a1),∧(a1,i+1,1 = a1,i,2),∧(a1,k,2 = a2)), sift(a2, a3), len(a3, g)

34 D. De Schreye et al.

All non-empty leaves in the abstract derivation trees for these atoms are
(renamings of) elements of A. This shows A-coveredness and the abstract phase
of the analysis terminates.

Similar to what was observed for permutation sort in Sect. 3, we still need
an extra analysis to collect the concrete bindings, so that the resultants can
be generated. Special care is required for the multi/4 abstraction. There are
three issues: how to represent multi/4 in the concrete domain, how to deal with
the concrete counterparts of abstract generalization with multi/4 and abstract
unfolding of multi/4.

Definition 5, in Sect. 3, defined the concrete counterparts of the conjunctions
in A. We extend it to multi(A):

Definition 15 (Concrete conjunction for multi(A,F irst, Consecutive,
Last)). LetA ∈ AAtomp, then c(multi(p(A), F irst, Consecutive, Last)) = multi
([c(A)|T]), with T a fresh variable.

It may seem strange that in the concrete analysis phase we omit the three
arguments First, Consecutive and Last. These arguments are needed in the
abstract analysis to correctly capture the data flow and to correctly model the
unfolding under the coroutining selection rule. In the concrete analysis phase,
as we are completely mimicking the unfolding in the corresponding abstract
trees, we are still performing the correct selection. Moreover, the only point of
the concrete analysis phase is to collect the bindings produced by unfolding the
concrete clauses. The extra arguments are not needed for this purpose.

Example 12 c(multi(filter(g, a1,1,1, a1,1,2),∧(a1,1,1 = a1),∧(a1,i+1,1 = a1,i,2),∧
(a1,k,2 = a2))) = multi([filter(X, I1, F1)|T])

For the abstract generalization with multi/4, we define the concrete coun-
terpart as follows.

Definition 16 (Concrete generalization). Let A ∈ AAtom.

– If the abstract generalization with multi/4 is of the type Gen(
∧

i=1,n A) =
multi(A,F irst, Consecutive, Last), then the corresponding node in the con-
crete derivation contains c(

∧
i=1,n A). The concrete generalization is defined

as ConGen(c(
∧

i=1,n A)) = multi(c([A, . . . , A])), with n members in the list.
– If the abstract generalization with multi/4 is of the type Gen((

∧
i=1,n A) ∧

multi(A,F irst, Consecutive, Last)) = multi(A,F irst′, Consecutive, Last),
then the corresponding node in the concrete derivation contains c(

∧
i=1,n A)∧

multi(List), where List is a list of at least one c(A). The concrete general-
ization is defined as ConGen(c(

∧
i=1,n A) ∧ multi(List)) = multi([c(A), . . . ,

c(A)|List]) with n new members added to List.
– The third case, Gen(multi(A,F irst, Consecutive, Last)∧(

∧
i=1,n A)) = multi

(A,F irst, Consecutive, Last′), is treated similarly to the previous case, but the
concrete atoms are appended to the existing list.

Analysing and Compiling Coroutines 35

Example 13 (Concrete generalization). Let integers(A,B), filter(C,B,D),
filter(E,D,F), sift(F,G), len(G,H) occur in a concrete conjunction in a con-
crete derivation tree, where abstract generalization with multi/4 is performed on
the corresponding abstract conjunction. Then, as a next step in the concrete deriva-
tion tree, this conjunction is replaced by integers(A,B),multi([filter(C,B,D),
filter(E,D,F)]), sift(F,G), len(G,H).

Note that this “generalization” actually does not generalize anything. It only
brings the information in a form that can be generalized.

The actual generalization happens implicitly in the move to the construction
of the next concrete derivation tree. If our conjunction is a leaf of the concrete
derivation tree, then the corresponding abstract conjunction is added to the set A.
Let ∧(integers(g, a4),multi(filter(g, a1,i,4, a1,i,5),∧(a1,1,4 = a4),∧(a1,i+1,4 =
a1,i,5),∧(a1,k,5 = a7)), sift(a7, a6), len(a6, g)), for instance, be the corresponding
abstract conjunction that is added to A. Then, a new concrete tree is built for a
concrete conjunction corresponding to this abstract one.

In this example, the root of that concrete tree is:

∧(integers(A,B),multi([filter(C,B,D)|T]), sift(E,F), len(F,G))

Finally, we still need to define the counterpart of abstract unfold of multi/4
in the concrete tree. To do this, we add the following definition of multi/1 to
the original program P .

multi ([H]) ? H.

multi ([H|T]) ? H, multi(T).

It should be clear that concrete unfolding of concrete multi/1 atoms with
the above definition for multi/1 gives us the desired counterpart of the case split
performed in abstract unfold of multi/1 if we apply the same bindings used in
the abstract unfold.

With the concepts above, we construct a concrete derivation tree, mimicking
the steps in the abstract derivation tree – but over the concrete domain – for
every conjunction in the set A. Collecting all the resultants from these concrete
trees, we get the transformed program. A working Prolog program can be found
in Annex (2014). Transformations of permutation sort, graph coloring and lucky
numbers are available from the same source.

5 Discussion

In this paper, we have presented an approach to formally analyze the compu-
tations, for logic programs, performed under coroutining selection rules, and to
compile such computations into new logic programs. On the basis of an example,
we have shown that simple coroutines, in which the execution of a single, atomic
generator is interleaved with a single, atomic tester, can be successfully analyzed
and compiled within the framework of ACPD (Leuschel 2004). These “simple”
coroutines essentially correspond to the strongly regular logic programs of Vidal
(2011), based on Hruza and Stepanek (2003).

36 D. De Schreye et al.

To achieve this, we defined an expressive abstract domain, capturing modes,
types and aliasing. In the paper, we have focused on the intuitions, more than on
the full formalization, as space restrictions would not allow both. However, we
have developed the formal definitions for the ordering on the abstract domain,
abstract unification, abstract unfold and others. Because the approach – for sim-
ple coroutines – fits fully within the ACDP framework, it inherits the correctness
results from ACPD.

We have proposed an extension to our abstract domain: the multi/4-
abstraction. A multi/4 atom can represent (sets of) conjunctions of one or more
concrete atoms. We have defined abstract unfold and abstract generalisation
operations for this abstraction. We have shown, in an example, that this abstrac-
tion and these operations allow us to extend ACPD, enabling it to perform a
complete analysis, and to compile the more complex coroutines.

On a more general level, our work provides a new, rational reconstruction
of the CC-transformation (Bruynooghe et al. 1986), avoiding ad hoc features of
the CC approach. In addition, the work presents a new application for ACPD.

As a rule, coroutining improves the efficiency of declarative programs by test-
ing partial solutions as quickly as possible. In addition, a program may become
more flexible when the transformation is applied. For instance, a generate-and-
test based program for the graph coloring problem which was transformed in the
course of this research was originally meant to be called with a ground list of
nations and a list of free variables of the correct length. A transformed variant
of this program can be run in the same way, but the top-level predicate can also
be called with a ground list of nations and a free variable. This is because SLD
resolution sends the original program down an infinite branch of the search tree.
The transformed program checks results earlier and, as a result, infers that both
top-level arguments must be lists of the same size. In this scenario, compiling
control transforms an infinite computation into a finite one.

The CC-transformation raised challenges for a number of researchers and a
range of compediting transformation and synthesis techniques. A first reformu-
lation of the CC-transformation was proposed in the context of the “programs-
as-proofs” paradigm, in Wiggins (1990). It was shown that CC-transformations,
to a limited extent, could be formalized in a proof-theoretic program synthesis
context.

In Boulanger et al. (1993), CC-transformation was revisited on the basis of a
combination of abstract interpretation and constraint processing. This improved
the formalization of the technique, but it did not clarify the relation with partial
deduction.

The seminal survey paper on Unfold/Fold transformation, Pettorossi and
Proietti (1994), showed that basic CC-transformations are well in the scope of
Unfold/Fold transformation. In later works (e.g. Pettorossi and Proietti 2002),
the same authors introduced list-introduction into the Unfold/Fold framework,
whose function is very similar to that of the multi/4 abstraction in our approach.
Also related to our work are Puebla et al. (1997), providing alternative transfor-
mations to improve the efficiency of dynamic scheduling, and Vidal (2011) and

Analysing and Compiling Coroutines 37

Vidal (2012), which also provide a hybrid form of partial deduction, combining
abstract and concrete levels.

As an alternative approach to the one proposed in this paper, one could also
apply the first Futamura projection. Given a meta-interpreter implementing a
dynamic selection strategy, one could attempt to transform a program P by par-
tially evaluating P and the meta-interpreter. This would require an appropriate
analysis, for instance abstract partial deduction.

There are a number of issues that are open for future research. First, we aim
to investigate the generality of the multi/4 abstraction. Although it seems to
work well in a number of examples, we will study more complex ones. We also
want to revisit the ACPD framework, in order to extend it to the new abstraction
we aim to support. This will involve a new formalization of ACPD, capable of
supporting analysis and compilation of coroutines in full generality. This will also
formally establish the correctness results for the more general cases, such as the
one presented in Sect. 4. Obviously, we also want to have a full implementation
of these concepts and to show that the analysis and compilation can be fully
automated.

Acknowledgements. We thank the anonymous reviewers for their very useful sug-
gestions.

References

Annex.: Definitions, concepts and elaboration of an example (2014). https://perswww.
kuleuven.be/∼u0055408/tag/lopstr14.html

Boulanger, D., Bruynooghe, M., De Schreye, D.: Compiling control revisited: a new
approach based upon abstract interpretation for constraint logic programs. In: LPE,
pp. 39–51 (1993)

Bruynooghe, M.: A practical framework for the abstract interpretation of logic pro-
grams. J. Logic Program. 10(2), 91–124 (1991)

Bruynooghe, M., De Schreye, D., Krekels, B.: Compiling control. In: Proceedings of
the 1986 Symposium on Logic Programming. IEEE Society Press, Salt Lake City
(1986)

Bruynooghe, M., De Schreye, D., Krekels, B.: Compiling control. J. Logic Program.
6(1), 135–162 (1989)

De Schreye, D., Glück, R., Jørgensen, J., Leuschel, M., Martens, B., Sørensen, M.H.:
Conjunctive partial deduction: foundations, control, algorithms, and experiments. J.
Logic Program. 41(2), 231–277 (1999)

Gallagher, J.P.: Transforming logic programs by specialising interpreters. In: ECAI,
pp. 313–326 (1986)

Hruza, J., Stepanek, P.: Speedup of logic programs by binarization and partial deduc-
tion. arXiv preprint arXiv:cs/0312026 (2003)

Leuschel, M.: A framework for the integration of partial evaluation and abstract inter-
pretation of logic programs. ACM Trans. Program. Lang. Syst. (TOPLAS) 26(3),
413–463 (2004)

Lloyd, J.: Foundations of Logic Programming. Springer-Verlag, Berlin (1987)

https://perswww.kuleuven.be/~u0055408/tag/lopstr14.html
https://perswww.kuleuven.be/~u0055408/tag/lopstr14.html
http://arxiv.org/abs/cs/0312026

38 D. De Schreye et al.

Lloyd, J.W., Shepherdson, J.C.: Partial evaluation in logic programming. J. Logic Pro-
gram. 11(3), 217–242 (1991)

Pettorossi, A., Proietti, M.: Transformation of logic programs: foundations and tech-
niques. J. Logic Program. 19, 261–320 (1994)

Pettorossi, A., Proietti, M.: The list introduction strategy for the derivation of logic
programs. Formal Aspects Comput. 13(3–5), 233–251 (2002)

Puebla, G., de la Banda, M.J.G., Marriott, K., Stuckey, P.J.: Optimization of logic
programs with dynamic scheduling.In: ICLP, vol. 97, pp. 93–107 (1997)

Vidal, G.: A hybrid approach to conjunctive partial evaluation of logic programs. In:
Alpuente, M. (ed.) LOPSTR 2010. LNCS, vol. 6564, pp. 200–214. Springer, Heidel-
berg (2011)

Vidal, G.: Annotation of logic programs for independent and-parallelism by partial
evaluation. Theor. Pract. Logic Program. 12(4–5), 583–600 (2012)

Wiggins, G.A.: The improvement of prolog program efficiency by compiling control: a
proof-theoretic view. Department of Artificial Intelligence, University of Edinburgh
(1990)

http://www.springer.com/978-3-319-17821-9

	Analysing and Compiling Coroutines with Abstract Conjunctive Partial Deduction
	1 Introduction
	2 Preliminaries
	3 An Example of a CC Transformation, Using ACPD
	4 A More Complex Example, Introducing the multi Abstraction
	5 Discussion
	References

