
Chapter 2
Language Identification—A Brief Review

Abstract This chapter provides compendious reviews about both the explicit and
implicit LID systems present in the literature. Existing works related to language
identification in Indian context are briefly discussed. The related works about the
excitation source features are also presented here.Various speech features andmodels
proposed in the context of language identification are briefly reviewed in this chapter.
The motivation for the present work from the existing literature is briefly discussed.

Keywords Prior works on explicit language identification · Prior works on implicit
language identification · Prior works on excitation source features · Motivation for
using source features for language identification

2.1 Prior Works on Explicit Language Identification System

In 1974, Dodington and Leonard [1], Leonard [2] have explored frequency of occur-
rences of certain reference sound units in different languages. The average LID
accuracy of 64% and 80% have been achieved using five and seven languages,
respectively.

In 1977, House and Neuberg [3] conducted LID studies on manually phonetic
transcribed data. The language related information has been extracted from a broad
phonetic transcription instead of using acoustic features extracted from speech signal.
Speech signal has been considered as a sequence of symbols chosen from a set.
The elements of the set are defined as follows: stop consonant, fricative consonant,
vowel and silence. Language identification experiment has been carried out on eight
languages. In this work, HiddenMarkovModel (HMM) has been trained using broad
phonetic labelled data derived from phonetic transcription. This work had shown
perfect discrimination of eight languages and demonstrated that excellent language
identification can be achieved by exploiting phonotactic information.

In 1980, Li and Edwars [4] developed automatic LID system based on automatic
acoustic-phonetic segmentation of speech. By using six different acoustic-phonetic
classes, automatic LID system has been developed using five languages. These six
acoustic-phonetic classes are (i) syllable nuclei, (ii) non-vowel sonorants, (iii) vocal
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murmur, (iv) voiced frication, (v) voiceless frication and (vi) silence and low energy
segments. Hidden Markov Models (HMM) have been used for developing language
models. Recognition accuracy of 80% has been achieved with this approach.

In 1993 and 1994, Lamel and Gauvain [5, 6] conducted cross-lingual experiments
by exploring phone recognition for French and English languages. A set of 35 phones
were used to represent the French language corpus and a set of 46 phones were used
to represent the English language data. Three-state left-to-right continuous density
HMM with Gaussian mixture model (GMM) observation density has been used to
build the phone models. It has been observed that, the French language is easier to
recognize at the phone level but, harder to recognize at the lexical level due to the
larger number of homophones.

In 1994, Muthusamy et al. [7] have proposed a perceptual benchmark for lan-
guage identification task. Perceptual studies with listeners from different language
backgrounds have been conducted. The experiments have been conducted on ten lan-
guages from OGI-MLTS database. The results obtained from the subjects reported
as the benchmark for evaluating the LID performances obtained from automatic LID
systems. The experimental analysis showed that, the duration of utterances, famil-
iarity of languages and the number of known languages are the important factors to
recognize a language. The comparison between the subjective analysis and machine
performance concluded that, increased exposure to each language and longer train-
ing sessions contribute to improved classification performance. Therefore, to develop
the speech recognizer for any language, the primary requirement is large amount of
segmented and labelled speech corpus.

In 1994, Berkling et al. [8] have analyzed phoneme based features for lan-
guage recognition. They have performed the LID study on three languages: Eng-
lish, Japanese and German from OGI-MLTS speech corpus. A superset of phonemes
for the three languages has been considered. The phonemes which can provide the
best discrimination between language pairs have used to build the superset. The
experimental analysis drawn the conclusion that, to develop a LID system with large
number of languages, it may be useful to reduce the number of features despite a
small loss in LID accuracy.

In 1994, Tucker et al. [9] have conducted LID experiments with the languages
belong to same language family. Sub-word models for English, Dutch and Nor-
wegian languages have been developed for carrying out the LID study. Two types
of language models: language independent and language-specific models have been
developed in this study. Three techniques namely, (i) the acoustic differences between
the phonemes of each language, (ii) the relative frequencies of phonemes of each
language and (iii) the combination of previous two sources have been explored for
classifying the languages. The third technique provides average LID accuracy of
90% for three languages.

In 1994, Zissman and Singer [10] have carried out a comparative study using four
approaches: (i) Gaussian mixture model based classification, (ii) phoneme recogni-
tion followed by language modeling (PRLM), (iii) parallel PRLM (PRLM-P) and
(iv) language-dependent parallel phoneme recognition (PPR). The OGI-MLTS cor-
pus has been used to evaluate the performances of the four LID approaches. The LID
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study showed that, best performance is obtained with PRLM-P system, which does
not require labelled speech corpus for developing language models.

In 1995, Kadambe and Hieronymus [11] have developed LID systems using
phonological and lexical models to distinguish the languages. The LID study has
been carried out on four languages: English, German, Mandarin and Spanish from
OGI-MLTS speech corpus. Identification accuracy of 88% has been achieved with
four languages. It has been observed that, English and Spanish languages are dis-
tinguishable by their lexical information. This study concludes that, the language-
specific information can also be captured by analyzing the higher level linguistic
knowledge.

In 1995, Yan and Bernard [12] have developed language-dependent phone recog-
nition systems for language discrimination task. Six languages (English, German,
Hindi, Japanese, Mandarin and Spanish) from OGI-MLTS corpus have been used
for LID study. Continuous HMMs are used to build the language-dependent phone
recognizers. Acoustic and duration models are exploited for developing LID system.
Forward and backward bigram based language models are proposed. A neural net-
work based approach has been proposed for combining the evidences obtained from
the above mentioned acoustic, language and duration models.

In 1997,Navratil andZhulke [13] have proposed two approaches to build language
models: (i) modified bigramswith a contextmappingmatrix and (ii) languagemodels
based on binary decision trees. To build the binary decision tree two approaches are
proposed. These two approaches are, (i) building the whole tree for each class and
(ii) adapting from a universal background model (UBM). Both the models are incor-
porated in a phonetic language identifier with a double bigram decoding architecture.
The LID study has been carried out on NIST’95 language database.

In 1997, Hazen and Zue [14] have developed automatic LID system utilizing the
phonotactic, acoustic-phonetic and prosodic information within a unified probabilis-
tic framework. The evidences obtained from three different sources are combined to
improve the LID accuracy. Experimental results showed that, the phonotactic infor-
mation present in the speech utterances is the most useful information for language
discrimination task. It has been observed that, acoustic-phonetic and prosodic infor-
mation can also be useful for increasing the system’s accuracy, especially when the
short duration utterances are used for evaluation.

In 2001, K. Kirchhoff and S. Parandekar [15] have developed LID systems based
onn-grammodels of parallel streamsof phonetic features and sparse statistical depen-
dencies between these streams. The LID study has been conducted on OGI-MLTS
database. It has been shown that, the proposed feature-based approach outperforms
phone-based system. They have also reported that, proposed approach shows sig-
nificantly better identification accuracy using test utterances of very short duration
(≤3s). In future, data-driven measures for predicting optimal cross-stream depen-
dencies, as well as different schemes for score integration can be explored.

In 2001, Gleason and Zissman [16] have demonstrated two methods to enhance
the accuracy of parallel PRLM (PPRLM) system. They have explored Composite
background (CBG) modeling technique, which allows us to identify target language
in an environment where labelled training data is unavailable or limited.
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In 2003, V. Ramasubramanian et al. [17] have shown the theoretical equivalence
of parallel sub-word recognition (PSWR) and Ergodic-HMM (E-HMM) based LID.
In this work, the sub-word recognizer (SWR) at the front-end represents the states
and the language model (LM) of each language at the back-end represents the state-
transition of E-HMM in that language. The proposed equivalence unifies two distinct
approaches of langauge identification: parallel phone (sub-word) recognition and E-
HMM based approaches. This LID study has been carried out on 6 languages from
OGI-MLTS database. The performance of E-HMM based system is superior com-
pared to GMM, which indicates the effectiveness of the E-HMM based approaches.

In 2004, J. Gauvain et al. [18], Shen et al. [19] proposed a novel method using
phone lattices for developing automatic LID system. The use of phone lattices both
in training and testing significantly improves the accuracy of a LID system based on
phonotactics. Decoding is done by maximizing the expectation of the phonotactic
likelihood for each language. Neural network has been used to combine the scores
of multiple phone recognizers for improving the recognition accuracy. NIST 2003
corpus is used for carrying out the study.

In 2007, Li et al. [20] have proposed a novel approach for spoken language iden-
tification task based on vector space modeling (VSM). The hypothesis is that, the
overall characteristics of all languages can be covered by a universal set of acoustic
units, which can be characterized by the acoustic segment models (ASMs). TheASM
framework further extended to language independent phone models for LID task by
introducing an unsupervised learning procedure to circumvent the need for phonetic
transcription. The spoken utterance has been converted to a feature vector with its
attributes representing the co-occurrence statistics of the acoustic units. Then a vector
space classifier has been built for language identification. The proposed framework
has been evaluated on NIST 1996 and 2003 LRE databases.

In 2008, Sim and Li [21] have proposed a new approach for building a parallel
phone recognition followed by language model (PPRLM) system. A PPRLM system
comprises multiple parallel sub-systems, where each sub-system employs a phone
recognizer with a different phone set for a particular language. This method aims at
improving the acoustic diversification among its parallel sub-systems by using mul-
tiple acoustic models. The acoustic models are trained on the same speech data with
the same phone set but using different model structures and training paradigms. They
have examined the use of various structured precision (inverse covariance) matrix
modeling techniques as well as themaximum likelihood andmaximummutual infor-
mation training paradigms to produce complementary acoustic models. The results
show that, acoustic diversification, which requires only one set of phonetically tran-
scribed speech data, yields similar performance improvements compared to phonetic
diversification. In addition, further improvements were obtained by combining both
diversification factors. The proposed approach has been evaluated on NIST 2003 and
2005 LRE databases.

In 2008, Tong et al. [22] have proposed a target-oriented phone tokenizers (TOPT),
each having a subset of phones that have high discriminative ability for a target
language. Two phone selection methods are proposed to derive such phone subsets
from a phone recognizer. It has been shown that, the TOPTs derived from a universal
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phone recognizer (UPR) outperform those derived from language specific phone
recognizers. The TOPT front-end derived from a UPR also consistently outperforms
the UPR front-end without involving additional acoustic modeling. The proposed
method has been evaluated on NIST 1996, 2003 and 2007 LRE databases.

In 2012, Botha and Barnard [23] used n-gram statistics as features for LID study.
A comparative study has been carried out using different classifiers such as, support
vector machines (SVMs), naive Bayesian and difference-in-frequency classifiers.
The work has been carried out by varying the values of n. Experimental results
conclude that, the SVM classifier outperforms other classifiers.

In 2012, Barroso et al. [24] have proposed hybrid approaches to build LID system
based on the selection of system elements by several classifiers (Support Vector
Machines (SVMs),Multilayer Perceptron classifiers andDiscriminant analysis). The
LID study has been carried out on three languages: Basque, Spanish and French. The
proposed approach improves the system performance.

In 2013, Siniscalchi et al. [25] proposed a novel universal acoustic characterization
approach for language recognition. Universal set of fundamental units has been
explored, which can be defined across all the languages. This LID study has exploited
some speech attributes like manner and place of articulations of sound units to define
the universal set of language-specific fundamental units. Summary of the prior works
related to explicit LID studies mentioned above is provided in Table2.1.

Table 2.1 Summary of prior works on explicit language identification studies

Sl. no. Features Models/
Classification
techniques

Number of
languages and
databases

Remarks Reference

1. Broad phonetic
transcription (i.e.,
stop consonant,
fricative
consonant, vowel
and silence)

HMM 8 languages Phonotactic
information is
language-specific

[3]

2. Acoustic-phonetic
information

HMM 5 languages Recognition
accuracy of 80%
has been achieved

[4]

3. PLP coefficients
with 56
dimensions

ANN 3 languages from
OGI-MLTS
database

To develop LID
system with large
number of
languages, it may
be useful to
reduce the
number of
features despite a
small loss in LID
accuracy

[8]

(continued)
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Table 2.1 (continued)

Sl. no. Features Models/
Classification
techniques

Number of
languages and
databases

Remarks Reference

4. Acoustic
differences
between the
phonemes,
relative
frequency of
phonemes
and
combination
of previous
two sources
of
information

Sub-word
models were
built using
HMM

8 languages
from
EUROM 1
database

90% LID accuracy is
achieved

[9]

5. MFCC GMM, PRLM,
PRLM-P, PPR

10 languages
from
OGI-MLTS
database

PRLM-P provides best
accuracy of 79.2%

[10]

6. Phoneme
inventory,
phonemotac-
tics, syllable
structure,
lexical and
prosodic
differences

HMM 4 languages
from
OGI-MLTS
database

88% accuracy is
achieved.
Language-specific
information can be
captured using higher
order linguistic
knowledge

[11]

7. Acoustic and
duration
models

HMM for
phoneme
recognizer and
forward ANN
for combining
the scores

6 languages
from
OGI-MLTS
database and
backward
bigram based
language
model

91.06% accuracy is
achieved for test sample
length of 45s

[12]

8. Information
from a wider
phonetic
context

Modified
bigrams with a
context
mapping matrix
and language
models based
on binary
decision trees

9 languages
NIST’95 LRE
database

Error rate of 9.4% is
achieved with 45s test
sample duration

[13]

9. Phonotactic,
acoustic-
phonetic and
prosodic
information

Interpolated
trigram model
and GMM

OGI-MLTS
database

Phonotactic information
is most useful
information for LID task

[14]

(continued)
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Table 2.1 (continued)

Sl. no. Features Models/
Classification
techniques

Number of
languages and
databases

Remarks Reference

10. Phonetic
features like,
voicing,
consonantal
place of
articulation,
manner of
articulation,
nasality and
lip rounding

HMM for
phone
recognition and
n-gram
language model

OGI-MLTS
database

Proposed feature-based
approach outperforms
phone-based system

[15]

11. MFCC Parallel
sub-word
recognition and
Ergodic HMM
based LID

6 languages
of
OGI-MLTS
database

The performance of
E-HMM based system is
superior compared to
GMM

[17]

12. Lexical
constraints
and
phonotactic
patterns

PPRLM NIST 1996,
2003 and
2007 LRE
databases

TOPTs derived from
UPRs outperform those
from language-specific
phone recognizers

[22]

13. n-gram
statistics as
features used
for text based
LID

SVM, naive
Bayesian and
difference-
in-frequency
classifiers

11 South
African
languages

The SVM classifier
outperforms other
classifiers and 99.4%
accuracy is achieved

[23]

14. Morphological
features

Hybrid system
using SVM,
Multilayer
Perceptron
classifiers and
Discriminant
analysis

3 languages
in Basque
context

Hybrid approach works
well for under-resourced
languages

[24]

15. Manner and
place of
articulations
of sound units

SVM and
maximal
figure-of-merit
(MFoM)

NIST 2003 Universal set of
language-specific
fundamental units is
proposed

[25]

2.2 Prior Works on Implicit Language Identification System

In 1986, Foil [26] has explored two different approaches to carry out LID study in
noisy background. In first approach, language-specific prosodic features are cap-
tured by processing pitch and energy contours for LID task. Even though the lan-
guages with very similar phoneme sets, the frequency distribution of phonemes often
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vary between the languages. In second method, formant vectors are computed only
from the voiced segments for each language which is used to discriminate the same
phonemes present in different languages. K -means clustering algorithm has been
used for formant classification. The conclusion has been drawn from this LID study
is that, formant features are better than the prosody features for LID task.

In 1989, Goodman et al. [27] have improved the LID accuracy obtained by
Foil [26] in 1986. An important modification has been suggested to training algo-
rithm. The training data has been split into “clean” and “noisy” vectors. K -means
clustering algorithm has been used in this experiment. Experiments were also car-
ried out to determine whether pitch information is useful in performing language
identification in such noisy conditions or not. The use of syllabic rate as a language
discriminative feature has also been investigated.

In 1991, Muthusamy et al. [7] have proposed a phonetic segment-based approach
for developing automatic spoken language identification system. The idea was that,
the acoustic structure of languages can be estimated by segmenting speech into broad
phonetic categories. The language-specific phonetic and prosodic information has
been extracted to develop automatic LID system. The LID study has been carried
out on American English, Japanese, Mandarin Chinese and Tamil languages. Iden-
tification accuracy of 82.3% has been achieved.

In 1991, Sugiyama [28] has explored linear prediction coefficients (LPCs) and
cepstral coefficients (LPCCs) for language recognition. Vector quantization (VQ) of
different code book sizes has been proposed for language recognition task. Different
distortion measurement techniques like cepstral distance and weighted likelihood
ratio have been explored in this LID study. In [9], VQ histogram algorithm has also
been proposed for language prediction. Morgan et al. [29] and Zissman [30] have
proposed the Gaussian mixture models (GMMs) [31] for language identification
study.

In 1994, Itahashi et al. [32] and Shuichi and Liang [33] have developed LID
systems based on fundamental frequency and energy contours with the modeling
technique based on a piecewise-linear function.

In 1994, K. Li [34] explored spectral features at syllable level to capture the
language discriminative information. The syllable nuclei (vowels) are detected auto-
matically. The spectral feature vectors are then computed from the regions near the
syllable nuclei instead of computing feature vectors from the whole training data.

In 1999, F. Pellegrino and R. Andre-Obrecht [35] have designed a unsupervised
approach based on vowel system modeling. In this work, the language models are
developed only using the features extracted from the vowels of each language. Since
this detection is unsupervised and language independent, no labelled data is required.
GMMs are initialized using an efficient data-driven variant of the LBG algorithm:
the LBG-Rissanen algorithm. This LID study are carried out on 5 languages from
OGI-MLTS database which provides 79% recognition accuracy.

In 2005, Rouas et al. [36] have proposed an approach for language identification
study based on rhythmic modelling. Like phonetics and phonotactics, rhythm is also
an important feature which can be used for capturing language-specific information.
In [36] an algorithm has been proposed to extract the rhythm for LID task. They
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have used a vowel detection algorithm to segment the rhythmic units related to
syllables. Several parameters are extracted (consonantal and vowel duration, cluster
complexity) and modelled with a GaussianMixture. This LID study has been carried
out on read speech collected from seven languages.

In 2007, Rouas [37] have developed a LID system based on modelling the
prosodic variations. n-gram models were used to model the short-term and long-
term language-dependent sequences of labels. The performance of the system is
demonstrated by experiments on read speech and evaluated by experiments on spon-
taneous speech. An experimental study has also been carried out to discriminate the
Arabic dialects. It has been shown that the proposed system was able to clearly iden-
tify the dialectal areas, leading to the hypothesis that, Arabic dialects have prosodic
differences.

In 2010, Sangwan et al. [38] have proposed a language analysis and identification
system based on the speech production knowledge. The proposed method automat-
ically extracts key production traits or “hot-spots” which have significant language
discriminative capability. At first, the speech utterances were parsed into consonant
and vowel clusters. Subsequently, the production traits for each cluster is represented
by the corresponding temporal evolution of speech articulatory states. It was hypoth-
esized that, a selection of these production traits are strongly tied to the underlying
language, and can be exploited for identifying languages. The LID study has been
carried out on 5 closely related languages spoken in India namely, Kannada, Tamil,
Telugu, Malayalam, and Marathi. The LID accuracy of 65% is achieved with this
approach. Furthermore, the proposed scheme was also able to identify automatically
the key production traits of each language (e.g., dominant vowels, stop-consonants,
fricatives etc.).

In 2012, Martnez et al. [39] have proposed an i-vector based prosodic system
for language identification system. They have built an automatic language recog-
nition system using the prosody information (rhythm, stress, and intonation) from
speech and makes decisions about the language with a generative classifier based
on i-Vectors.

In Indian context, J. Balleda et al. [40], have first attempted to identify Indian lan-
guages. VQ and 17 dimensional mel-frequency cepstral coefficients (MFCCs) have
been explored for language recognition task. Nagarajan [41], have explored different
code book methods for LID study. Automated segmentation of speech into sylla-
ble like units and parallel syllable like unit recognition have been explored to build
implicit LID system. Sai Jayaram et al. [42], have proposed trained sub-word unit
models without any labelled or segmented data, which are clustered using K-means
clustering algorithm. Hidden Markov models (HMM) are used for predicting the
language. In 2004, Leena Mary and B. Yegnanarayana have explored the autoasso-
ciative neural networks (AANN) for capturing language-specific features for devel-
oping LID system [43]. They have also explored prosodic features for capturing the
language-specific information [44]. In K.S. Rao et al. [45], have explored spectral
features using block processing (20 ms block size), pitch synchronous and glot-
tal closure region (GCR) based approaches for discriminating 27 Indian languages.
The language-specific prosodic features have also been explored by V. R. Reddy
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et al. [46]. In this work, prosodic features are extracted from syllable, word and sen-
tence levels to capture language-specific information. Jothilakshmi et al. [47], have
explored a hierarchical approach for identifying the Indian languages. This method
first identifies the language group of a given test utterance and then identifies the
particular language inside that group. They have carried out the LID task by using
different acoustic features such as, MFCC, MFCC with velocity and acceleration
coefficients, and shifted delta cepstrum (SDC) features. In 2013, Bhaskar et al. [48]
have carried out LID study using gender independent, gender dependent and hier-
archical grouping approaches on 27 Indian languages. Vocal tract features are used
to capture the language-specific information. Summary of the prior works related to
implicit LID studies mentioned above is provided in Table2.2.

Table 2.2 Summary of prior works on implicit language identification studies

Sl. no. Features Models/
Classification
techniques

Number of
languages and
databases

Remarks Reference

1. Prosodic and
formant features

K -means
clustering

Recorded noisy
radio signals as
database

Formant features
are better than the
prosody features
for LID task

[26]

2. LPCs and LPCCs Vector
Quantization

20 languages Accuracy of 65%
is achieved

[9]

3. Spectral features
at syllable level

ANN 5 languages from
OGI-MLTS
database

Syllabic spectral
feature is useful
for LID. 95%
accuracy is
achieved

[34]

4. MFCC GMM 5 languages from
OGI-MLTS
database

79% accuracy is
achieved

[35]

5. Rhythm at syllable
level

GMM 7 languages from
MULTEXT
corpus

88% accuracy is
achieved

[36]

6. Production
knowledge of
vowels and
consonants

HMM 5 languages from
South Indian
Language (SInL)
corpus

65% accuracy is
achieved

[38]

7. Prosody
information
(rhythm, stress,
and intonation)

i-vector
based
classification

NIST LRE 2009 Prosodic features
contain
language-specific
knowledge

[25]

8. MFCC VQ 5 languages Presence of some
CV units is
crucial for LID

[11]

(continued)
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Table 2.2 (continued)

Sl. no. Features Models/
Classification
techniques

Number of
languages and
databases

Remarks Reference

9. Weighted linear
prediction cepstral
coefficients
(WLPCC)

AANN 4 languages 93.75% accuracy
is achieved

[44]

10. MFCC with delta
and delta-delta
and shifted delta
spectrum (SDC)
features

Hierarchial
based LID
system using
GMM, HMM
and ANN

9 languages 80.56% accuracy
is achieved

[47]

11. MFCC using
block processing,
pitch synchronous
and glottal closure
based approaches

GMM 27 languages from
IITKGP-MLILSC
database

Glottal closure
based approach
performs better
than other
methods

[45]

12. Prosodic features
extracted from
syllable, word and
phrase levels

GMM 27 languages from
IITKGP-MLILSC
database

Word level
features provide
better LID
accuracy

[46]

2.3 Prior Works on Excitation Source Features

The LP residual signal has been processed for several speech related tasks such
as, speech enhancement, speaker recognition, audio clip classification and emotion
recognition. Few works related to the excitation source features are described as
below. B. Yegnanarayana and T. K. Raja [49] have analyzed the LP residual sig-
nal while the speech signal has been corrupted with additive white noise. It has
been observed that, the features obtained from LP residual signal perform well even
though the signal to noise ratio (SNR) is low. The excitation source information
has also been exploited for robust speaker recognition task. In B. Yegnanarayana
et al. [50], have developed a text-dependent speaker verification system using source,
supra-segmental and spectral features. The supra-segmental features such as, pitch
and duration are explored. Excitation source features extracted from LP residual
signal is modeled by auto associative neural network (AANN). Although the supra-
segmental and source features individually does not provide good performance.How-
ever, combining the evidences from these features improve the performance of the
speaker verification system significantly. In this study, Neural network models are
used to combinethe evidences from multiple sources of information. In [51], AANN



22 2 Language Identification—A Brief Review

is proposed for capturing speaker-specific source information present in LP residual
signal. Speaker models are built for each vowel to study the speaker information
present in each vowel. Using this knowledge an online speaker verification system
has been developed. This study shows that, excitation source features also contain
significant speaker-specific information. In [52], LP residual signal, its magnitude
and phase components are implicitly processed at sub-segmental, segmental and
supra-segmental levels to capture speaker-specific information. The speaker identi-
fication and verification studies performed using NIST-99 and NIST-03 databases.
This study demonstrates that, the segmental level features provide best performance
followed by sub-segmental features. The supra-segmental features provide least per-
formance. In [53], segmental level excitation source features are used for language
independent speaker recognition study. In [54], LP residual signal has been explored
for capturing the audio-specific information. Autoassociative neural network models
have been used to capture the audio-specific information extracted from LP resid-
ual signal. In [55], the excitation source component of speech has been explored
for characterizing and recognizing the emotions from speech signal. In this work,
excitation source information is extracted from both LP residual and glottal vol-
ume velocity (GVV) signals. In this study, sequence of LP residual samples and their
phase information, parameters of epochs and their dynamics at syllable and utterance
levels have been used for characterizing emotions. Further, samples of GVV signal
and its parameters also explored for emotion recognition task. In [56], a method
has been proposed for duration modification using glottal closure instants (GCIs)
and vowel onset points (VOPs). The VOPs are computed using the Hilbert enve-
lope of LP residual signal. Manipulation of duration is achieved by modifying the
duration of the LP residual with the help of instants of significant excitation as pitch
markers. The modified residual is used to excite the time-varying filter. Perceptual
quality of the synthesized speech is found to be natural. In [57], GCIs are computed
from LP residual signal by using the property of average group-delay of minimum
phase signals. The modification of pitch and duration was achieved by manipulating
the LP residual with the help of the knowledge of the instants of significant exci-
tation. The modified residual signal was used as excitation signal to the vocal tract
resonator. The proposed method is evaluated using waveforms, spectrograms, and
listening tests and it is found that, the perceptual quality of synthesized speech has
been improved and there were no significant distortion. In K.S. Rao et al. [58], have
proposed a time-effective method for determining the instants of significant excita-
tion (GCIs) in speech signals. The proposed methods consist of two phases: (i) at
first phase approximate epoch locations using the Hilbert envelope of LP residual
signal and (ii) at second phase, accurate locations of the instants of significant exci-
tation is determined by computing the group delay around the approximate epoch
locations derived from the first phase. In [59], pitch contours are modified by using
the significant instant of excitation and this technique can be used in voice conver-
sion, expressive speech synthesis applications. In [60], excitation source features
have been used for voice conversion tasks. The basic goal of the voice conversion
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system is to modify the speaker-specific characteristics, keeping the message and
the environmental information contained in the speech signal intact. In [60], a neural
network models for developing mapping functions at each level has been proposed.
The features used for developing the mapping functions are extracted using pitch
synchronous analysis. In this work, the instants of significant excitation are used
as pitch markers to perform the pitch synchronous analysis. Instants of significant
excitation are computed from LP residual signal by using the property of average
group-delay of minimum phase signals. In [61], a method has been proposed which
is capable of jointly converting prosodic features, spectral envelope and excitation
signal maintaining the correlation between them and this method has been used in
voice conversion application.

2.4 Motivation for the Present Work

From the prior works related to LID studies mentioned in Sects. 2.1 and 2.2, it is
observed that the existing LID systems are mostly developed using spectral features
representing the vocal tract system characteristics and prosodic features representing
the supra-segmental characteristics of the languages. The excitation source compo-
nent of speech has still not been explored for LID task. From the literature, it has
been observed that excitation source information represented by LP residual signal
has been explored for several speech tasks. But, it has not been investigated for lan-
guage discrimination task. Therefore, in this book, we want to explore excitation
source features for language discrimination task. The human speech production sys-
tem consists of time varying vocal tract resonator and the source for provoking the
resonator. Speech sounds are produced as a consequence of acoustical excitation of
the human vocal tract resonator. During the production of voiced sounds, the vocal
tract is excited by a series of nearly periodic air pulses generated by the vocal cords
vibration. State-of-the-art LID systems mostly approximate the dynamics of vocal
tract shape and use this vocal tract information for discriminating the languages.
However, the demeanor of the vocal folds vibration also changes from one sound
unit to another. Although there is a significant overlap in the set of sound units in
different languages, but the same sound unit may differ across different languages
due to the co-articulation effects and dialects. Hence, we conjecture that, the char-
acteristics of excitation source may contain some language-specific information. In
presentwork, we have explored the excitation source features for capturing language-
specific phonotactic information. A theoretical study has been carried out in Sect. 2.4
to support our hypothesis.

Correlation Among the Languages from Excitation Source Point of View

In this section, the significance of the excitation source information for language
identification task is shown by their respective correlation coefficients for within
and between languages. Correlation determines the degree of similarity between two
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signals. Suppose that we have two real signal sequences x(n) and y(n) each of which
has finite energy. The cross-correlation of x(n) and y(n) is a sequence rxy(l), which
is defined as follows:

rxy(l) =
p∑

n=1

x(n)y(n − l), l = 0,±1,±2, .... (2.1)

where, l is the time shift parameter. The x and y are the two signals being correlated.
If the signals are identical, then the correlation coefficient is maximum and if they
are orthogonal then the correlation coefficient is minimum. When x(n) = y(n),
the procedure is known as autocorrelation of x(n). From each language database,
one male speaker’s data of 5min duration is considered and the LP residual has been
extracted. TheLP residual is then decimated by factor 4 to suppress the sub-segmental
level information and then the LP residual samples are processed in block size of 20
ms with a shift of 2.5 ms which provides segmental level information. To normalize
the speaker variability between the languages, the mean subtraction is imposed to
all the feature vectors across all languages. Then the seg level feature vectors are
modeled with GMM for each language. The average mean vectors are considered
as the signal for a particular language to compute the correlation coefficients. To
portray the significance of seg level LP residual feature in language discrimination
task these correlation coefficients are used. The correlation coefficients between two
signals is a sequence of length (2l − 1). The average of the (2l − 1) correlation
coefficient values is considered in our work which is shown in Table2.3. The values
of first row of the Table2.3 indicates the correlation coefficients of first languagewith
respect to itself and other 26 languages. The correlation coefficient within a language
has been computed from two different speech utterances spoken by a speaker. The
first element of first row indicates the auto-correlation coefficient of first language
calculated from the averagemean vectors of two utterances within one language. The
other 26 values of first row represents the cross-correlation coefficients between the
first language and other 26 languages. Lower the cross-correlation coefficient value
between two languages indicate more dissimilarity between them.We have taken the
average of the 26 cross-correlation coefficients from the 2nd column to 27th column
of the 1st rowwhich represents average cross-correlation coefficient of first language
with respect to other 26 languages. This average cross-correlation coefficient value
(0.85) is less than the auto-correlation coefficient value (1.8) which resides in the
1st column of the 1st row. This explains that the seg level LP residual feature has
significant language discriminative capability. If we analyze the other rows of the
Table2.3, similar characteristics can be observed. This theoretical discussion elicits
the significance of the excitation source features in language identification taskwhich
is the motivation of the present work.
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2.5 Summary

In this chapter, the existing works related to both the explicit and implicit LID sys-
tems have been described. Prior works based on excitation source features are also
discussed. It has been observed that, the excitation source component of speech
has not been explored for language discrimination task, which is the motivation of
present work. Hence, in this work, excitation source information has been explored
to capture language-specific phonotactic information for LID task.

References

1. R. Leonard, G. Doddington, Automatic language identification. Technical Report RADC-TR-
74-200 (Air Force Rome Air Development Center, Technical Report) August 1974

2. R. Leonard, Language Recognition Test and Evaluation. Technical Report RADCTR-80-83
(Air Force Rome Air Development Center, Technical Report). March 1980

3. A.S. House, E.P. Neuberg, Toward automatic identification of the languages of an utterance. J.
Acoust. Soc. Am. 62(3), 708–713 (1977)

4. K.P. Li, T.J. Edwards, Statistical models for automatic language identification, in International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 884–887, April 1980

5. L.F. Lamel, J.L. Gauvain, Cross lingual experiments with phone recognition. in International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 507–510, April 1993

6. L.F. Lamel, J.L. Gauvain, Language identification using phonebased acoustic likelihoods, in
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 1, , pp.
I/293–I/296, April 1994

7. Y. Muthusamy, R. Cole, M. Gopalakrishnan, A segment-based approach to automatic lan-
guage identification, in International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), vol. 1, pp. 353–356, April 1991

8. K.M. Berkling, T. Arai, E. Bernard, Analysis of phoneme based features for language identi-
fication, in International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
pp. I/289–I/292, April 1994

9. R.C.F. Tucker, M. Carey, E. Parris, Automatic language identification using sub-word models,
in International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 1, pp.
I/301–I/30, April 1994

10. M.A. Zissman, E. Singer, Automatic language identification of telephone speech messages
using phoneme recognition and N-gram modeling, in International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), vol. 1 pp. I/305–I/308, (1994)

11. S. Kadambe, J. Hieronymus, Language identification with phonological and lexical models, in
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 5, pp.
3507–351, May 1995

12. Y. Yan, E. Barnard, An approach to automatic language identification based on language-
dependent phone recognition, in International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), vol. 5, pp. 3511–3514, May 1995

13. J. Navratil,W. Zuhlke, Phonetic-context mapping in language identification. Eur. Speech Com-
mun. Assoc. (EUROSPEECH) 1, 71–74 (1997)

14. T.J. Hazen, V.W. Zue, Segment-based automatic language identification. J. Acoust. Soc. Am.
101, 2323–2331 (1997)

15. K. Kirchhoff, S. Parandekar, Multi-stream statistical n-gram modeling with application
to automatic language identification, in European Speech Communication Association
(EUROSPEECH), pp. 803–806, (2001)



28 2 Language Identification—A Brief Review

16. T. Gleason, M. Zissman, Composite background models and score standardization for lan-
guage identification systems, in International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), vol. 1, pp. 529–532 (2001)

17. V. Ramasubramanian, A.K.V.S. Jayram, T.V. Sreenivas, Language identification using paral-
lel sub-word recognition - an ergodic HMM equivalence, European Speech Communication
Association (EUROSPEECH) (Geneva, Switzerland), September 2003

18. J. Gauvain, A. Messaoudi, H. Schwenk, Language recognition using phone latices, in Interna-
tional Speech Communication Association (INTERSPEECH), pp. 25–28 (2004)

19. W. Shen, W. Campbell, T. Gleason, D. Reynolds, E. Singer, Experiments with lattice-based
PPRLM language identification, in Speaker and Language Recognition Workshop, pp. 1–6
(2006)

20. H. Li, B. Ma, C.H. Lee, A vector space modeling approach to spoken language identification.
IEEE Trans. Audio Speech Lang. Process. 15(1), 271–284 (2007)

21. K.C. Sim, H. Li, On acoustic diversification front-end for spoken language identification. IEEE
Trans. Audio Speech Lang. Process. 16(5), 1029–1037 (2008)

22. R. Tong, B. Ma, H. Li, E.S. Chng, A target-oriented phonotactic front-end for spoken language
recognition. IEEE Trans. Audio Speech Lang. Process. 17(7), 1335–1347 (2009)

23. G.R. Botha, E. Barnard, Factors that affect the accuracy of text-based language identification.
Comput. Speech Lang. 26(5), 307–320 (2012)

24. N.Barroso,K.Lopezde Ipina,C.Hernandez,A.Ezeiza,M.Grana, Semantic speech recognition
in the Basque context Part II: language identification for under-resourced languages. Int. J.
Speech Technol. 15(1), 41–47 (2012)

25. S.M.Siniscalchi, J. Reed, T. Svendsen,C.-H.Lee,Universal attribute characterization of spoken
languages for automatic spoken language recognition. Comput. Speech Lang. 27(1), 209–227
(2013)

26. J.T. Foil, Language identification using noisy speech, in International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), pp. 861–864, (1986)

27. F. Goodman, A. Martin, R. Wohlford, Improved automatic language identification in noisy
speech, in International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
vol. 1, pp. 528–531, May 1989

28. M. Sugiyama, Automatic language recognition using acoustic features, in IEEE International
Conference on Acoustics, Speech, and Signal Processing, pp. 813–816, May 1991

29. D. Morgan, L. Riek, W. Mistretta, C. Scofield, P. Grouin, F. Hull, Experiments in language
identification with neural networks. Int. Joint Conf. Neural Netw. 2, 320–325 (1992)

30. M. Zissman, Automatic language identification using gaussian mixture and hidden markov
models, in International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
vol. 2, pp. 399–402, April 1993

31. D.A. Reynolds, R.C. Rose, Robust text -independent speaker identification using gaussian
mixture speaker models. IEEE Trans. Audio Speech Lang. Process. 3(1), 72–83 (1995)

32. S. Itahashi, J. Zhou, K. Tanaka, Spoken language discrimination using speech fundamental
frequency, in International Conference on Spoken Language Processing (ICSLP), pp. 1899–
1902, (1994)

33. I. Shuichi, D. Liang, Language identification based on speech fundamental frequency, in Euro-
pean Speech Communication Association (EUROSPEECH), pp. 1359–1362 (1995)

34. K.P. Li, Automatic language identification using syllabic spectral features, in International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 1, pp. I/297–I/300,
April 1994

35. F. Pellegrino, R. Andre-Obrecht, An unsupervised approach to language identification, in Inter-
national Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 2, pp. 833–
836, Mar 1999

36. J.L. Rouas, J. Farinas, F. Pellegrino, R. Andr-Obrecht, Rhythmic unit extraction and modelling
for automatic language identification. Speech Commun. 47, 436–456 (2005)

37. J.L. Rouas, Automatic prosodic variations modeling for language and dialect discrimination.
IEEE Trans. Audio Speech Lang. Process. 15(6), 1904–1911 (2007)



References 29

38. A. Sangwan, M. Mehrabani, J. Hansen, Automatic language analysis and identification based
on speech production knowledge, in International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), pp. 5006–5009, March 2010

39. D. Martinez, L. Burget, L. Ferrer, N. Scheffer, i-vector based prosodic system for language
identification, in IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 4861–4864, March 2012

40. J. Balleda,H.A.Murthy, T.Nagarajan, Language Identification fromShort Segments of Speech,
in International Conference on Spoken Language Processing (ICSLP), pp. 1033–1036,October
2000

41. T. Nagarajan, Implicit system for spoken language identification, Ph.D. dissertation, Indian
Institute of Technology Madras, India (2004)

42. A.K.V.S. Jayaram,V. Ramasubramanian, T.V. Sreenivas, Language identification using parallel
sub-word recognition, in International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), pp. 32–35, April 2003

43. L.Mary, B.Yegnanarayana,Autoassociative neural networkmodels for language identification.
in Internatioanl Conference on Intelligent Sensing and Information Processing, pp. 317–320
(2004)

44. L. Mary, Multilevel implicit features for language and speaker recognition, Ph.D. dissertation,
Indian Institute of Technology Madras, India (2006)

45. K.S. Rao, S. Maity, V.R. Reddy, Pitch synchronous and glottal closure based speech analysis
for language recognition. Int. J. Speech Technol. (Springer) 16(4), 413–430 (2013)

46. V.R. Reddy, S. Maity, K.S. Rao, Identification of indian languages using multi-level spectral
and prosodic features. Int. J. Speech Technol. (Springer) 16(4), 489–511 (2013)

47. S. Jothilakshmi, V. Ramalingam, S. Palanivel, A hierarchical language identification system
for Indian languages. Digital Signal Process. (Elsevier) 22(3), 544–553 (2012)

48. B. Bhaskar, D. Nandi, K.S. Rao, Analysis of language identification performance based on
gender and hierarchial grouping approaches, in International Conference on Natural Language
Processing, December 2013

49. B.Yegnanarayana, T.K. Raja, Perfoemance of linear prediction analysis on speechwith additive
noise, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
(1977)

50. B. Yegnanarayana, S.R.M. Prasanna, J. Zachariah, C. Gupta, Combining evidence from source,
suprasegmental and spectral features for a fixed-text speaker verification system. IEEE Trans.
Audio Speech Lang. Process. 13(4), 575–582 (2005)

51. C.S. Gupta, S.R.M. Prasanna, B. Yegnanarayana, Autoassociative neural network models for
online speaker verification using source features from vowels, in IEEE International Joint
Conference Neural Networks, May 2002

52. D. Pati, S.R.M. Prasanna, Subsegmental, segmental and suprasegmental processing of linear
prediction residual for speaker information. Int. J. Speech Technol. (Springer) 14(1), 49–63
(2011)

53. D. Pati, D. Nandi, K. Sreenivasa Rao, Robustness of excitation source information for language
independent speaker recognition, in 16th International Oriental COCOSDA Conference, Gur-
goan, November 2013

54. A. Bajpai, B. Yegnanarayana, Exploring features for audio clip classification using LP resid-
ual and AANN models, in International Conference on Intelligent Sensing and Information
Processing, pp. 305–310, January 2004

55. K.S. Rao, S.G. Koolagudi, Characterization and recognition of emotions from speech using
excitation source information. Int. J. Speech Technol. (Springer) 16, 181–201 (2013)

56. K.S. Rao, B. Yegnanarayana, Duration modification using glottal closure instants and vowel
onset points. Speech Commun. 51(12), 1263–1269 (2009)

57. K.S. Rao, B. Yegnanarayana, Prosody modification using instants of significant excitation.
IEEE Trans. Audio Speech Lang. Process. 14(3), 972–980 (2006)

58. K.S. Rao, S.R.M. Prasanna, B. Yegnanarayana, Determination of instants of significant exci-
tation in speech using Hilbert envelope and group delay function. IEEE Signal Process. Lett.
14(10), 762–765 (2007)



30 2 Language Identification—A Brief Review

59. K.S. Rao, Unconstrained pitch contour modification using instants of significant excitation.
Circuits Syst. Signal Process. (Springer) 31(6), 2133–2152 (2012)

60. K.S. Rao, Voice conversion by mapping the speaker-specific features using pitch synchronous
approach. Comput. Speech Lang. 24(3), 474–494 (2010)

61. R. Hussain Laskar, K. Banerjee, F. Ahmed Talukdar, K. Sreenivasa Rao, A pitch synchro-
nous approach to design voice conversion system using source-filter correlation. Int. J. Speech
Technol. (Springer) 15(3), 419–431 (2012)



http://www.springer.com/978-3-319-17724-3


	2 Language Identification---A Brief Review
	2.1 Prior Works on Explicit Language Identification System
	2.2 Prior Works on Implicit Language Identification System
	2.3 Prior Works on Excitation Source Features
	2.4 Motivation for the Present Work
	2.5 Summary
	References


