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Abstract. The Generalized Minimum Residual (GMRES) method is a
popular Krylov subspace projection method for solving a nonsymmet-
ric linear system of equations. On modern computers, communication
is becoming increasingly expensive compared to arithmetic operations,
and a communication-avoiding variant (CA-GMRES) may improve the
performance of GMRES. To further enhance the performance of CA-
GMRES, in this paper, we propose two techniques, focusing on the two
main computational kernels of CA-GMRES, tall-skinny QR (TSQR) and
matrix powers kernel (MPK). First, to improve the numerical stability of
TSQR based on the Cholesky QR (CholQR) factorization, we use higher-
precision arithmetic at carefully-selected steps of the factorization. In
particular, our mixed-precision CholQR takes the input matrix in the
standard 64-bit double precision, but accumulates some of its interme-
diate results in a software-emulated double-double precision. Compared
with the standard CholQR, this mixed-precision CholQR requires about
8.5× more computation but a much smaller increase in communication.
Since the computation is becoming less expensive compared to the com-
munication on a newer computer, the relative overhead of the mixed-
precision CholQR is decreasing. Our case studies on a GPU demonstrate
that using higher-precision arithmetic for this small but critical segment
of the algorithm can improve not only the overall numerical stability of
CA-GMRES but also, in some cases, its performance. We then study an
adaptive scheme to dynamically adjust the step size of MPK based on
the static inputs and the performance measurements gathered during the
first restart loop of CA-GMRES. Since the optimal step size of MPK is
often much smaller than that of the orthogonalization kernel, the overall
performance of CA-GMRES can be improved using different step sizes
for these two kernels. Our performance results on multiple GPUs show
that our adaptive scheme can choose a near optimal step size for MPK,
reducing the total solution time of CA-GMRES.

1 Introduction

The cost of executing software can be modeled by a function of its computa-
tional and communication costs (e.g., in terms of required cycle time or energy
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consumption). For instance, the computational cost can be modeled based on the
number of required floating point operations (flops), while the communication
includes the synchronization and data transfer between the parallel processing
units, as well as the data movement through the levels of the local memory hier-
archy. On modern computers, communication is becoming increasingly expensive
compared to computation. It is critical to take this hardware trend into considera-
tion when designing high-performance software for new and emerging computers.

The Generalized Minimum Residual (GMRES) method [6] is a popular Krylov
subspace projection method for solving a large-scale nonsymmetric linear system
of equations. To address the current hardware trend, we studied a communication-
avoiding variant of GMRES [5] on multicore CPUs with multiple GPUs [8]. Our
experimental results demonstrated that CA-GMRES can obtain the speedups
of up to two by avoiding some of the communication on such shared-memory
computer architectures. Our experimental results also showed that both the per-
formance and numerical stability of CA-GMRES depends on the two computa-
tional kernels, the orthogonalization (Orth) and matrix powers kernels (MPK ).
For example, compared with other orthogonalization schemes, the Cholesky
QR (CholQR) factorization [7] obtained a superior performance based on the
optimized BLAS-3 GPU kernels. Unfortunately, when the input matrix is ill-
conditioned, CholQR can be numerically unstable, and CA-GMRES may not
converge even with reorthogonalization. We also found that depending on the
sparsity pattern of the coefficient matrix, MPK can be slower than the stan-
dard sparse-matrix vector multiply (SpMV ) due to the computational and/or
communication overheads traded for reducing the communication latency. This
is especially true in CA-GMRES, where a relatively large step size is preferred
by Orth.

To address the aforementioned limitations of CA-GMRES, in this paper, we
first design and study a mixed-precision variant of CholQR that takes the input
matrix in the standard 64-bit double precision but accumulates some of its inter-
mediate results in software-emulated double-double precision [4]. Compared with
the standard CholQR, our mixed-precision CholQR increases the computational
cost by 8.5× but the increase in its communication cost is less significant. Since
the computation is becoming less expensive compared to the communication on
new and emerging computers, we hope to improve the overall numerical stabil-
ity of CA-GMRES using the higher-precision without a significant increase in
the orthogonalization time. Case studies on different GPUs demonstrate that
this mixed-precision CholQR can improve not only the overall stability of CA-
GMRES but also, in some cases, its performance by allowing a larger step size,
avoiding the reorthogonalization, and improving the solution convergence rate.
We then study an adaptive scheme that uses different step sizes for MPK and
Ortho and dynamically adjusts the step size of MPK at run time. We demon-
strate that our adaptive scheme can find a near optimal step size based on the
static input parameters and the performance measurements gathered during the
first restart loop, and reduce the total solution time of CA-GMRES.
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x̂ := 0 and v1 := b/‖b‖2.
repeat (restart-loop)

Generate Krylov Subspace on GPUs (inner-loop):
for j = 1, s + 1, 2s + 1, . . . , m do

MPK : Generate new vectors vk+1 := Avk

for k = j, j + 1, . . . ,min(j + s, m).
BOrth: Orthogonalize Vj+1:j+s+1 against V1:j .
TSQR: Orthogonalize the vectors within Vj+1:j+s+1.

end for

Solve Projected Subsystem on CPUs (restart):

Compute the solution x̂ in the generated subspace,
which minimizes its residual norm.

Set v1 := r/‖r‖2, where r := b − Ax.
until solution convergence do

Fig. 1. CA-GMRES(s,m) pseudocode.

Step 1: Gram-matrix formation
for d = 1, 2, . . . , ng do

B(d) := V
(d)T
1:s+1V

(d)
1:s+1 on GPU

end for

B :=
∑

B(d) (global reduce)

Step 2: Cholesky factorization
R := chol(B) on CPU

Step 3: Orthogonalization
copy R to all the GPUs (broadcast)
for d = 1, 2, . . . , ng do

V
(d)
1:s+1 := V

(d)
1:s+1R−1 on GPU

end for

Fig. 2. CholQR pseudocode.

The rest of the paper is organized as follows: In Sect. 2, we first review the
CA-GMRES, MPK, and CholQR algorithms, and present their implementations
on the multicore CPUs with multiple GPUs. Then in Sect. 3, we describe the
mixed-precision CholQR and its implementation with the GPU. The perfor-
mance of the mixed-precision CholQR and its effects on the performance of
CA-GMRES are also presented in this section. Next, in Sect. 4, we describe our
adaptive scheme for the MPK ’s step size and present its effectiveness in selecting
the near-optimal step size. We provide final remarks in Sect. 5.

2 Communication-Avoiding GMRES

The Generalized Minimum Residual (GMRES) method [6] is a popular Krylov
subspace projection method for solving a nonsymmetric linear system of equa-
tions, Ax = b. The GMRES’s j-th iteration generates the (j + 1)-th Krylov
basis vector vj+1. This is done through a sparse matrix-vector multiply (SpMV )
with the previously-generated basis vector vj , followed by the orthonormaliza-
tion (Orth) of the resulting vector against all the previously-generated basis
vectors v1,v2, . . . ,vj . As the iteration proceeds, this explicit orthogonalization
of the basis vectors becomes increasingly expensive in terms of both computa-
tional and storage requirements.

To avoid the expensive costs of generating a large projection subspace, GMRES
iteration is restarted after computing a fixed number m + 1 of basis vectors.
Before restart, GMRES updates the approximate solution x̂ by solving a least-
squares problem g := arg mint‖c − Ht‖, where c := V T

1:m+1(b − Ax̂), H :=
V T
1:m+1AV1:m, x̂ := x̂ + V1:mg, and V1:m is the matrix consists of the column

vectors v1,v2, . . . ,vm. Compared with the coefficient matrix A, the projected
matrix H, a by-product of the orthogonalization procedure, is smaller in dimen-
sion (i.e., m � n) and is in a Hessenberg form. Hence, the least-squares problem
can be efficiently solved, requiring only about 3(m + 1)2 flops. On the other
hand, for an n-by-n matrix A with nnz(A) nonzeros, SpMV and Orth require
a total of about 2m · nnz(A) and 2m3n flops over the m iterations, respectively
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(i.e., n, nnz(A) � m). Hence, the solution time of GMRES is often dominated by
the first step of generating the basis vectors. To accelerate the solution process
using GPUs, we distribute the coefficient matrix A and the basis vectors V1:m+1

in a 1D block row format among the GPUs. We then generate these basis vectors
on the GPUs, while the least-square problem is solved on the CPUs.

Even with a single GPU, both SpMV and Orth require communication to
move the data through the memory hierarchy of the GPU, while with multiple
GPUs, additional communication is needed among the GPUs. CA-GMRES [5]
aims to reduce this communication by redesigning the algorithm to replace SpMV
and Orth with three new kernels – matrix powers kernel (MPK ), block orthog-
onalization (BOrth), and tall-skinny QR (TSQR) – that generate and orthog-
onalize a set of s basis vectors at once. By avoiding the communication, even
with one GPU, CA-GMRES can obtain a speedup of up to two [8]. Figure 1
shows the pseudocode of CA-GMRES (s, m). A more detailed description of our
implementation can be found in [8].

In the rest of this section, we review the two main computational kernels
of CA-GMRES, TSQR and MPK, improving whose performance is the focus of
this paper.

2.1 Cholesky QR Factorization

To orthonormalize the tall-skinny matrix V1:s+1 with s + 1 columns, we focus
on TSQR based on the Cholesky QR (CholQR) factorization [7]. To describe
our implementation of CholQR on multicore CPUs with multiple GPUs, we use
V

(d)
1:s+1 to denote the local submatrix of V1:s+1, distributed to the d-th GPU, and

ng is the number of available GPUs. To orthogonalize the s + 1 vectors V1:s+1,
CholQR first forms the Gram matrix, B := V T

1:s+1V1:s+1, through the local
matrix-matrix product B(d) := V

(d)T
1:s+1V

(d)
1:s+1 on the GPU, followed by the reduc-

tion B :=
∑ng

d=1 B(d) on the CPU. Next, the Cholesky factor R of B is com-
puted on the CPU. Finally, the GPU orthogonalizes V1:s+1 by a triangular solve
V

(d)
1:s+1 := V

(d)
1:s+1R

−1. Hence, all the required GPU-GPU communication is aggre-
gated into a pair of messages between the CPU and GPUs, while all the GPU
computation is based on BLAS-3. As a result, both intra and inter GPU commu-
nication can be optimized. Figure 2 shows these three steps of CholQR. Unfor-
tunately, the condition number κ(B) of the Gram matrix B is the square of the
condition number κ(V1:s+1) of the input matrix V1:s+1 (i.e., κ(B) = κ(V1:s+1)2).
This often causes numerical instability, especially in CA-GMRES, where even
using the Newton basis [1], the vector vj can converge to the principal eigenvec-
tor of A, and κ(V1:s+1) can be large.

2.2 Matrix Powers Kernel

For SpMV on multiple GPUs, the communication of the distributed vector
elements through the PCI Express bus could become a bottleneck. To reduce
this bottleneck, given a starting vector vj , MPK first communicates all the
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Fig. 3. Illustration of MPK for a tridiagonal matrix A with the starting vector v
and the step size s = 4. The blue circles represent the local elements of the vectors
to be computed on this GPU and the red circles are the required non-local vector
elements. The GPU first communicates the red elements of v on the s-level overlap,
then independently performs SpMV (Color figure online).

required vector elements of vj on the s-level overlap at once so that each GPU
can independently compute the local components of the s matrix-vector products
Avj , A

2vj , . . . , A
svj without further communication [2]. Figure 3 illustrates our

implementation of MPK for a tridiagonal matrix A. As a result, MPK reduces
the communication latency by a factor of s, but introduces the overheads to
store, communicate, and perform computation on the s-level overlap. Though
MPK often improve the performance of SpMV using a small step size s, its
optimal step size may be much smaller than that of BOrth or TSQR due to
the overheads associated with MPK. See [8] for the detailed discussion of our
implementation of MPK and its performance.

3 Mixed-Precision CholQR

To improve the numerical stability of CholQR in the working 64-bit double
precision, we use a software-emulated quadruple precision at the first two steps
of CholQR, while the last step is in the working precision. This is motivated
by the fact that the condition number of the Gram matrix B is the square of
the condition number of the input matrix V1:s+1. Hence, the numerical stability
should be improved by using the higher-precision arithmetic for forming and
factorizing the Gram matrix (see [9] for the detailed numerical analysis and
studies of the mixed-precision CholQR). Here, in Sect. 3.1, we first describe our
implementation of the mixed-precision CholQR on the multicore CPUs with
the GPU. Then, in Sect. 3.2, we present its performance. Finally, in Sect. 3.3,
we study the effects of using the higher-precision on the performance of CA-
GMRES.

3.1 Implementation

When the target hardware does not support a desired higher precision, software
emulation is needed. For instance, double-double (dd) precision emulates the



22 I. Yamazaki et al.

# of double precision instructions
double-double operation Add/Substitute Multiply FMA Total

Multiply (double-double input) 5 3 1 9
Multiply (double input) 3 1 1 5
Addition (IEEE-style) 20 0 0 20
Addition (Cray-style) 11 0 0 11

Fig. 4. Number of double-precision instructions in double-double operations.
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Fig. 5. InnerProds implementation (arrow
shows data access by a GPU thread).

double regC[mb][nb], regA[mb], regB
for � = 1, . . . h

nt
do

for j = 1 . . . nb

regA[i] = x�∗nt,j

end for
for j = 1, . . . , nb do
regB = y

�∗nt,j

for i = 1 . . . mb

regC[i][j] += regA[i] * regB
end for

end for
end for

Fig. 6. InnerProds pseudocode.

quadruple precision by representing each numerical value by an unevaluated
sum of two double precision numbers, and is capable of representing the 106 bits
precision, while the double-precision number is of 53 bits precision. There are two
standard implementations [4] of adding two numerical values in double-double
precision, a + b = ĉ + e, where e is the round-off error; one satisfies the IEEE-
style error bound (e = δ(a + b) with |δ| ≤ 2εdd and εdd = 2−105), and the other
satisfies the weaker Cray-style error bound (e = δ1a + δ2b with |δ1|, |δ2| ≤ εdd).
Figure 4 lists the computational costs of the double-double operations required
by our mixed-precision CholQR (dd-CholQR). The standard CholQR in double
precision (d-CholQR) performs about a half of its total flops at Step 1 and the
other half at Step 3. On the other hand, compared with the input matrix V1:s+1,
the Gram matrix B is much smaller in its dimension (i.e., s � n), and CholQR
spends only a small portion of its flops and orthogonalization time, computing its
Cholesky factor at Step 2. Hence, using the Cray-style double-double precision
for Steps 1 and 2, our dd-CholQR performs about 8.5× more computation than
d-CholQR. On the other hand, the increase in communication is less significant;
our intra-GPU communication is about the same, only writing the s-by-s output
matrix in double-double precision while reading and writing the n-by-s input
matrix V1:s+1 in double precision (s � n). In addition, we communicate twice
more data between the GPUs (16s2Bytes with s ≈ 10), but with the same
latency.

Though CholQR performs only a half of the total flops at Step 1, its
orthogonalization time can be dominated by Step 1. This is because though
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Fig. 7. Performance of standard and mixed-precision InnerProds in double precision.

the other half of the total flops is performed at Step 3, solving the triangular
system with many right-hand-sides at Step 3 exhibits a high parallelism and can
be implemented efficiently on a GPU. On the other hand, at Step 1, comput-
ing each element of the Gram matrix requires a reduction operation on two n-
length vectors. These inner-products (InnerProds) are communication-intensive
and exhibit only limited parallelism. Hence, Step 1 often becomes the bottle-
neck, where standard implementations fail to obtain high-performance on the
GPU. In our batched implementation of a matrix-matrix multiply (GEMM) to
compute InnerProds, B := XT Y , each thread block computes a partial product,
B(i,j,k) := X(k,i)T Y (k,j), where X(k,i) and Y (k,j) are the h-by-mb and h-by-nb

blocks of X and Y , respectively.1 Within the thread block, each of its nt threads
computes its partial result in the local registers (see Fig. 5 for an illustration, and
Fig. 6 for the pseudocode, where x�,j is the (�, j)-th element of X(k,i)). Then,
each thread block performs the binary reduction of the partial results among
its threads, summing nr columns at a time using the shared memory to store
nt × (mb ×nr) numerical values. The final result is computed by another binary
reduction among the thread blocks. Our implementation is designed to reduce
the number of synchronizations among the threads while relying on the CUDA
runtime and the parameter tuning to exploit the data locality. For the symmetric
(SYRK) multiply, B := V T V , the thread blocks compute only a triangular part

1 In the current implementation, the numbers of rows and columns in X and Y are a
multiple of h, and multiples of mb and nb, respectively, where nb is a multiple of nr.



24 I. Yamazaki et al.

0 50K 100K 150K 200K 250K 300K 350K 400K 450K 500K
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of rows

N
or

m
al

iz
ed

 ti
m

e

Number of columns=20 (Tesla K20c, 1310/250=5.2)

 

 

d−TRSM
d−POTRF
d−GEMM

Fig. 8. d-CholQR time breakdown.

0 50K 100K 150K 200K 250K 300K 350K 400K 450K 500K
0

10

20

30

40

50

60

70

80

Number of rows

C
ho

lQ
R

 G
flo

p/
s

Number of columns=20 (Tesla K20c, 1310/250=5.2)

 

 

d−SYRK
dd−SYRK (Cray)
d−GEMM
dd−GEMM (Cray)

Fig. 9. d/dd-CholQR performance.

of B and reads V (k,j) once for computing a diagonal block. Our performance
studies in the next subsection are based on this batched kernel.

3.2 Performance

Figure 7 compares the standard and mixed-precision InnerProds performance on
different GPUs, where the mixed-precision InnerProds reads the input matrix in
the standard 64-bits double precision, but accumulates its intermediate results
into the output matrix in the double-double precision. Each GPU has a different
relative cost of communication to computation, and on top of each plot, we show
the ratio of the double-precision peak performance (Gflop/s) over the shared
memory bandwidth (GB/s) (i.e., flop/B to obtain the peak). This ratio tends
to increase on a newer architecture, indicating a greater relative communication
cost. We tuned our kernel for each matrix dimension on each GPU in each
precision (see the five tunable parameters h, mb, nb, nr, and nt in Sect. 3.1),
and the figure shows the optimal performance. Based on the memory bandwidth
and the fixed number of columns in the figure, the respective peak performances
of the standard d-GEMM are 442, 625, and 720Gflop/s on the M2090, K20c,
and K40 GPUs. Our d-GEMM obtained 29, 26, 28% of these peak performances
and speedups of about 1.8, 1.7, and 1.7 over CUBLAS 5.5 on these three GPUs.
In addition, though it performs 16× more floating-point instructions, the gap
between the standard d-GEMM and the mixed-precision dd-GEMM tends to
decrease on a newer architecture, and dd-GEMM is only less than four times
slower on K20c. We also see that by taking advantage of the symmetry, both
d-SYRK and dd-SYRK improve the performance of d-GEMM and dd-GEMM,
respectively.

Figure 8 shows the breakdown of the standard d-CholQR orthogonalization
time on two eight-core Intel Sandy Bridge CPUs with one NVIDIA K20c GPU.
Because of our efficient implementation of InnerProds, only about 30 % of the
orthogonalization time is now spent in d-InnerProds. As a result, while the mixed
precision dd-InnerProds was about four times slower than d-InnerProds, Fig. 9
shows that the mixed-precision dd-CholQR is only about 1.7 or 1.4 times slower
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Name Source n/1000 nnz/n

cant FEM Cantilever 62.4 64.2
shipsec1 FEM Ship secion 140.8 87.3

dielFilterV2real FEM in Electromagnetic 1157.5 41.9
G3 circuit Circuit simulation 1585.4 4.8

Fig. 10. Test matrices used for test cases with CA-GMRES.
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Fig. 11. Performance comparison of CA-GMRES using dd-CholQR (with dd-GEMM
or dd-SYRK) against CA-GMRES using d-CholQR with (d-GEMM or d-SYRK) and
GMRES using CGS: On top of each bar shows total time in seconds and restart count.
To obtain the solution convergence, the reorthogonalization was used with d-CholQR,
while it was not needed with dd-CholQR.

than the standard d-CholQR when GEMM or SYRK is used for InnerProds,
respectively. In other words, if the reorthogonalization is avoided using the higher-
precision, then dd-CholQR may obtain a performance competitive to that of d-
CholQR with reorthogonalization. For the mixed-precision dd-CholQR, the
Cholesky factorization in the double-double precision is computed using MPACK2

on the CPU, while for d-CholQR, we use the threaded version of MKL for the
Cholesky factorization in the double precision.

3.3 Case Studies with CA-GMRES

Figure 11 shows the solution time of CA-GMRES using the standard d-CholQR
and the mixed-precision dd-CholQR on two eight-core Sandy Bridge CPUs with
a single K20c. To maintain the numerical stability and obtain the solution con-
vergence, the full-reorthogonalization was needed with d-CholQR, while it was
2 http://mplapack.sourceforge.net.

http://mplapack.sourceforge.net
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Fig. 12. Result of MPK performance model on two and three GPUs.

not needed with dd-CholQR. For BOrth, we used the classical Gram-Schmidt
(CGS) process [3] with reorthogonalization, which obtains high performance with
the GPU [8]. The solution time is normalized using the corresponding solution
time of GMRES that uses CGS with reorthogonalization for orthogonalizing
its basis vectors. Figure 10 shows the properties of our test matrices that were
downloaded from the University of Florida Sparse Matrix collection.3 We see
that using dd-CholQR, even with the computationally expensive software emu-
lation, the solution time was reduced not only because the reorthogonalization
was avoided but also because CA-GMRES converged in fewer iterations.

4 Adaptive Step Size for Matrix Powers Kernel

Most of CA-GMRES implementations including ours [8] use the same step size s
for MPK, BOrth, and TSQR, while the optimal s for MPK is typically smaller
than that of BOrth or TSQR due to the computational and/or communication

3 http://www.cise.ufl.edu/research/sparse/matrices/.

http://www.cise.ufl.edu/research/sparse/matrices/
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overheads associated with MPK. To address this performance difference, we first
adapted our implementation such that MPK uses a smaller step size ŝ than the
step size s used for BOrth and TSQR. Hence, to generate the s basis vectors,
we invoke MPK s/ŝ times using the step size ŝ before calling BOrth and TSQR.
In addition, instead of having a different ŝ for MPK as a user-specified input
parameter, we design an adaptive scheme to dynamically adjust the step size
ŝ of MPK based on the static inputs (i.e., the sparsity pattern of the coeffi-
cient matrix A and the maximum step size s) and the performance measure-
ments gathered during the first restart-loop of CA-GMRES. In particular, for
our experiments, we use the following performance model:

MPK time = Inter-communication time + Kernel time,

where we let

Inter-communication time = Latency +
Communication volume

Bandwidth
, and

Kernel time =
Flop count

flop/s
+ # of random data accesses × Data access time,

and “Kernel time” consists of the computation and intra-GPU communication
time. In our experiments, “Communication volume” and “Flop count” are com-
puted based on the sparsity pattern of the coefficient matrix A, while “# of
random data accesses” is approximated by the aggregated number of non-local
vector elements accessed by MPK. On the other hand, we computed “Latency,”
“Bandwidth,” “flop/s,” and “Data access time” based on the measured time
of the reduction for the dot-products, point-to-point communication for SpMV,
flop count and time required by SpMV, and data copy on the GPU, respectively.
All the performance measurements are collected during the first restart loop of
CA-GMRES. In practice, we often use GMRES iteration for the first restart loop
(i.e., s = 1). This is because to maintain the numerical stability, MPK generates
the Newton basis [1] whose shifts can be computed during the first restart. Since
these shifts are not available for the first restart loop, to maintain the numerical
stability, GMRES iteration is used. Hence, with the proposed adaptive scheme,
we gather both the numerical and performance statistics of the given problem
during the first restart loop. Then, based on these statistics, the input parame-
ters are adjusted to enhance both the performance and stability of CA-GMRES
for the remaining loops.

Figure 12 shows the effectiveness of the performance model to capture the
performance of MPK for two sparse matrices on Intel Sandy Bridge CPUs with
three NVIDIA Tesla M2090 GPUs. The properties of our test matrices from
the University of Florida Sparse Matrix collection are shown in Fig. 10. Since we
use the performance model to select a good step size, the model only needs to
capture the performance trend and not the exact performance. In addition, in
many cases, the performance of MPK does not change significantly around the
optimal step size. The figure demonstrates that for both matrices, the model was
successful in capturing the performance trends and selecting a near-optimal step
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Fig. 13. Effects of adaptive MPK step size on performance of CA-GMRES.

size. In particular, for the dielFilterV2real matrix, due to the overhead asso-
ciated with MPK, the standard SpMV was faster than MPK. Our performance
model could capture this and select the step size of one for MPK.

Figure 13 shows the effects of the adaptive step size on the performance of
CA-GMRES, where the static scheme uses the fixed step size for MPK, BOrth,
and TSQR that obtains the near-optimal performance of CA-GMRES. Though
the improvement was not significant, this is based on the near-optimal perfor-
mance of MPK. We expect the benefit of the adaptive scheme to increase on
the computer where the communication cost is higher (e.g., a GPU cluster).
Finally, in all the test cases, it only required marginal overheads to gather the
performance measurements.

5 Conclusion

We proposed a mixed-precision orthogonalization scheme to improve the numer-
ical stability of CA-GMRES. When the target hardware does not support a
desired higher precision, software emulation is needed. We showed that though
the software emulation could significantly increase the computational cost, the
increase in the communication cost is less significant. As a result, the overhead
of using the software emulation is decreasing on a newer GPU architecture where
the cost of the computation is decreasing compared to the cost of the commu-
nication. Our case studies on multicore CPUs with a GPU demonstrated that
though it requires about 8.5× more computation, using a higher-precision for
this small but critical segment of CA-GMRES can improve not only its overall
stability but also, in some cases, its performance.

In this paper, we only studied the effects of a higher-precision on a single
GPU. On multiple GPUs of a compute node, the performance of CA-GMRES
depends more on the performance of the GPU kernels (i.e., intra-GPU communi-
cation) than the inter-GPU communication [8]. Hence, similar benefits of using a
higher-precision are expected on the multiple GPUs. We will study its effects on a
system with a greater communication latency (e.g., distributed GPUs or CPUs)
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where the performance improvement by using the higher-precision arithmetic
may be greater. We are also studying the use of mixed-precision in eigensolvers
where the orthogonality can be more crucial, and are writing an extended paper
focusing on the numerical properties of our mixed-precision scheme [9]. Finally,
it is of our interest to apply or extend recent mixed precision efforts (e.g., repro-
ducible BLAS4 and precision tuning5) for our studies.

In this paper, we also studied an adaptive scheme to adjust the step size
of MPK on multiple GPUs. Our performance results demonstrated that our
adaptive scheme can find a near optimal step size based on the static input
parameters and the performance measurements gathered during the first restart
loop, and reduce the total solution time of CA-GMRES. Our MPK is currently
optimized only for the inter-GPU communication which is relatively inexpensive
on a node. We are looking to optimize MPK on a GPU, which should increase
the benefit of the adaptive step size. We also plan to study the effectivness of
the adaptive schme on a larger system with greater communication cost (e.g., a
distributed system), where a greater benefit of the adaptive scheme is expected
(in term of time or memory).
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