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Abstract. We survey recent research on the power of nondeterministic
computation and how to use nondeterminism to get new separations
of complexity classes. Results include separating NEXP from NP with
limited advice, a new proof of the nondeterministic time hierarchy and a
surprising relativized world where NP is as powerful as NEXP infinitely
often.

1 Results

In this talk we focus on new results by the speaker about the power of nondeter-
minism which sits at the heart of the famous P versus NP problem. The results
in this paper first appeared in works by Buhrman, Fortnow and Santhanam [1–3]

Theorem 1. For any constant c, NEXP �⊆ NP/nc.

Eric Allender asked whether even Theorem 1 (NEXP �⊆ NP/nc) can be strength-
ened to a lower bound that works on almost all input lengths, rather than on
infinitely many. Direct diagonalizations tend to work on almost all input lengths–
our separation is indirect, and technique does not give this stronger property.
We give a new relativized world showing that relativizing techniques cannot get
the stronger separation even without the advice.

Theorem 2. There exists a relativized world such that NEXP ⊆ i.o.NP.

Cook [4] first showed a nondeterministic time hierarchy, given in its strongest
form by Seiferas, Fischer and Meyer [5] and simplified by Žàk [6]. We give yet a
new proof that gives a far more compact diagonalization.

Theorem 3. If t1 and t2 are time-constructable functions such that

– t1(n) = o(t2(n)), and
– n � t1(n) � nc for some constant c

then NTIME(t2(n)) �⊆ NTIME(t1(n)).

Corollary 1. For any reals 1 � r < s, NTIME(ns) �⊆ NTIME(nr).

We can use the techniques of this new proof to get a time hierarchy with advice.
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Theorem 4. Let d � 1 be any constant, and let t be a time-constructible time
bound such that t = o(nd). Then NTIME(nd) �⊆ NTIME(t)/n1/d.

Theorem 4 improves on known results handling advice in two respects. First, the
amount of advice in the lower bound can be as high as nΩ(1), in contrast to
earlier results in which it was limited to be O(log(n)). Second, the hierarchy is
provably tight in terms of the time bounds, while earlier results handling advice
could only separate NTIME(nd) from NTIME(nc) with advice, where c < d.

We are able to use Theorem 4 to derive a new circuit lower bound for NP,
improving a 30-year old result of Kannan [7].

Corollary 2. Let k > 1 be any constant. NP does not have NP-uniform non-
deterministic circuits of size O(nk).

2 Proof of Theorem1

We first need the following lemma, a slightly stronger version of a result in
Homer and Mocas [8] about lower bounds for deterministic exponential time
against advice. The proof we give is folklore.

Lemma 1. For any constant d, EXP �⊆ i.o.DTIME(2nd

)/nd.

Proof. The proof is by diagonalization. We define a diagonalizing language L

which is not in i.o.DTIME(2nd

)/nd by defining a machine M which runs in expo-
nential time and decides L.

M operates as follows on input x of length n. It enumerates advice taking
machines M1,M2 . . . Mlog(n) each running in time at most 2nd

and taking advice
of length nd. It then enumerates all log(n)2nd

truth tables computed by these
machines when every possible string of length nd is given as advice. It then
computes a truth table of an n-bit function f which is distinct from all the
truth tables enumerated so far–this can be done in exponential time by a simple
pruning strategy. Finally it outputs f(x).

Now we are ready to prove our lower bound for NEXP.

Proof. We will show that either NEXP �⊆ NP/poly or NEXP �⊆ NE/nc. From this,
the result follows.

Assume, to the contrary, that both these inclusions hold, i.e., NEXP ⊆
NP/poly and NEXP ⊆ NE/nc. We will derive a contradiction. Let L be a complete
language for NE with respect to linear-time reductions. Since NEXP ⊆ NP/poly,
we get that L ∈ NTIME(nk)/nk for some constant k. Since L is complete for NE
with respect to linear-time reductions, we get that NE ⊆ NTIME(nk)/O(nk).

By translation, we get that NE/nc ⊆ NTIME(nkc)/O(nkc). To see this, let L′

be a language in NE/nc, and let M ′ be an advice-taking NE machine accepting L′

with advice length nc. Define a language L′′ ∈ NE as follows: a string < x, a > is
in L′′ iff M ′ accepts x with advice a. Since M ′ is an NE machine, it follows that
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L′′ ∈ NE. Thus, by assumption L′′ ∈ NTIME(mk)/O(mk), where m is the input
length for L′′. Let M ′′ be an advice-taking machine solving L′′ using resources as
stated. Now we can solve L′ in NTIME(nkc)/O(nkc) as follows. The advice-taking
machine M we construct for solving L′ interprets its advice as consisting of two
parts: the first part is an advice string a of length nc, where n is the input size,
and the second part is an advice string b of length O((n + nc)k) = O(nkc). M
simulates M ′′ on input < x, a > with advice string b, where x is the input for L′.
M accepts iff M ′′ accepts. M operates within time O(nkc) (since it simulates an
O(nk) time machine on an input of length O(nc)), uses advice of length O(nkc),
and decides L′ correctly, by definition of L′′ and the assumption on M ′′.

Thus, we have NEXP ⊆ NE/nc and NE/nc ⊆ NTIME(nkc)/O(nkc), which
together imply NEXP ⊆ NTIME(nkc)/O(nkc). But since EXP ⊆ NEXP and
NTIME(nkc)/O(nkc) ⊆ DTIME(2nkc

)/O(nkc) we get EXP ⊆ DTIME(2nkc

)/O(nkc),
which is a contradiction to Lemma 1.

3 Proof of Theorem2

We show the surprising relativized world where NEXP is infinitely often contained
in NP.

Proof. Let Mi be a standard enumeration of non-deterministic relativized Turing
machines that runs in time at most 2ni

. Since these machines are paddable, for
any A and any L ∈ NEXPA there will some i such that L = L(MA

i ). We will
create A such that for every i there are an infinite number of n such that for all
x of length n,

x ∈ L(MA
i ) ⇔ there exists a y with |y| = 2|x|i and (i, x, y) ∈ A

which immediately implies Theorem 2.
Start with A = ∅. We construct A in stages (i, j) chosen in any order that

cover all possible (i, j).
Stage (i, j): Pick n such that n is larger than any frozen string as well as the

n chosen in any previous stage.
Set all strings x of length n to be unmarked.
Repeat the following as long as there is an unmarked x of length n such that

MA
i (x) accepts: Fix an accepting path of MA

i (x) and freeze every string queried
along that path. Mark x. Pick a y, |y| = 2|x|i such that (i, x, y) is not frozen
and let A = A ∪ {(i, x, y)}.

We can always find such a y since we have 22ni

possible (i, x, y) and at this
point since we have frozen at most 2ni

strings for at most 2n possible x’s for a
total of 2ni

2n < 22ni

frozen strings.

By adding every (i, x, y) that is non frozen in the proof above one can get an
even stronger oracle.

Corollary 3. There exists a relativized world such that NEXP ⊆ i.o.RP.
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4 New Proof of Nondeterministic Time Hierarchy

Here we give an alternate proof of Theorem 3.

Proof (Proof of Theorem3). Let M1,M2, . . . be an enumeration of multitape
nondeterministic machines that run in time t1(n).

Define a nondeterministic Turing machine M that on input 1i01m0w does as
follows:

– If |w| < t1(i+m+2) accept if both Mi(1i01m0w0) and Mi(1i01m0w1) accept.
– If |w| � t1(i + m + 2) accept if Mi(1i01m0) rejects on the path specified by

the bits of w.

Since we can universally simulate t(n)-time nondeterministic multitape Turing
machines on an O(t(n))-time 2-tape nondeterministic Turing machine, L(M) ∈
NTIME(O(t1(n + 1))) ⊆ NTIME(t2(n)). Note (n + 1)c = O(nc) for any c.

Suppose NTIME(t2(n)) ⊆ NTIME(t1(n)). Pick a c such that t1(n) � nc. By
assumption there is a language L ∈ NTIME(t1(n)) such that L(M) = L. Fix i
such that L = L(Mi). Then z ∈ L(Mi) ⇔ z ∈ L(M) for all z = 1i01n00w for
w � t1(i + n0 + 2).

By induction we have Mi(1i01n00) accepts if Mi(1i01n00w) accepts for all
w � t1(i + n0 + 2). So Mi(1i01n00) accepts if and only Mi(1i01n00) rejects on
every computation path, contradicting the definition of nondeterministic time.

5 Proof of Theorem4

Theorem 4 follows immediately from the following result.

Theorem 5. Fix any constant d > 1. Let t1 and t2 be time-constructible func-
tions such that t2 = O(nd) and t1(n + 1) = o(t2(n)). Then there is a language
in NTIME(t2) which is not in NTIME(t1)/t−1

2 (n).

We need a new notion of “cumulative advice”, defined as follows. Given a time
function t : N → N and an advice function a : N → N, a language L is said to be
in NTIME(t)/ca if there is an advice-taking non-deterministic machine M such
that, for each n, there is a string bn of length at most a(n) for which M , given
< n, bn > on its advice tape, halts in time t(n) and accepts an input x of length
at most n iff x ∈ L.

The notion of cumulative advice is defined here for non-deterministic time
but it extends naturally to any complexity measure.

Informally, an advice string given as cumulative advice helps to decide all
inputs of length at most a given length, while the traditional notion of advice
only applies to inputs which are all of the same length. If a language L is in
NTIME(t)/a and a is a non-decreasing function, then it is obvious that L is
NTIME(t)/cna, since cumulative advice for length n can be formed simply by
concatenating all advice strings of length at most n. However, it is far from clear
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whether advice of length a can be simulated with cumulative advice o(na), when
a is polynomially bounded.

We will first prove a hierarchy theorem for non-deterministic polynomial time
against sub-linear cumulative advice, and then show how to strengthen this to
a hierarchy theorem for non-deterministic polynomial time against sub-linear
advice. Note that though the notion of cumulative advice plays an important
role in our proof, it does not appear in our main theorem - the main theorem
holds for the traditional notion of advice.

Lemma 2. Fix any constant d > 1. Let t1 and t2 be time-constructible functions
such that t2 = O(nd), t1(n + 1) = o(t2(n)). Then there is a language L ∈
NTIME(t2) which is not in NTIME(t1)/ct

−1
2 (n).

Note that the statement of Lemma 2 is identical to that of Theorem5, except
that the lower bound is against cumulative advice.

Proof. First fix a function f : N → N such that f(n) is computable in time
O(n), and for each constant k, there are only finitely many triples (n1, n2, n3)
of integers such that n1 � n2 � n3 � nk

1 such that f(n1), f(n2), f(n3) are all
distinct, and also such that each positive integer has infinitely many pre-images
under f . We will use the function f(n) = i if 22

2m � n < 22
2m+1

, where i is the
unique number such that bin(m) is of the form 1k0bin(i) for some k � 0. Here
bin(j) denotes the binary representation of the number j.

Intuitively, f selects which cumulative advice-taking non-deterministic Tur-
ing machine we attempt to diagonalize against at a given input length n. The
properties of f ensure that the same machine is being diagonalized against for
a long enough stretch of inputs, and that it is easy to compute for any given
input length which machine we’re diagonalizing against. Let M1,M2,M3 . . . be
an efficiently computable enumeration of all cumulative advice-taking 2-tape
non-deterministic Turing machines. We define a non-deterministic machine M
without advice which operates as follows.

On input x, M first computes n = |x|, i = f(n) and the number t2(n), the
last of which it uses as a clock for its computation. It then computes the largest
m such that 22

2m � n < 22
2m+1

. Set A = 22
2m

. If n > t2(A), M simply rejects.
Otherwise M decomposes x as yz, where |y| = A. If n < t2(A), M simulates Mi

on input x0 with advice < t2(A), y > on the advice tape1. If Mi halts within
the allotted time, M next simulates Mi on input x1 with advice < t2(A), y >
on the advice tape. If this simulation halts as well within the allotted time, M
accepts iff both simulations (i.e., of Mi on x0 and Mi on x1) accept. In every
other case, M rejects.

If n = t2(A), M simulates Mi on y with guess sequence z (i.e., z is treated as
an encoding of all the non-deterministic choices of Mi), and with advice < n, y >
on the advice tape. It accepts iff the simulation halts and rejects. Note that the
simulation on such an input length n is completely deterministic.
1 We assume that if Mi needs only r < |y| bits of advice, then only the first r bits of
y are used.
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By definition of M , L(M) ∈ NTIME(t2). We claim L(M) �∈ NTIME(t1)/
ct

−1
2 (n). The proof of this claim is by contradiction. Suppose, to the contrary,

that there is a cumulative advice-taking non-deterministic Turing machine decid-
ing L(M) in time O(t1) with t−1

2 (n) bits of advice. By the tape reduction theo-
rem for non-deterministic time, there is a 2-tape advice-taking non-deterministic
machine Mi which decides L(M) in time O(t1) with t−1

2 (n) bits of advice.
Let g : N → N be a function such that the simulation of t steps of a machine

Mi is performed within g(i)t steps of M . Choose A a power of a power of a
power of 2 large enough so that f(A) = i and 2g(i)t1(n′ + 1) + 100n′ < t2(n′)
for all n′ � A. By choice of f and since t1(n + 1) = o(t2(n)), such an A exists.
Now, for all n such that A � n < t2(A), the simulations of Mi by M halt
within the allotted time, since all the extra computations (of n, i, t2(n) and the
decomposition) can be performed in time < 100n. Note also that the simulations
at length n = t2(A) complete succesfully since t2(n) − n � t1(n).

By assumption, there is a sequence of advice strings {bm} such that for each
m, for each x of length at most m, Mi accepts x with advice < m, bm > iff
x ∈ L(M), and |bm| � t−1

2 (m). Let y be any string of length A such that bt2(A)

is a prefix of y. By the assumption on size of advice strings, such a string y
exists.

Now we have that M accepts on y iff Mi accepts on both y0 and y1 with
< t2(A), y > on the advice tape. Continuing inductively, we have that M accepts
y iff Mi accepts on all strings of the form yz, |z| � t2(A) − A with < t2(A), y >
on the advice tape. Now we take advantage of the behavior of M on strings of
length t2(A). M accepts on a string yz, |z| = t2(A)−A iff z is not a sequence of
non-deterministic choices leading to acceptance of Mi on y with < t2(A), y > on
the advice tape. Hence, if Mi with < t2(A), y > on the advice tape agrees with
M on all strings of the form yz, |yz| = t2(A), we have that M accepts y iff Mi

rejects y with < t2(A), y > on the advice tape, which contradicts the assumption
that M on y agrees with Mi on y with < t2(A), y > on the advice tape.

Lemma 3. Let L be any language, and let L′ = {0k1x|x ∈ L, k � 0}. For any
non-decreasing advice function a : N → N, and for any non-decreasing time
function t : N → N which is Ω(n), we have that L ∈ NTIME(t(n + 1))/ca(n + 1)
iff L′ ∈ NTIME(t(n))/a(n).

Proof. We define L′ = {0k1x|x ∈ L, k � 0}. We first show the forward implica-
tion, and then the reverse one.

Suppose L ∈ NTIME(t(n+1))/ca(n+1), for some time function t and cumu-
lative advice function a. Let M be an advice-taking non-deterministic Turing
machine which always halts in time t(n + 1) on inputs of length n and decides
L correctly with a(n+1) bits of cumulative advice. For each input length m, let
bm be a correct advice string of length at most a(m+1) for M at length m, i.e.,
for all x of length at most m, M accepts x given advice < m, bm > iff x ∈ L.
We define an advice-taking non-deterministic Turing machine M ′ which always
halts in time t(n) on inputs of length n and decides L correctly with at most
a(n) bits of advice.
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Given an input x′, M ′ operates as follows. M ′ first computes the unique string
x such that 0k1x = x′, for some k � 0. This computation can be done easily
in linear time. M ′ then interprets its advice string cn as the cumulative advice
bn−1 for M at length n − 1, and simulates M on x with advice < n − 1, cn >.
It accepts iff M accepts. M ′ always halts in time O(t(n)) since the string x′ is
of length at most n − 1 and since M always halts in time t(m + 1) on inputs
of length m. The correctness of M ′ follows from the fact that M is a correct
advice-taking machine deciding L with cumulative advice.

For the reverse implication, suppose L′ ∈ NTIME(t(n))/a(n). Let M ′ be an
advice-taking non-deterministic machine which always halts in time t(·) and
accepts L′ with at most a(n) bits of advice. We define an advice-taking machine
M halting in time t(n + 1) and accepting L with at most a(n + 1) bits of
cumulative advice as follows.

Say M is given a string x on its input tape, and < m, bm > on its advice
tape, with m � |x|. Note that we can assume wlog that m � |x|, since otherwise
M is allowed to behave arbitrarily. M forms the string x′ = 0m−|x|1x and then
simulates M ′ on input x′ with advice bm. Namely, it interprets its advice string as
advice for M ′ at length m + 1. The time taken for the simulation is O(t(m + 1))
since t is at least linear, and the advice is of length at most a(m + 1). The
correctness of M follows from the correctness of M ′.

Proof of Theorem 5. Applying Lemma 2 to the time functions t1(n+1), t2(n+1)
and the cumulative advice function t−1

2 (n + 1), we have that there is a language
L which is in NTIME(t2(n + 1)) but not in NTIME(t1(n + 1))/t−1

2 (n + 1). Using
Lemma 3 with t = t2 and a = 0, we have that L′ ∈ NTIME(t2). Using Lemma 3
with t = t1 and a = t−1

2 , we have that L′ �∈ NTIME(t1)/t−1
2 (n). Thus L′ satisfies

the required conditions.
We note that the polynomial upper bound on t2 in Theorem 5 is in fact

redundant. It helps to simplify the choice of f in the proof, but in fact for
any time-constructible t2 an appropriate f can be chosen to make the proof go
through.
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