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1 Introduction
Feller had a persistent interest in biology. This is documented in numerous examples

from mathematical genetics in his monograph [*Feller 1950, *Feller 1966d],1 and

by a couple of influential research papers at the interface of population biology and

probability theory. Looking back at these papers in historical perspective is highly

rewarding: They are cornerstones of biomathematics; they mirror the development of

probability theory of their time; and at least one of them ([Feller 1951d]) had lasting

impact on probability theory.

Feller’s important papers on the interface to biology are the articles [Feller 1939a],

[Feller 1951d], and [Feller 1967c]. The first one addresses general population dy-

namics, the other two are mainly concerned with models in population genetics. The

area of population dynamics is concerned with the growth, stabilisation, decay, or

extinction of populations. Models of population dynamics describe how the size of

populations changes over time under given assumptions on birth and death rates of

individuals, which may depend on the current population size since individuals inter-

act (e. g. compete) with each other. In contrast, population genetics is concerned with

the genetic composition of populations under the action of various evolutionary pro-

cesses, such as mutation and selection. Naturally, there is no sharp boundary between

the fields, as we will also see in Feller’s contributions. Let us now look at them.

2 Feller and population dynamics
In [Feller 1939a], a paper still in German entitled (in English translation) The foun-
dations of a probabilistic treatment of Volterra’s theory of the struggle for life, Feller

1The references [Feller 19nn] and [*Feller 19nn] (the star indicating that the respective paper is not

contained in these Selecta) refer to Feller’s bibliography, while [n] points to the list of references at the end

of this essay.
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presents a synthesis of two fundamental developments that both started in 1931. On

the one hand, Volterra presented his book Lessons about the mathematical theory of
the struggle for life [28]; on the other hand, Kolmogorov published his seminal paper

On analytical methods in probability theory [17]. Volterra’s book laid the founda-

tions for the deterministic description of population dynamics in terms of systems of

ordinary differential equations that model birth, death, and interaction of individu-

als. These models imply that populations are so large that random fluctuations can

be neglected, and population sizes are measured in units so large that the size can be

considered a continuous quantity. Kolmogorov presented the general and systematic

formalism for the description of stochastic dynamics in terms of Markov chains in

continuous time; in particular, he found the description for the evolution of probabil-

ity weights and the transport of expectations in terms of differential equations, which

we know today under the names of Kolmogorov forward equations and Kolmogorov
backward equations.

In his 1939 paper, Feller ties these two fundamental developments together by

applying Kolmogorov’s new formalism to some examples of Volterra’s population

dynamics. We see here the birth of the stochastic description of population dynamics,

which today has its firm place in mathematical biology, and is highly developed both

in analytical terms and in terms of simulations.

Feller’s paper is devoted to the description of single populations (except from a

small excursion to predator–prey models in the end) and consists of two large parts.

The first establishes the Kolmogorov forward equations (KFE) for the Markov jump

processes (namely, birth-and-death processes) that describe finite populations (re-

markably, there is no mention of the Kolmogorov backward equations in this paper).

The second part discusses a continuum analogue of such processes, a special case

of which seems to be the first appearance of what today is called Feller’s branching
diffusion.

It is remarkable to see (and a pleasure to read) that Feller notices some of the

crucial relationships between corresponding deterministic and stochastic models in

this early paper, which appear as a central theme.

For the sake of clarity, let us make explicit here the two fundamental limits of

birth-death processes that are addressed in [Feller 1939a]. Consider a birth-death

process KN(t) with birth rate nλ and death rate nμ when in state n, with N being the

initial population size. Then, as the initial population size N tends to ∞, the sequence

of process (KN(t)/N)t≥0, N = 1,2, . . . , converges in distribution to the solution of the

differential equation

(1) ẋ = (λ −μ)x, x(0) = 1.

This reflects a dynamical version of the Law of Large Numbers (see e. g. [19]). (No-

tably, due to the linearity, the expectation M(t) := E(K1(t)) satisfies (1) as well.) A

different kind of limit emerges if one assumes that the individual split and death rates

λ and μ depend on N and the process is nearly critical in the sense that

λN = β +θ1/N and μN = β +θ2/N,

with θ1−θ2 =: α . The Law of Large Numbers then says that the limit of the processes
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(KN(t)/N)t≥0 is the constant 1. However, on a larger time scale the fluctuations

become visible: the sequence of processes (KN(Nt)/N)t≥0 converges in distribution

to the solution of the stochastic differential equation (5.1′) stated in paragraph 3.1.1,

whose diffusion equation is (4). This is a prototype of a diffusion limit for birth-death

processes. In [Feller 1939a], these limiting procedures are not made explicit (but see

[Feller 1951d] for a major step in this direction). Feller in 1939 goes rather the other

way, in search for stochastic processes that correspond to a given deterministic model.

Let us now explain the major lines of his article.

2.1 Markov jump processes for population dynamics

In the first part (Sections 1–4), devoted to the stochastic description of finite pop-

ulations, Feller explains a variety of birth-and-death processes and sets up the Kol-

mogorov forward equations for them, i. e. he establishes the system of differential

equations that describe how the probability weights for the number of individuals

alive at time t evolve over time. He starts with the simple linear death process (where

each individual dies at rate λ , independently of all others), proceeds via the corre-

sponding birth process and the linear birth-and-death process and finally arrives at the

general birth-and-death process. In an individual-based picture, the latter includes in-

teraction between individuals, so that the birth and/or death rates are no longer linear

in the number of individuals. The case of logistic growth, which includes a quadratic

competition term, serves as an important example; the case of ‘positive interaction’

(such as symbiosis) is not treated explicitly here. Let us comment on the major in-

sights of this part.

2.1.1 Kolmogorov equations, their solutions, and relationship with determinis-
tic description

Feller notices that for a given net reproduction rate α per individual, by choosing

λ − μ = α , one obtains a variety of linear birth-death processes whose expectation

value M(t) satisfies one and the same ODE (1), whereas for α > 0, there is exactly

one linear pure birth process (λ = α,μ = 0) with this property. Feller states this

ambiguity explicitly when discussing logistic growth. Its deterministic version is

given by the differential equation

(2) ṁ = m(λ − γm) =: f (m),

which Feller also calls the Pearl-Verhulst equation. Here m is shorthand for m(t), the

‘deterministic version’ of the population size at time t, λ denotes the per capita net

reproduction rate in the absence of competition, and γ is the competition parameter.

Again, Feller notices that there are many possibilities in terms of birth-death pro-

cesses that correspond to (2). They are parametrised in his Eq. (27), which describes

the process with per capita birth at rate ω −νn and per capita death at rate τ −σn if

there are currently n individuals. Here, we have renamed γ in Feller’s Eq. (27) by ν
in order to achieve compatibility with the notation in (2).
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Feller starts out by calculating the explicit solution to the KFE of the pure linear

death process, that is, the number of inidividuals alive at time t; he states this as the

result of a recursive construction. With a typo corrected (eλ t −1 must be replaced by

1− e−λ t in his formula (6)), this same formula says that the number of inidividuals

alive at time t has a binomial distribution with parameters N and e−λ t if there are

initially N individuals. (Today, after [*Feller 1950], we would conclude this immedi-

ately, without solving systems of Kolmogorov forward equations, via the probabilistic

argument that there are initially N independent individuals, each of which dies at rate

λ and is therefore alive at time t with probability e−λ t .) Likewise, the solution of the

pure linear birth process with per capita birth rate λ , which he gives in his Eq. (17),

is the negative binomial distribution with parameters N and e−λ t , which arises as the

distribution of the sum of N independent random variables that are geometrically dis-

tributed with parameter e−λ t . Again, this has a nice interpretation as the offspring of

N independently reproducing ancestors.

For the general birth process, with arbitrary birth rates pn, Feller notes that the

KFE define a probability distribution if and only if either only finitely many of the pn
are positive, or if ∑n 1/pn diverges; this is a standard textbook result today (usually

presented in the generalisation to birth-and-death processes). Under the conditions

stated, he also gives the explicit solution in passing.

2.1.2 The moments of the stochastic process, and their relationship with the
deterministic equation

Feller is particularly interested in the expectation, variance, and other moments of

the (random) number of individuals alive at time t. In a trendsetting way, he does

not calculate them from the explicit solution of the KFE, even where this is known;

he rather uses the KFE to derive differential equations for the moments. Let M(t) =
∑k kPk(t) =E[K(t)] be the expected number of individuals at time t. As stated above,

Feller observes that, for the linear birth-and-death process, M(t) follows the differ-

ential equation for the deterministic population model, and hence the expectation of

the stochastic process coincides with the deterministic solution. In contrast, for the

logistic model, he finds from the differential equation relating the first and the second

moment that

(3) Ṁ < f (M)

with f of Eq. (2). From this he argues that M is always less than the solution of the

logistic equation. An alternative way to see (3) would be to observe that the KFE

gives
d
dt
E[K(t)] = E[g(K(t)]

where g(k) = ∑n Q(k,n)n and

Q(n,n+1) = λn, Q(n,n−1) = γn2,

Q(n,n) = −(λn+ γn2), Q(k,n) = 0 otherwise.
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As a matter of fact, it turns out that g(k) = λk− γk2, which is strictly concave, and

hence (3) is a consequence of Jensen’s inequality. Since Feller does not consider

models with positive interaction (such as symbiosis) in this part of the paper, he does

not encounter the convex situation.

2.2 Diffusion equations for population dynamics
The second part of the paper (Sections 5–8 and 10) is devoted to the diffusion limit

of stochastic population dynamics. We cannot resist to quote Feller’s thoughts from

the beginning of Section 5, formulated in an almost literary German, about the sub-
stantially more lithesome probabilistic treatment, in which the population size is no
longer assumed as integer-valued, and where he alludes to similarities to the Brown-

ian motion:

Wir wenden uns nun der anderen von der in der Einleitung erwähnten

wahrscheinlichkeitstheoretischen Behandlungsweisen des Wachstumspro-

blems zu, welche wesentlich geschmeidiger ist, und bei der die Grösse

der Population nicht mehr ganzzahlig vorausgesetzt wird. Den Mecha-

nismus des Vorgangs kann man sich hier ähnlich wie bei der Brownschen

Molekularbewegung vorstellen. Der Zustand der betrachteten Popula-

tion, d. h. ihre gesamte Lebensenergie ist einer dauernden Veränderung

unterworfen [. . . ]

Starting from the transition density, Feller calculates the infinitesimal drift a(x)
and the infinitesimal variance b(x) (provided they exist). With remarkable intuition,

and a clear view of the branching property, he states that, in the case of a stochastically

independent reproduction of the individuals, a(x) and b(x) must be proportional to x.

Again, let us quote in German:

Nimmt man beispielsweise an, dass die Grösse der Population keinen

Einfluss hat auf die durchschnittliche Vermehrungsgeschwindigkeit der

Einzelindividuen, d. h. dass diese untereinander stochastisch unabhängig

sind [. . . ], so müssen a(x) und b(x) offenbar proportional zu x sein [. . . ]

This gives rise to his equation (38), which reads as

(4)
∂w(t,x)

∂ t
= β

∂ 2(xw(t,x))
∂x2

−α
∂ (xw(t,x))

∂x
.

Here w(t, ·) is the density of population size at time t, and α and β are positive

constants. This seems to be the first appearance of what became famous as Feller’s
branching diffusion. We will come back to this in Section 3.1.

It is interesting to note that the diffusion process in this second part of the paper is

not derived from the birth-death jump processes which Feller has presented in the first

part; maybe, at this early stage, the subtle rescaling required for this limit was not yet

at his fingertips. A decade later, however, he had these techniques; see Section 3.1

on Diffusion processes in genetics. In 1939, Feller does allude to the birth-death
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processes, but the connection is not yet clear. For example, he tells us that the α in

(4) corresponds to the λ encountered in the pure birth process. This is correct for

the expected growth rate, but as a matter of fact a pure birth process cannot have the

diffusion limit (4), since the paths of the former can only increase in time, whereas

the paths of the latter have fluctuations in both directions.

This issue reappears when Feller discusses the extinction probability of the diffu-

sion process. He notes the important fact that this quantity increases with β , since it

is tied to the fluctuations of the process, and at the same time emphasises as a sort of

paradox that, even for a positive net growth α > 0, the diffusion process may die out

with positive probability, while the population described by the deterministic differ-

ential equation (1), as well as a pure birth process, cannot die out. (This paradox is

resolved when one has in mind the different rescalings that lead to (1) and (4).)

Following these considerations of the linear birth-and-death process, Feller in-

cludes dependence between individuals in Sections 8 and 10. He presents two spe-

cific examples. The first is his Equation (51), which is the diffusion version of his

Equation (7) and known today as Feller’s branching diffusion with logistic growth
[20, 23]. The second is the (two-dimensional) diffusion describing a two-species

model with predator-prey interactions, which now is also called Lotka-Volterra pro-
cess, see Eq. (1.2) in [3]. As with the jump processes in the first part of his paper,

Feller is concerned with the moments of the diffusion processes and writes down a

general recursion for the kth moments Mk. In the two-species model, the interaction

is positive (from the point of view of the predator), so we finally encounter the convex

case, in which the expectation is greater than the solution of the corresponding ODE.

In Section 9, Feller makes some final remarks concerning the deterministic limit

of both the birth-death jump processes and the branching diffusion. These are brief,

heuristic calculations, which hint at the convergence of the stochastic models to

Volterra’s population models in the limit of infinite population size. Today, powerful

laws of large numbers are available for large classes of such processes [8, Chap. 11].

They go far beyond the simple linear case alluded to in (1); rather, they include quite

general forms of density dependence. This leads us to the present state of population

dynamics.

2.3 Afterthoughts
Today, 75 years after [Feller 1939a], stochastic population dynamics constitute a vi-

brant area of research, so wide that it is impossible to give an overview in a short

paragraph. Suffice it to say that major questions raised by Feller continue to be ardent

research themes. Above all, this is true of interactions within and between popula-

tions. Even simple models for the competition of two populations, whose determinis-

tic limit can be tackled as an easy exercise, turn into hard problems when considered

probabilistically. Specifically, diffusion models with interaction have become objects

of intense research, see, e.g., [6, 27] and references therein.

In the context of this commentary, it is particularly noteworthy that a class of mod-

els known under the name of adaptive dynamics brings together ecological aspects

(on a short time scale) and genetical aspects (on a longer time scale) and thus builds
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a bridge between population dynamics and population genetics. A nice overview of

this topic and many others may be found in the monograph by Haccou, Jagers, and

Vatutin [12]. Let us now turn to Feller’s contributions to population genetics.

3 Feller and population genetics
As already laid out in Section 1, important processes in population genetics are those

that describe the evolution of type frequencies, or in other words, of proportions of

subpopulation sizes within a total population, whose size may vary as well. In this

context, we may think of the individuals as genes, where each gene is of a certain

type, say a or A.

The foundations of mathematical population genetics were laid starting in the

1920s by Fisher, Wright, and Haldane. Their work mirrors the genetics of their time,

today known as classical genetics. It had to rely on the phenotypic appearance of indi-

viduals (colour of flower, surface structure of peas, body weight, milk yield . . . ). The

molecular basis of genetics was still unknown, so genes had to be treated as abstract

entities. When molecular genetics entered the labs in the 1960s, population genetics

changed dramatically, with Kimura as a leading figure, see Section 3.2.1. The next

(and, from a perspective, the last) big leap took place in 1982, when Kingman

introduced the genealogical perspective via the coalescent process. Comprehensive

overviews of population genetics theory are given in the textbooks by Ewens [9] and

Durrett [5]; for coalescent theory in particular, we further recommend Berestycki

[2] (from a mathematical point of view) and Wakeley [29] (from a more biological

perspective).

With his contributions to population genetics, Feller thus was in the midst of an

important line of development. We will comment on two of these articles. The first,

Diffusion processes in genetics [Feller 1951d], is a landmark contribution towards

stochastic modelling and analysis via diffusion processes, and, as a matter of fact,

reaches far beyond population genetics as such. The second, On fitness and the cost
of natural selection [Feller 1967c], uses deterministic modelling (and is therefore

similar in spirit to the ‘Volterra equations’).

3.1 Diffusion processes in genetics

Feller’s article Diffusion processes in genetics [Feller 1951d] appeared in the Pro-

ceedings of the 2nd Berkeley Symposium on Mathematical Statistics and Probability,

which took place in 1950. The central role of [Feller 1951d] is nicely put into per-

spective by the following quote from Thomas Nagylaki’s review [24] on Gustave

Malécot and the transition from classical to modern population genetics:

Mathematical research in diffusion theory influenced population genet-

ics only gradually. As described in more detail below, Wright was un-

aware of Kolmogorov’s (1931) pioneering paper, and Wright, Malécot,

and Kimura were all apparently unacquainted with Khintchine’s (1933)
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book. [. . . ] Thus, the mutually beneficial cross-fertilization between dif-

fusion theory and population genetics did not start until Feller published

his seminal 1951 paper.

In the introduction of that paper, Feller sets the stage by writing:

Relatively small populations require discrete models, but for large popu-

lations it is possible to apply a continuous approximation, and this leads

to processes of the diffusion type.

Two diffusion processes are in the focus of the paper. One is what is nowadays

called Feller’s branching diffusion, the other is the so-called Wright–Fisher diffu-
sion. Feller describes them by their diffusion equations (5.1) and (7.1), which are the

Kolmogorov forward equations (or Fokker–Planck equations) for the densities, here

called u(t,x), cf. Section 2.2. Feller writes on pp. 228–229:

It is known that an essential part of Wright’s theory is mathematically

equivalent to assuming a certain diffusion equation for the gene fre-
quency (that is, the proportion of a-genes).

In a footnote on the same page, Feller gives hints to the roots of this knowledge in the

work of Kolmogorov, Fisher, Wright, and Malécot.

3.1.1 A foresight: Feller’s diffusions as solutions of stochastic differential equa-
tions

Nowadays we do not hesitate to write the process described by Feller’s equations

(5.1) and (7.1) as solutions of stochastic differential equations in the sense of Itô:

dZt =
√

2βZt dWt +αZt dt,(5.1′)

dYt =
√

2βYt(1−Yt)dWt +(γ2(1−Yt)− γ1Yt)dt,(7.1′)

where W is a standard Brownian motion. Feller legitimately resisted writing the

processes in this form. In [Feller 1952c], which grew out of Feller’s invited lecture at

the International Congress of Mathematicians in the year 1950, he writes about Itô’s

Stochastic Analysis:

This approach has the advantage that it permits a direct study of the prop-

erties of the path functions, such as their continuity, etc. In principle, we

have here a possibility of proving the existence theorems for the par-

tial differential equations [. . . ] directly from the properties of the path

functions. However, the method is for the time being restricted to the in-

finite interval and the conditions on [the diffusion and drift coefficients]

a and b are such as to guarantee the uniqueness of the solution. So far,

therefore, we cannot obtain any new information concerning the patho-

logical cases.
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3.1.2 An emerging theme: What happens at the boundary?

Indeed, the state spaces of (5.1) and (7.1) are not the ‘infinite interval’ (−∞,∞) but

[0,∞) and [0,1], and it took 20 years until T. Yamada and S. Watanabe proved that the

coefficients in the above stated SDEs are good enough to guarantee strong uniqueness

of the solution, see [32] and also [31]. A coupling argument from Stochastic Analysis

then guarantees that the solution of (7.1′) converges in law to the unique equilibrium

distribution whose density is the unique invariant probability density of (7.1), which is

the Beta(γ2/β ,γ1/β )-density. Thus, although for γ1 < β the random path Y hits 0 with

probability one (and similarly for γ2 < β it hits 1 with probability one), these visits

to the boundary do not lead (as conjectured by Feller on p. 239) to a non-vanishing

accumulation of the masses concentrated at x = 0 and x = 1 which is maintained in
the steady state, in other words, the coefficient μ in his equation (7.3) is in fact equal

to 1.

Questions like these may have been one source of motivation for Feller to initi-

ate his groundbreaking studies on the boundary classification of diffusion processes,

see his footnote on p. 234, where he speaks of boundary conditions of an altogether
new type, and the one on p. 229 added in proof, where he announces that a sys-
tematic theory, including the new boundary condition, is to appear in the Annals of
Math. Feller’s classification of boundaries is reviewed and commented in Section 2

of Masatoshi Fukushima’s essay in selecta.

3.1.3 The diffusion approximation of the Wright–Fisher chain and beyond

As already indicated, another important aspect that is taken up in Feller’s paper is

that of the diffusion approximation, i. e. the convergence of a sequence of (properly

scaled) discrete processes to the solution of (5.1) and (7.1), respectively. In the former

case the underlying discrete process is a Galton–Watson process, in the latter it is

the Wright–Fisher Markov chain. The transition probabilities of the Wright–Fisher

chain are given by (3.2), (3.4) and (3.5). The diffusive mass-time-scaling is given

by (8.5): a unit of time consists of N generations, and a unit of mass consists of N
(or here 2N) individuals, with N being the total population size. The scaling (8.4)

of the individual mutation probabilites α1,α2 is that of weak mutation, which leads

in the scaling limit to the infinitesimal mean displacement a(x) and the infinitesimal
variance 2b(x), see (8.6) and (8.7). In the context of (7.1), the drift coefficient a(x) is

due to the effect of mutation, and the diffusion coefficient b(x) describes the strength

of the fluctuations that come from the random reproduction. (In order to be consistent

with (7.1), βi should be replaced by γi in (8.4), (8.6) and (8.9)). The ‘convergence of

generators’ which emerges from (8.6) and (8.7) can be lifted to the convergence of the

corresponding semigroups, see e. g. the chapter on Genetic Models in the monograph

[8] by Ethier and Kurtz.

The convergence theorems in [8] comply with Feller’s programmatic proposal:

It should be proved that our passage to the limit actually leads from (8.2) to (8.6),

i. e. from the probability weights of the Wright–Fisher chain to the probability densi-

ties the Wright–Fisher diffusion. To achieve this, Feller proposed an expansion into

eigenfunctions (in particular he found the eigenvalues of the Wright–Fisher transition
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semigroup) and checked part of the convergence in Section 8 and Appendix I. Such

a representation is not required in the systematic approach presented in [8]. Still, the

approach via eigenfunctions is interesting in its own right, and has been extensively

used in Mathematical Biology.

At the beginning of Section 9 (entitled Other possibilities) Feller writes :

The described passage to the limit which leads to Wright’s diffusion

equation (7.1) is different from the familiar similar processes in phys-

ical diffusion theory where the ratio Δx/Δt tends to infinity rather than to

a constant. It rests entirely on the assumption (8.4) [of weak mutation].

We shall now see that any modification of this assumption leads to a non-
singular diffusion equation of the familiar type (to normal distributions).

Indeed, for the scaling (9.1), (9.2) αi = γiε, i = 1,2, Nε → ∞, which corresponds

to strong mutation, Feller states a law of large numbers, i. e. a convergence of the

type frequencies to the equilibrium point
(

γ2
γ1+γ2

, γ1
γ1+γ2

)
, and argues that the (prop-

erly scaled) process of fluctuations around this equlibrium point converges to a pro-

cess whose probability density satisfies the diffusion equation (9.10) (and thus is an

Ornstein-Uhlenbeck process).

3.1.4 The diffusion approximation of Galton–Watson processes

The diffusion equation (5.1) appeared already in [Feller 1939a], see Eq. (4) in Section

2.2. However, as we have seen there, certain issues concerning the (scaling) limits of

Galton–Watson processes had remained unrevealed in [Feller 1939a]. Towards 1950,

Feller was ready to attack this. As to the diffusion approximation of a sequence of

nearly critical Galton–Watson processes by (5.1), Feller gives a proof in Appendix

II. His idea is to take the iterates fn of the offspring generating function (which are

known to describe the generating functions of the subsequent generation sizes) to

their scaling limit. This limit turns out to satisfy the PDE (12.9) (which, in turn,

corresponds to (5.1)). Feller writes:

We effect this passage to the limit formally: it is not difficult to justify

these steps, since the necessary regularity properties of the generating

functions fn(x) were establihed by Harris [13].

Again, from today’s perspective, an alternative way is provided by the convergence

of generators, see [8]. In the very last lines of his Appendix II, Feller remains a bit

sketchy when he writes that

the boundary condition u(t,0) follows from the fact that in the branching

process the probability mass flowing out into the origin tends to zero.

In fact, for the solution Z of (5.1′) (with Z0 = 1, say), the probability mass flowing out

into the origin is non-zero at any fixed time t, and the density of Zt does not vanish

near the origin. Again, the desire to obtain clarity on questions like these may have

been a motivation for Feller’s then upcoming research on the boundary behaviour of

one-dimensional diffusions.
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3.1.5 From two-type to continuum-type generalisations of Feller’s branching
diffusion

In the introduction, Feller points out that serious difficulties arise if one wishes to
construct population models with interactions among the individuals, and that the
situation grows worse if the population consists of different types of individuals. He

then writes:

In fact, the bivariate branching process leads to such difficulties that ap-

parently not one single truly bivariate case has been treated in the litera-

ture. In the theory of evolution this difficulty is overcome by the assump-

tion of a constant population size [. . . ] In Section 10 the assumptions of

constant population size is dropped and a truly bivariate model is con-

structed which takes into account selective advantages in a more flexible

way. [. . . ] The same limiting process which leads [. . . ] to the diffusion

equation of Wright’s theory can be applied to our new bivariate model

and leads to a diffusion equation in two dimensions.

These two-dimensional Markov processes with branching property have been taken

up and analysed in a broader context in 1969 in the paper [31] which carries that

title. Already before, Watanabe had published his seminal paper [30] which estab-

lished Feller’s branching diffusions with a continuum of types. This together with

the poineering work of Don Dawson gave rise to a class of processes that were later

called Dawson–Watanabe superprocesses ([6, 4]). A good part of Perkins’ Saint Flour

Lecure Notes (part 2 of [4]) is devoted to superprocesses with interactions, and thus

is fully on the line of Feller’s program to construct population models with different

types of individuals and with interactions among the individuals.

3.1.6 The inner life of Feller’s branching diffusion: excursions and continuum
trees

This is a good place to mention another fascinating development which is connected

with Feller’s branching diffusions and is associated with the names of Daniel Ray and

Frank Knight (the latter was Feller’s doctoral student and Ed Perkins’ PhD advisor).

Thanks to the branching property (and the thereby implied infinite divisibility),

the random path Z of a Feller branching diffusion is a Poissonian sum of countably

many Feller excursions ζ . In fact, each of them has an internal life in the sense

that ζt is the size at time t of a continuum population originating from one single

ancestor. The genealogical tree of this population can be described by a Brownian

excursion η reaching level t, which can be imagined as the ‘exploration path’ of a

continuum random tree whose mass alive at level t is ζt . The second Ray–Knight

theorem says that ζt can be represented as the local time spent by η at level t. In

a discrete setting of Galton–Watson processes, this is ancticipated in Harris’ work

[11] with its section on walks and trees. The correspondence between a Feller ex-

cursion ζ and an Itô excursion η is depicted on the first page of [25], framed by

pictures of Feller and Itô, who met in person at Princeton in 1954. See [25] for more
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explanations, and references to groundbreaking developments that dealt with the ge-

nealogical structure behind Feller’s branching diffusion, such as Aldous’ Continuum
Random Tree (which plays in the world of random trees a similar role to that of

Brownian motion in the classical invariance principle) and Le Gall’s Random Snake,

which provides a representation of the Dawson–Watanabe super-Brownian motion as

a continuum-tree-indexed Markov motion.

For more on excursions and excursion point processes in relation with Feller’s

work, see Section 3.1 of the contribution of M. Fukushima.

3.1.7 Frequencies in multivariate continuum branching: conditioning and time
change

Another interesting question which Feller addresses at the end of his introduction

concerns the relative frequencies in a bivariate model of branching diffusions. Feller

writes:

[. . . ] it is to be observed that in no truly bivariate case does the gene
frequency satisfy a diffusion equation (Sections 6 and 10). In fact, if the

population size is not constant, then the gene frequency is not a random

variable of a Markov process. Thus, conceptually at least, the assumption

of a constant population size plays a larger role than would appear on the

surface.

Indeed, as it turns out (and Feller may have been well aware of this), one way

of passing from (5.1) to (7.1), say with α = γ1 = γ2 = 0, is to consider two inde-

pendent Feller branching diffusions (solutions of (5.1′)) Z(1) and Z(2), conditioned to

Z(1) + Z(2) = 1. Of course, this must be given a precise meaning, and this has been

done in a much more general context in the papers by Etheridge and March [7] and

Perkins [26]. The title of Perkins’ paper is programmatic: A Dawson–Watanabe su-

perprocess conditioned to have constant mass one is a Fleming–Viot process (which

is the continuum-type, and thus measure-valued, generalisation of the Wright–Fisher

diffusion). In the context of (5.1) to (7.1) this means that under the conditioning

Z(1) + Z(2) = 1 the process Y := Z(1) is a Wright–Fisher diffusion. On the level of

genealogies, the conditioning to a constant total mass takes the continuum random

forest that underlies (5.1′) into Kingman’s coalescent.

A second way to get from (5.1′) to (7.1′) (again for α = γ1 = γ2 = 0) is to consider

the relative frequency Z(1)

Z(1)+Z(2) after a time change ds = dt/(Z(1) +Z(2)). In this

way, the relative frequencies again become Markovian and, by an easy application of

Itô’s formula, turn out to solve (7.1′).

The concept of time change is central also in the work of John Lamperti. Lam-

perti’s work can be seen as a direct continuation and extension of Feller’s ideas, in-

troducing and analysing the continuum mass limits of Galton–Watson processes also

for heavy-tailed offspring distributions [21]. His article [22], which was communi-

cated by H. P. McKean, another former PhD student of Feller, introduced what is now
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called Lamperti’s transform, a time change which establishes the link between Lévy

processes and continuous state branching processes.

To conclude: Feller’s paper Diffusion processes in genetics is a remarkable con-

tribution at the interface of probability theory and population biology, with endur-

ing stimulations in either direction. It takes a central place in the development of

mathematical population genetics, and has triggered substantial new directions in the

modern theory of stochastic processes.

3.2 The cost of natural selection
Feller’s article On fitness and the cost of natural selection [Feller 1967c] appeared

in Genetical Research Cambridge, a renowned biology journal. The introduction

contains the disclaimer

This paper is written by a mathematician, and accordingly no new bio-

logical models or hypotheses are advanced.

It may be added that the mathematics is fairly elementary as well, and the strength

of the article is the concise conceptual thinking by which Feller dissects the logics of

an argument that enormously influenced the genetic thinking of that time, and finds a

fundamental weak point in it.

3.2.1 The 1960s and the neutral theory of population genetics

As hinted at already, the 1960s were turbulent times for genetics – and for population

genetics in particular. Until then, the variation between individuals could only be ob-

served at the phenotypical level, and much of this was easily explained by selection:

Stronger beaks crack harder nuts; webbing eases swimming; fat pads protect against

the cold. Then, in the 1960s, the first observations of variation at the molecular level
became available – not yet via sequencing, but via so-called restriction length poly-

morphsims (RFLP) of DNA or via gel electrophoresis of proteins. The resolution of

these methods is lower than that of sequencing but, nevertheless, the variation was

so much larger than expected on phenotypic grounds that researchers were shocked –

and were puzzled about the question: Can this all be explained by selection?
These considerations were strongly influenced by the concept of the genetic load,

coined by Haldane [10]; in particular the concept of the substitutional load. This is

the number of selective deaths, that is, the number of individuals ‘killed’ by selection

in the process of substituting one type by a fitter one. Put differently, the substitu-

tional load (or cost of natural selection) is the number of excess individuals that must

be produced in a population under selection. In 1968, Kimura [15] concluded that, if

a large fraction of the observed variability is selective, the load is forbidding. This led

to one of the most influential and conflict-prone hypotheses of evolutionary theory,

namely, to the so-called neutral theory, which claims that the overwhelming propor-

tion of the observed molecular variation is selectively neutral, that is, most mutations

do not change fitness.
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In what follows, we look more closely into the concept of the substitutional load,

and into Feller’s criticism of it. We restrict ourselves to the case of haploid popula-

tions (i.e., carrying only one copy of the genetic information) that reproduce asexually

(Sections 1–5 in Feller’s paper). In Sections 6–9, he tackles additional complications

that emerge in diploid individuals (with two copies of every gene), but the conceptual

issues are more transparent in the haploid case.

3.2.2 Absolute and relative frequencies in population genetics

Feller considers a population of individuals that consists of our two types A and a,

large enough to justify deterministic treatment. He assumes discrete generations

where every A-individual leaves an average of μ offspring for the next generation,

whereas every a-individual produces an average of μ ′ = μ(1−k) descendants where

0 < k < 1. The quantities μ and μ ′ are known as (absolute) fitnesses in population

genetics. Each of the two subpopulations then grows (or decays) geometrically,

(5) Nn = μNn−1, N′
n = μ(1− k)N′

n−1,

so Nn = N0μn and N′
n = N′

0(μ(1− k))n, where Nn and N′
n denote the size of the A-

and a-subpopulations, respectively.

Now population genetics is traditionally more concerned with relative frequencies

of types than with absolute ones; the main reason is that relative frequencies are easier

to measure. One therefore considers

pn :=
Nn

Nn +N′
n
, qn :=

N′
n

Nn +N′
n
.

Clearly, under (5),

(6) qn =
q0(1− k)n

p0 +q0(1− k)n ,

which is Feller’s Eq. (3.5). Obviously, the powers of μ cancel out, which is a strength

and a weakness at the same time: On the one hand, this means that knowledge only

of the ratio of the fitness values is required to predict the behaviour of the popula-

tion. Actually, (6) holds more generally than the simple derivation may suggest: It

continues to hold if (5) is replaced by

(7) Nn = μNn−1 f (Nn +N′
n), N′

n = μ(1− k)N′
n−1 f (Nn +N′

n).

Here f is a function that depends on the total population size only and acts on both

types in the same way. In typical ecological models, one uses a monotonically de-

creasing function f with f (0) = 1 in order to describe how population size decreases

the per capita offspring size due to competition. In particular, for suitable choices of

f , both the population size and the relative frequencies will, in the long run, approach

stationary values.

The downside of thinking in terms of relative fitnesses is that one loses sight of the

absolute population sizes. The latter may lead to absurd conclusions, in particular in

cases where one or both subpopulations go extinct. This leads us to Feller’s criticism

of the genetic load.
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3.2.3 The substitutional load and Feller’s criticism

Feller now recalls Haldane’s definition of the genetic load: In generation n, the mixed

population has a loss of dn := kqn offspring relative to a population consisting of A
individuals only, where dn must be measured in units of the total population size of

generation n. Over M generations, Haldane takes D := ∑M
n=0 dn as the total genetic

load. Calculating this with reasonable parameters and as M → ∞, he arrives at a

representative value of 30 for the cost of substitution of one gene by a fitter one.

Haldane’s definition of D makes sense only if population size remains constant

over time, or if changes in population size are so small that they can safely be ne-

glected. Haldane does not make this explicit; Feller has an eye on both possibilities.

Feller first considers the case that the population size is not constant; rather, Nn
and N′

n behave as in (5). Since μ = 1 and k < 1 is assumed, this means that Nn ≡ N0

and N′
n → 0 as n → ∞, so the total population size decreases from Nn + N′

n to N0.

On an absolute scale, the loss of individuals due to selection is N′
n −N′

n+1 = kN′
n in

generation n, and altogether

(N′
0 −N′

1)+(N′
1 −N′

2)+ · · · = N′
0,

in agreement with the decrease of the total population size from N0 + N′
0 to N0. In

contrast, Haldane’s D, which neglects the size change, can give much larger values;

in particular, it can be larger than the number of a individuals ever born. Obviously,

this understanding of the load produces severe artifacts.

Feller then discusses how Haldane’s argument may be ‘rescued’. One possibility

is to keep population size constant by immigration from a reservoir population, in

exactly the same proportions as in the current population under consideration. Then,

Haldane’s D gives the correct answer (but it must be kept in mind that the cost of se-

lection is then borne by the reservoir population). The second possibility is to assume

an ecological model rather than geometric growth. Feller speaks of μ depending on

population size; maybe as in our Eq. (7), where μ is replaced by μ f (Nn + N′
n). But

more general models are also possible; for example, each type may be affected by

competition in a different way. The genetic load would then be identified with the

decrease in the stationary population size due to the reduced reproduction rate of one

type. But now there is a wealth of possible models, and the genetic load would depend

on the details. Specifying these is a task Feller assigns to the biologists.

3.2.4 Feller’s criticism in the general context

With remarkable insight, Feller dissects a conceptual problem of his time: Load ar-

guments can be inconsistent if they blindly rely on relative frequencies. His fellow

researchers in biology do, however, not seem to have taken too much notice of his

criticism. After all, as already mentioned in Section 3.2.1, a year after Feller’s paper

(and without citing it), Kimura did put forward his neutral theory of molecular evo-

lution, to a large extent on the basis of load arguments [15]. More precisely, Kimura

used an extension of Haldane’s argument. He assumed a sequence of numerous ge-

netic loci (rather than Haldane’s and Feller’s single locus), each of which can be of
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a favourable or a less favourable type, with fitness assumed as multiplicative across
loci. As a consequence, there is a multitude of possible genotypes; fitness differences

between individuals can become enormous; and the load (if calculated in Haldane’s

manner) can become astronomical (Kimura and Ohta [16] give a value of D = 1078).

Here the misconception lies in the assumption of multiplicativity over loci, which is

completely unrealistic, but was hardly questioned at that time. For the details, see the

insightful presentation in [9, Chapter 2.11].

Let us return to the original question that load arguments were supposed to an-

swer: Can all the variation observed at the molecular level be explained by selection?

Indeed, today, a large fraction of the molecular variation is considered selectively neu-

tral or nearly so, although single mutations with spectacular selective effects are well

known. But this insight is no longer built on load arguments – rather, the assump-

tion of neutrality has proved extremely successful in describing patterns of genetic

variation.

Last but not least, it should be noted that there is a lot of truth in Feller’s general

warning not to neglect population size in population genetics. Indeed, load arguments

are not the only artifacts of this kind. Another example is the famous phenomenon

of Muller’s ratchet, which describes the ad infinitum accumulation of deleterious

mutations due to stochastic effects in finite populations of constant size. If described

in terms of an ecologically more realistic (and conceptually more correct) model with

variable population size, the accumulation does not continue forever. Rather, when

fitness has declined below a threshold value, the population experiences a mutational
meltdown, which ultimately leads to extinction (see [1] for a review).
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