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Abstract. We propose a submodular reranking algorithm to boost image
retrieval performance based on multiple ranked lists obtained from mul-
tiple modalities in an unsupervised manner. We formulate the reranking
problem as maximizing a submodular and non-decreasing objective func-
tion that consists of an information gain term and a relative ranking con-
sistency term. The information gain term exploits relationships of initially
retrieved images based on a random walk model on a graph, then images
similar to the query can be found through their neighboring images. The
relative ranking consistency term takes relative relationships of initial
ranks between retrieved images into account. It captures both images with
similar ranks in the initial ranked lists, and images that are similar to the
query but highly ranked by only a small number of modalities. Due to
its diminishing returns property, the objective function can be efficiently
optimized by a greedy algorithm. Experiments show that our submodular
reranking algorithm is effective and efficient in reranking images initially
retrieved by multiple modalities. Our submodular reranking framework
can be easily generalized to any generic reranking problems for real-time
search engines.

1 Introduction

Numerous approaches have been proposed to improve the performance of content-
based image retrieval (CBIR) systems. Most of them adopt a single feature modal-
ity such as bag-of-words (BoW) [1], Fisher vectors [2,3] or vector locally aggregated
descriptors (VLAD) [4]. Various extensions based on a single feature modality
have been proposed, such as query expansion [5,6], spatial verification [7] and
Hamming embedding [8]. However, a single feature modality only captures one
“view” of an image. Often, a lower-ranked but relevant retrieved image from one
feature modality may be highly ranked by another modality. By fusing retrieval
results from multiple feature modalities, we may discover both agreement and
inconsistency among them to improve retrieval quality. Recent work combines
multiple feature modalities for reranking by multi-modal graph-based learning [9],
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query-specific graph fusion [10] or Co-Regularized Multi-Graph Learning [11]. In
[9] requires a large number of queries to compute relevance scores for initially
retrieved images, which is only suitable for large sets of queries. In [10], initial
ranked lists were converted to undirected graphs, which were linearly combined
without considering the inter-relationships between modalities. In [11] is a super-
vised learning based on image attributes, so it is not suitable for unsupervised
reranking tasks.

We present a submodular objective function for reranking images retrieved
by multiple feature modalities, which is very efficient and fully unsupervised.
Submodularity [12] has been applied to various optimization problems in vision
due to the availability of efficient approximate optimization methods based on its
diminishing returns property - which means that as the incremental optimization
algorithm proceeds, each item added to the evolving solution has less and less
marginal value as the solution set grows. Our submodular objective function con-
sists of two terms: an information gain term and a relative ranking consistency
term. To compute the information gain, we first represent each initial ranked
list as an undirected graph, where nodes are retrieved dataset images and edges
represent similarities between images. The graph structure is then modeled as
a transition matrix under the assumption of a random walk on a graph. Edge
weights between nodes are converted to the probability of walking from a node
to its neighbors. We select a subset of retrieved images by maximizing the infor-
mation gain over the graph, which maximizes the mutual information between
the selected subset and unselected nodes in the graph. The information gain
takes pairwise relationships of retrieved images into consideration, and favors
compact clusters of retrieved images which are similar to the query.

The relative ranking consistency term exploits the inter-relationships among
multiple ranked lists obtained by different feature modalities. Specifically, if rel-
ative ranks between two images are consistent across multiple ranked lists, the
ranking relationship between them is considered reliable and captured by our
relative ranking consistency term. Additionally, our relative ranking consistency
term encourages selecting images that are similar to the query but only found
and highly ranked by a small number of modalities.

The final submodular objective function combines both the relationships
among retrieved images from a single modality and the relative ranks of image
pairs across different modalities, thereby improving initial retrieval results obta-
ined by multiple independent modalities. Our approach only utilizes pairwise sim-
ilarities between images in terms of appearance information without using any
prior knowledge, hence it is fully unsupervised. Moreover, although we evaluate
our submodular reranking algorithm on natural image retrieval, it only involves
similarity graphs and initial ranked lists. Therefore, it can be easily extended to
other generic retrieval tasks with multiple independent ranked lists returned by
heterogeneous and non-visual features, such as audio and text. The main contri-
butions of our work are summarized as follows:

– We address the problem of reranking natural images with multiple feature
modalities by maximizing a submodular objective function, which is done by
an efficient greedy algorithm.
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– We model the image-level relationships for each modality as a graph and
apply information gain theory to find the most similar images to the query.
Only pairwise similarities between images are used to construct the graph.
Our approach is unsupervised without using any label information.

– We propose a relative ranking consistency term to exploit the inter-relationships
of multiple ranked lists across different modalities. The relative ranking consis-
tency term effectively selects images that have consistent relative ranks across
multiple modalities. It also discovers images that are similar to the query but
only found by one or a few modalities.

2 Related Works

The majority of image retrieval approaches are based on a single feature modal-
ity. They usually adopt the bag-of-words (BoW) feature as an image represen-
tation, and then compute the similarities between a query image and dataset
images for retrieval [1]. Many works focus on learning good feature representa-
tions for retrieval problems. Jégou et al. [4] proposed the vector locally aggre-
gated descriptor as a compact representation. It achieved good results while
requiring less storage compared to the BoW feature. Multi-VLAD [13] was later
proposed to construct and match VLAD features of multiple levels from an
image to improve localization accuracy. RootSIFT [14] was proposed to address
the burstiness problem with standard BoW features. To compensate for the
spatial information loss in the standard BoW-based approach, spatial verifica-
tion [7] was proposed to match SIFT descriptors between images at the cost of
extra storage space. Vocabulary trees [15] were proposed to improve efficiency in
codebook construction and descriptor quantization by using hierarchical cluster-
ing. Contextual weighting [16] was further applied to vocabulary trees to increase
the discriminative ability of visual words. Instead of quantizing a descriptor to
a single visual word, assigning it to multiple words results in more discrimina-
tive BoW vectors and thus achieves better performance [17,18]. Query expan-
sion [5,6,14] has been widely applied to rerank initially retrieved images, where
a small portion of top ranked images serve as additional queries and are fed
into the retrieval system again to further explore similar images. Some improve-
ments such as Hamming embedding with geometric constraints [8], dataset-side
feature augmentation [14] and co-occurrences of visual words [19] have achieved
state-of-the-art results.

Although a single feature modality can achieve good retrieval results, better
performance is anticipated if retrieved results from multiple feature modalities are
properly fused. This is because they usually describe images from complemen-
tary perspectives. Recent work on fusing multiple feature modalities for image
retrieval has been proposed, such as multi-modal graph learning [9], query-specific
graph fusion [10] and Co-Regularized Multi-Graph Learning [11]. In [9] proposed a
graph-based learning algorithm to infer weights of modalities. However, it requires
a large number of queries beforehand to estimate relevance scores of initially retrie-
ved images, which is not feasible if only a small number of queries are available.
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In [10] constructed a graph for each initial ranked list based on a single feature
modality using k-reciprocal nearest neighbors. In [11] imposed intra-graph and
inter-graph constraints in a supervised learning framework which requires image
attribute information. However, image attributes are not always available and
the training process may be time-consuming for larger graphs. In contrast, our
reranking approach considers both image-level and modality-level relationships,
and does not require any attribute information or label information.

Submodularity, as a discrete analog of convexity, is widely studied in combina-
torial optimization [12] due to its diminishing returns property: adding an element
to a smaller set contributes more than adding it to a larger set. Various submodu-
lar functions have been proposed and successfully applied to many vision applica-
tions, such as image segmentation [20,21], dictionary selection/learning [22,23],
saliency detection [24], object recognition [25] and video hashing [26]. A few works
applied submodular functions to diversified ranking [27–29], where elements in
the reranked list are similar to the query but also diversified. For diversified rank-
ing, submodular functions are designed to seek a trade-off between similarity and
diversity. It should be noted that [27–29] are not similar to our submodular rerank-
ing, since we encourage elements in the reranked list to be similar to the query and
homogenous rather than diversified.

3 Submodular Reranking

We formulate the reranking problem as selecting and rearranging a subset of
retrieved images from initial ranked lists obtained from multiple modalities. Our
submodular objective function utilizes similarities of pairs of images to exploit
relationships between retrieved images within each modality. It also considers
the relative ranking between retrieved images across multiple ranked lists.

3.1 Preliminaries

Submodularity. Let V be a finite set. A set function f : 2V → R is submodular
if it satisfies f(S ∪ a) − f(S) ≥ f(T ∪ a) − f(T ) for all S ⊂ T ⊆ V, a ∈ V\T .
This is called the diminishing returns property : adding a to a small set has a
bigger impact than adding it to a larger set. The gain of the function value
f(S ∪ a) − f(S) is called the marginal gain of f when adding a to S.

Monotonicity. A set function f : 2V → R is monotone (or non-decreasing) if
for every S ⊆ T ⊆ V, f(S) ≤ f(T ) and f(∅) = 0.

3.2 Information Gain with Graphical Models

Graph Construction. Given M feature modalities, we obtain M initial ranked
lists of retrieved images for each query image. For efficient reranking, we select only
the top K retrieved images from each ranked list. Note that the top K images are
generally not the same across different modalities. Given an initial ranked list con-
sisting of K retrieved images from modality m, we represent it as an undirected
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graph Gm = (Vm, Em) where nodes vm ∈ Vm are images and em(i, j) ∈ Em denotes
the edge that connects vm(i) and vm(j). An affinity matrix Am ∈ R

K×K is used
to represent the graph with the element am(i, j) corresponding to the edge weight
of em(i, j), which is the pairwise similarity between images vm(i) and vm(j)1. To
facilitate the objective function construction (see Sect. 3.2), we do not include self-
loops em(i, i) of nodes vm(i) in the graph. Therefore, am(i, i) is set to 0. For nota-
tional convenience, we denote V as the union of all nodes from the M undirected
graphs, so that V = V1 ∪ V2 ∪ · · · ∪ VM . We aim to select a subset of nodes S
from V which are the most similar to the query image and arrange them in order
to obtain the reranked result. Furthermore, U denotes the set of images which are
not selected, so that U ∩ S = ∅ and V = S ∪ U .

Information Gain. Given M graphs, we seek a method to combine them so
that complementary modalities may help discover images similar to the query
in a joint manner. Although the same graph construction is used for all ranked
lists, pairwise similarities from different modalities are usually of incomparable
scales, making a direct graph combination infeasible. To address this problem,
we resort to information gain theory with graphical models [30], which is based
on a simple probabilistic model.

We start from the random walk model on a graph Gm. The random walk model
can be interpreted as a Markov process: a walker stays at a node in the graph at
time t and randomly walks to one of its neighboring nodes under some probability
at time t + 1. The probability of “walking” between nodes is called the transition
probability and is defined as Pm = D−1

m Am, where Dm ∈ R
K×K is a diagonal

matrix with the diagonal element dm(i, i) =
∑

j am(i, j). The transition matrix
Pm is a row-stochastic matrix indicating the transition probabilities of a random
walk on the graph. pm(i, j) represents the conditional probability of walking from
node vm(i) to node vm(j), which indicates the similarity between vm(i) and vm(j)
based on the observation of vm(i). With the transition matrix Pm, edge weights
are converted to probabilities. Then we adopt information gain as a direct measure
of the value of information of our graphical models. We start from a single graph
Gm, and define the information gain as

Fm(S) = H(Vm\S) − H(Vm\S|S) (1)

where S is the subset we select from V, and Vm\S is the set Vm with S removed.
H(Vm\S) is the entropy of unselected nodes in graph Gm. H(Vm\S|S) is the
conditional entropy of remaining nodes on graph Gm after we have observed S.
Specifically, H(Vm\S|S) and H(Vm\S) are defined as

H(Vm\S|S) = −
∑

v∈Vm\S,s∈S
pm(v, s) log pm(v|s)

H(Vm\S) = −
∑

v∈Vm\S
pm(v) log pm(v) (2)

1 Please see experiment section about how to compute pairwise similarities.
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where pm(v, s) = pm(v|s)pm(s). pm(v|s) is the transition probability of walking
to a node v in graph Gm when the walker is at node s. pm(s) and pm(v) are the
marginal probabilities of nodes s and v being similar to the query from modality
m. pm(v|s) can be directly obtained from Pm. To calculate the marginal proba-
bility pm(v), we use the normalized similarities between the query and retrieved
images. We denote the similarities between the top K retrieved images and the
query image from modality m as cm = (cm,1, cm,2, ..., cm,K)�. �1 normalization
is then applied to cm to obtain pm(v) = cm,v/|cm|1.

We have the following proposition stating that the information gain with our
graphical model is submodular.

Proposition 1. Fm : 2Vm → R is a submodular and monotone function.

The proof is presented in the supplementary material. Fm is essentially the
mutual information I(Vm\S;S) capturing the mutual dependence between sub-
set S and unselected nodes Vm\S, which measures how much S is representative
of the graph with respect to the query. That Fm is non-decreasing is obvious,
because the addition of any node to S always provides information or does
not provide information at all, since “information never hurts”. Submodularity
comes from the observation that the information gain of adding a node to S
becomes less in a later stage because it is more likely similar to elements in S
as S grows.

To combine graphs, we need to determine the importance of each graph.
Here we adopt the heuristic of simply summing up the information gains of the
individual graphs to obtain the total information gain:

R(S) = −
∑

m

(
∑

v∈V\S
pm(v) log pm(v) −

∑

v∈V\S,s∈S
pm(v, s) log pm(v|s)) (3)

The information gain on a graph takes relationships between dataset images into
account, so it propagates information about a dataset image to its neighbors,
and better exploits dataset images that are similar to the query than simple pair-
wise comparisons. The combination seeks an agreement with respect to pairwise
similarities derived from multiple modalities, so explores relationships of modal-
ities to some extent. Note that since the top K images retrieved from different
modalities may not be the same, pm(v) and pm(v|s) are set to 0 if an image is
not included in graph Gm, so it does not contribute to the objective function. An
image discovered by most modalities contributes more to the information gain,
therefore is selected to be in S with greater chance.

Since Fm(S) is submodular and monotonically increasing, the linear combi-
nation of submodular functions, R(S), is also submodular and non-decreasing.
Since the information gain exploits the pairwise relationships between retrieved
images, maximizing R(S) is equivalent to selecting a group of images that are
similar to the query and closely related to each other. Intuitive examples are
shown in Fig. 1.
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Fig. 1. The importance of information gain for selecting nodes into subset S. The
number next to the edges is weight (similarity) between nodes. Red dots represent the
selected subset S while white dots are remaining nodes Vm\S. The marginal probability
of all nodes is set to 1/4. Four cases of selection are presented, where the corresponding
value of Fm(S) is shown under each sub figure. By computing the information gain,
we observe that it prefers images that are closely related to each other to be selected
into S, resulting in a compact cluster. Therefore, relationships of dataset images are
exploited to facilitate reranking (Color figure online).

3.3 Relative Ranking Consistency

Simply summing up initial ranks obtained from different modalities for an image is
not suitable, as a higher rank may be overly diluted by other lower ranks. Although
complementary information from multiple modalities is used by integrating the
Fm(S), information gain does not completely utilize the inter-relationships bet-
ween modalities. Additionally, it only considers pairwise similarities between
images. However, the initial ranks of retrieved images from different modalities
provide additional information that can further improve performance. For exam-
ple, an image that is similar to the query and ranked lower by one modality may
be ranked higher when it is perceived from a different perspective (i.e., different
modality). We propose a simple yet effective relative ranking consistency measure
to model inter-relationships of multiple ranked lists.

Our measure is based on two criterion. First, relationships of relative ranks
between retrieved images should be maintained. Images with similar ranks in
the initial ranked lists from different modalities should also be ranked closely
after reranking. Second, images with consistent ranks across multiple modalities
should have their ranks preserved after reranking. An image that is similar to
the query but highly ranked by only a smaller number of modalities should
also be captured. In contrast to the information gain term, this relative ranking
consistency measure models inter-relationships of modalities at a higher level:
using ranks themselves rather than pairwise similarities between images.

Again, as in Sect. 3.2, we only consider the top K images from each ranked
list and denote V as the union of all retrieved images. Our goal is to select a
subset of retrieved images S ⊆ V. We first define the relative ranking between a
pair of images and then use it to measure the “inter-rank” consensus amongst
multiple ranked lists.

Let rm ∈ R
K denote the positions of the top K images in the initial ranked

list by modality m, rm = (rm,1, rm,2, ..., rm,K)�, where rm,i is the position of
image Ii in the m-th ranked list. Smaller value means higher rank. The relative
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Fig. 2. The effectiveness of the relative ranking consistency measure. The set V contains
K = 100 images, from which we need to select an image into S, which currently
contains two images. Starting from initial ranks from the 3 modalities, we compute
the relative ranking consistency measure between images in V and S. For illustration
purposes, we only show the values of the relative ranking consistency measure for 3
images (I1, I2 and I3) in the set V. I1 in V, which is initially ranked close to images
in S across all modalities, has the largest relative ranking consistency C. The relative
ranking consistency of I3, which is highly ranked by only a single modality, is larger
than that of I2 in V, which is lower ranked by all modalities. Therefore, the relative
ranking consistency term favors adding I1 to S as it produces the largest function value
for T (S). Then it favors adding I3 over I2, which has the smallest function value. Our
relative ranking consistency successfully captures inter-relationships amongst multiple
ranked lists and uses them to select images.

ranking between two images is defined as

rrm(vi, vj) = |rm,vi
− rm,vj

|, vi, vj ∈ V (4)

where vi and vj correspond to images Ii and Ij in the graph representations. If
either vi or vj is not included in the top K images by modality m, rrm(vi, vj) is
set to K. The relative ranking considers the difference between ranks of retrieved
images. Similarly, for modality m′, we also have the relative ranking, rrm′(vi, vj),
of the same image pair in a different modality. On the one hand, the consensus
between rrm(vi, vj) and rrm′(vi, vj) indicates that the rank relationship between
vi and vj is reliable and should be maintained after reranking, which is related
to the “consistency” between ranked lists. On the other hand, we also aim to
discover images which are similar to the query but highly ranked by only a
small number of modalities, thereby capturing the “distinctiveness” of specific
modalities. To enforce both consistency and distinctiveness constraints, we define
a relative ranking consistency measure across multiple ranked lists as

C(vi, vj) =
1
Z

∑

m,m′∈M,m �=m′
1 − min(rrm, rrm′)

K
(5)

where Z = M(M−1)
2 is a normalization factor corresponding to the number of

all possible modality pairs. With this measure, if images Ii and Ij are ranked
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similarly across multiple modalities, they will also have similar ranks in the
reranked list, i.e., they both will be selected and highly ranked in S or both
will be excluded from S. This results from the constraint on relative ranking
consistency. Now consider the situation in which an image Ii is ranked closely
to a visually similar image Ij only in a small number of modalities. In this
case, we still discover such similarity due to the use of the min function, and
rank these images appropriately. If either vi or vj is not included in the top K

images by modalities m and m′, 1− min(rrm,rrm′ )
K = 0, which indicates that these

two images have disparate ranks and should contribute nothing to the objective
function. Therefore, we take the inter-relationships amongst multiple ranked lists
into account with respect to the relative ranking between two images. Several
examples are shown in Fig. 2 with more explanations.

Finally, we define a set function based on the rank biased overlap (RBO)
similarity [31], incorporating the aforementioned relative ranking consistency
measure. RBO similarity was proposed in [31] but they did not observe or take
advantage of its submodularity property. We extend the basic idea from [31] that
highly ranked images should be more important than lower ranked images in our
objective function. Suppose the images in S are ordered and that the position
of image Ii in the new ranked list is rvi

. The relative ranking consistency term
is defined as

T (S) = (1 − q)
∑|S|

s=1
qs · 1

s

∑

vi,vj∈S,rvi
<rvj

=s
C(vi, vj) (6)

where the term 1
s

∑
vi,vj∈S,rvi

<rvj
=s C(vi, vj) allows us to select the image vj

with new rank s and compute the average relative ranking measure between vj

and all other s images with higher new ranks than vj (see Fig. 2). |S| is the car-
dinality of S. With the requirement that highly ranked images should have more
weight in the objective function than lower ranked images, we introduce a weight
parameter q for each image according to its new rank in S. q controls the steep-
ness of weight decay, so that a higher ranked image contributes more to the
function value. Starting from the top ranked image with s = 1, the function
assigns weight qs to this image vj and iteratively computes the average relative
ranking between vj and other higher ranked images vi (rvi

< rvj
). Maximizing

this function leads to a subset of images S, where images are highly ranked
and similarly ranked with each other in the initial ranked list. Since at least
two images are needed to compute the relative ranking consistency measure, a
phantom item vp is included into S to select the first image. In practice, we use
the query itself as the phantom with rank rvp

= 0. Then we have the following
proposition with the proof in the supplementary material.

Proposition 2. T : 2V → R is a submodular and monotone function if elements
in S are ordered with respect to a phantom item vp ∈ S and rvp

= 0.

3.4 Optimization

Combining the information gain and relative ranking consistency terms, we
obtain the final objective function Q(S) = R(S) + λT (S) for the reranking
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problem. The solution is obtained by maximizing the objective function:

max
S

R(S) + λT (S)

s.t. S ⊆ V, |S| ≤ Ks

(7)

where λ is a pre-defined weighting factor balancing the two terms. Ks is the
largest number of selected images, which means we only select and rerank at
most Ks images. Equation 7 is submodular and non-decreasing since it is a linear
combination of submodular and non-decreasing functions. Direct optimization
of Eq. 7 is a NP-hard problem, but it can be approximately optimized by a
greedy algorithm. Starting from an empty set S = ∅, the greedy algorithm
iteratively adds a new element to S which provides the largest marginal gain
at each iteration, until Ks elements have been selected. Specifically, during each
iteration, we search for an image a∗ ∈ V\S, which gives the largest combined
marginal gain from the information gain and relative ranking consistency terms,
add it to S and set its rank to ra∗ = ρcur, where ρcur indicates the iteration
step. The iteration terminates when |S| = Ks. The reranked images are those
from S, and ranks are also obtained. We can tune Ks to control the efficiency
and accuracy of the algorithm. The entire process is presented in Algorithm 1.
The constraint on the number of reranked images leads to a uniform matriod
M = (V, I), where I is the collection of subsets S ⊆ V satisfying the constraint
that the number of reranked images is less than Ks. Maximizing a submodular
function with a uniform matriod constraint yields a (1 − 1/e) approximation to
the optimal solution [12].

Algorithm 1. Submodular Reranking
Input: Graphs {G1, ..., GM}, initial ranked lists
{r1, ..., rM}, Ks and λ
Output: Reranked list r and final retrieved
images S
Initialization: S ← ∅, ρcur ← 0, r ← 0
while |S|<Ks do

a∗ = arg max
S∪{a}∈V

Q(S ∪ {a}) − Q(S)

if Q(S ∪ {a∗}) ≤ Q(S) then
break;

end if
ρcur ← ρcur +1 S ← S ∪ {a∗}; ra∗ ←

ρcur

end

To further accelerate the optimiza-
tion, we adopt lazy evaluation [23] to
avoid recomputing the function value
for each node a∗ ∈ V\S during each
iteration. The basic idea is maintaining
a list of images with corresponding
marginal gains in descending order.
Only the top image is re-evaluated
during each iteration. Other images
are evaluated only if the top image
does not remain at the top after re-
evaluation. Lazy evaluation is based
on the diminishing returns property: the function value of an element cannot
increase during iterations. The lazy greedy algorithm leads to a speed-up of
more than 40, as we will show in the experiments.

4 Experiments

4.1 Experimental Setting

Datasets. We evaluate our submodular reranking algorithm on 4 public datasets:
Holidays [8], UKbench [15], Oxford [7] and Paris [17]. The Holidays dataset
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includes 1491 image from 500 categories, where the first image in each cate-
gory is used as a query. The UKbench dataset contains 10200 images from 2550
objects or scenes. The Oxford and Paris datasets consist of 5062 and 6412 pho-
tos of famous landmarks in Oxford and Paris, respectively. Both datasets have
55 queries, where multiple queries are from the same landmark.

Table 1. Comparisons with state-of-the-art approaches. We use N-S score on UKbench,
and mAP (in %) on other datasets. “-” means the results are not reported. Results
using individual terms of our objective function are shown in the right-most columns.

Evaluation Criteria. Following [7,8,17], we use mean average precision (mAP)
to evaluate retrieval performance on Holidays, Oxford and Paris datasets. For
the UKbench dataset, we use N-S score [15] which is the average correct number
of top 4 retrieved images.

Features. We use the visual words from [32] to construct BoW vectors except on
Holidays dataset where we adopt Hessian affine + SIFT descriptor to construct
1M-dimension BoW vectors using single assignment and approximate k-means
(AKM) [7]. Standard tf-idf weighting is used. For global representations, we use
a 1192-dimension GIST feature [33] and a 4000-dimension HSV color feature
with 40 bins for H and 10 bins for S and V components.

Parameters. The similarity between two BoW vectors is computed by cosine
similarity. We use a Gaussian kernel to convert Euclidean distance d to a sim-
ilarity by exp(−d/σ) for GIST and color features. σ are empirically set to 0.34
and 0.14 respectively, and fixed in all experiments. q in Eq. 6 is set to 0.9 and
λ in Eq. 7 is set to 0.01, both fixed in all experiments. K equals the number of
dataset images in each dataset; while smaller value can be used for very large
datasets. Ks = 1000 for all datasets.

4.2 Results Comparisons

Comparisons with State-of-the-art Approaches. Our primary focus is a
reranking algorithm that improves retrieval performance of multiple ranked lists
obtained by multiple independent feature modalities. Although our implementa-
tion depends only on pairwise similarities without spatial verification and query
expansion, the performance by our submodular reranking is comparable to other
state-of-the-art approaches using a single modality, as shown in Table 1.

Since there are limited methods for reranking by fusion for natural image
retrieval, we only compare our algorithm to [10], which is also an unsupervised
reranking method using multiple feature modalities, as shown in Table 1. Note
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that [11] is not directly comparable as it requires image attributes for learning.
It is clear that our reranking algorithm outperforms [10], although we combine
inferior individual modalities compared to [10]2. Results by our reranking are
also comparable to other state-of-the-art approaches, even we only use pair-
wise similarities without any learning and post-processing techniques, such as
query expansion and spatial verification. We improve the best single modality
(BoW) by 10.0 %, 8.0 %, 10.2 % and 7.9 % on the four datasets, respectively.
Additionally, without specifically inferring weight for each modality, our rerank-
ing algorithm is very robust against inferior modalities, such as the color feature
on Oxford and Paris, which only achieves less than 9 % mAP. Although results
on Oxford dataset by several approaches using a single modality [32,34,35] are
better than those by our reranking algorithm, note that our reranking algorithm
does not require SIFT descriptors or BoW vectors as [32,34,35] did, as long
as we have pairwise similarities of pairs of images. Therefore, for the scenarios
where original features cannot be stored and loaded efficiently due to limited
resources, i.e., mobile computing, our algorithm is more suitable than [32,34,35]
for improving initial retrieval results. It is reasonable to expect that a higher
accuracy might be obtained if we apply our reranking algorithm to fuse features
which achieve better individual performance.

Table 2. Comparison of results by our reranking algorithm and other rank aggregation
approaches. Runtime (in second) of reranking 1000 images for a single query using
direct greedy optimization and lazy evaluation is shown in the right-most columns.

Comparisons of Individual Terms. Our objective function consists of two
terms: information gain and relative ranking consistency. These are comple-
mentary: the information gain term explores relationships between images and
modalities at a fine level by using pairwise similarities, while the relative ranking
consistency term exploits the inter-relationships between initial ranked lists in
a coarser level as it only uses the ranks themselves. As shown in Table 1, by
combining the two terms, our algorithm outperforms each individual term and
achieves the best accuracy.

Comparisons with Baselines. We also compare the reranking accuracy of
our reranking algorithm with other rank aggregation baseline approaches that
combine multiple ranked lists. We use 5 rank aggregation approaches for compar-
ison: mean rank aggregation [36], median rank aggregation [37], geometric mean

2 In [10], BoW achieved 77.5 % mAP on Holidays and 3.54 N-S on UKbench, while
color achieved 62.6 % and 3.17, respectively. N-S score by GIST is 2.21 on UKbench.
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rank aggregation [37], robust rank aggregation [38] and Borda count [36,37]. The
results are shown in Table 2.

Our reranking algorithm outperforms all other rank aggregation approaches
that do not as effectively use the inter-relationships amongst multiple ranked
lists. The results by mean rank aggregation and Borda count are even much
worse than those by a single modality (BoW), showing that a higher rank is
overly diluted by other lower ranks. Incorporating the information gain and
relative ranking consistency, our algorithm effectively exploits relationships of
image pairs and multiple ranked lists at both a fine and a coarse level, leading
to a higher retrieval accuracy.

4.3 Parameter Analysis

Impact of Ks. The parameter Ks controls the number of images to be reranked,
which affects efficiency and reranking accuracy. Smaller Ks leads to fast conver-
gence but may not discover images similar to queries but lower ranked since it
discards a large number of initially retrieved images. We investigate the accuracy
and execution time of our reranking with respect to Ks.

Fig. 3. (a) Change of mAP with respect to Ks. (b) Average reranking time for a single
query with respect to Ks. (c) Change of mAP with respect to λ. Best view in color
(Color figure online).

The retrieval accuracy in terms of mAP and average reranking time for a
single query as Ks is varied are shown in Fig. 3(a), where Ks ranges from 10 to
1000. As we perform reranking on more images, the chance of discovering a sim-
ilar but lower ranked image increases. Therefore, the mAP gradually improves.
More specifically, the mAP rapidly increases as Ks increases from 10 to 500 for
Oxford and Paris datasets. When more images are included in reranking after
this point, the improvement of mAP is only incremental, showing that reranking
images that are significantly lower ranked does not much benefit retrieval per-
formance. In comparison, the mAP for Holidays and UKbench datasets reaches
its highest value when Ks < 100 and remains almost constant thereafter. Images
in the Oxford and Paris datasets have significant variance and each query has a
large number of similar dataset images that can be retrieved. Images similar to
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the query can only be better discovered by a deeper inspection of initial ranked
lists. In contrast, similar images in the Holidays and UKbench datasets are near-
duplicates, and most queries have fewer than 10 similar images that are already
highly ranked in the initial ranked lists. Therefore, only a smaller number of
initially retrieved images need to be reranked.

To evaluate execution time, we calculate the average time spent to rerank
Ks retrieved images for a single query in each dataset. From Fig. 3(b), it is not
surprising that reranking a larger number of images takes more time. Never-
theless, our algorithm achieves sublinear time to rerank retrieved images for a
single query with respect to Ks, showing the efficiency of the greedy algorithm
with lazy evaluation. Furthermore, it takes the lazy evaluation less than 1.5 s
on a desktop with 3.4 GHz CPU to rerank as many as 1000 images without any
code optimization. Therefore, our reranking algorithm is scalable for large-scale
image reranking tasks.

Impact of λ. In Eq. 7, we balance the information gain and relative ranking
consistency by parameter λ. Since λ controls the importance of individual terms,
it also affects the reranking accuracy. We investigate the change of reranking
performance with respect to λ, as shown in Fig. 3(c). Our reranking algorithm
is very robust: changing λ within a wide range does not affect the mAP too
much, therefore we do not need to specifically tune λ to obtain good results.
The change of mAP with respect to different λ is at most 5–6 %.

Computational Complexity. As stated in Sect. 3.4, we adopt a lazy evalua-
tion approach to accelerate the optimization process. To show its effectiveness,
we compare the reranking time for a single query by direct greedy optimization
and lazy evaluation on the same machine, as shown in Table 2.

On all datasets, the lazy evaluation achieves more than a 40-fold speed-up
compared to direct optimization. On the Oxford and Paris datasets, the lazy
evaluation achieves more than a 50-fold speed-up. Therefore, our submodular
reranking algorithm is very efficient and scalable for larger-scale reranking prob-
lems. With proper code optimization and parallel computing, our algorithm can
be easily applied to reranking multiple ranked lists for real-time search engines.

5 Conclusions

We address the problem of reranking images that are initially ranked by multiple
feature modalities by maximizing a submodular and monotone objective func-
tion. Our objective function is composed of an information gain term and a rel-
ative ranking consistency term. The information gain term utilizes relationships
of initially retrieved images based on a random walk model on a graph. Based on
this term, an image initially lower ranked but resembling other retrieved images
that are similar to the query will have higher rank after reranking. The relative
ranking consistency term measures the relative ranking between two initially
retrieved images across multiple ranked lists. It maintains the consistency of rel-
ative ranks between two images during reranking, and also captures a high rank
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of an image that is similar to the query but only discovered by one or a few
modalities. The objective function can be efficiently maximized by a lazy greedy
algorithm, leading to an ordered subset of initially retrieved images. Experi-
ments show that our reranking algorithm improves overall retrieval accuracy
and is computationally efficient.
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