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Abstract. This paper introduces a new method for recognizing faces deg-
raded by blur using transformation learning on the image feature. The
basic idea is to transform both the sharp images and blurred images to
a same feature subspace by the method of multidimensional scaling. Dif-
ferent from the method of finding blur-invariant descriptors, our method
learns the transformation which both preserves the manifold structure of
the original shape images and, at the same time, enhances the class separa-
bility, resulting in a wide applications to various descriptors. Furthermore,
we combine our method with subspace-based point spread function (PSF)
estimation method to handle cases of unknown blur degree, by applying
the feature transformation corresponding to the best matched PSF, where
the transformation for each PSF is learned in the training stage. Experi-
mental results on the FERET database show the proposed method achieve
comparable performance against the state-of-the-art blur-invariant face
recognition methods, such as LPQ and FADEIN.

1 Introduction

Face recognition plays an important role in the field of computer vision. Previous
works on this topic [1–4] mainly focuses on recognizing faces under controlled
imaging conditions. However, in practice, the performance of recognition algo-
rithms tends to suffer from image degradation [5]. One example of degradation is
blur as a consequence of out-of-focus lens, atmospheric turbulence, and relative
motion between the camera and the objects. The process of such image blur
could be modeled as:

g(n1, n2) = (I ∗ H)(n1, n2) + n(n1, n2) (1)

where (n1, n2) is the pixel location at which a convolution ∗ is performed between
the original sharp image I and a point spread function (PSF) H, which has
the same size with image I. n denotes the additive image noise coming from
quantization, or other camera-induced errors.

The performances of face recognition could suffer from blur for the fact that
blur leads to two main problems [6]:

(i) the facial appearance of an individual changes drastically due to blur.
(ii) different individuals tend to appear more similar when blurred.
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A few existing approaches have been proposed to handle these problems. All
of them are based on the formulation of the process of blur,and could be roughly
classified into three categories: (i)converting sharp images to match the blurred
ones via blurring methods, (ii)converting blurred images to match sharp images
via deblurring methods, (iii)finding blur-invariant descriptors.

One typical method of class (i) could be found in [7], where Stainvas &
Intrator artificially blurred the sharp gallery images to match a blurred query
image through a hybrid network architecture. Although problem (i) can be thor-
oughly handled, problem (ii) still remains. Besides, the gallery images may be
blurred themselves.

The deblurring approaches are widely used to estimate I from the observed
blurred image g, which means solving the inverse problem of formulation (1).
But this is a difficult task considering unknown types of blur kernel. For instance,
the PSF H of ideal motion and out-of-focus blur tends to be rectangular accord-
ing to [8,9], while atmospheric and optical blurs are more likely to be Gaussian
blur [9,10]. These approaches could also been treated as a way of image restora-
tion. When the model for blur is known, known as non-blind deconvolution [11],
Levin et al. [12] learn priors on clean image statistics, Fergus [13] use coded-
computational photography to remove motion blur. Blind image deconvolution
assumes nothing about the blur kernels is known [14]. Most of the existing
works perform blind image deconvolution based on a single image [15]. A PSF
is inferred through total variation regularization [16], the variation of Gaussian
scale in the edges [17–19], or variation in the wavelet domain [20,21]. Recently,
M. Nishiyama [6] has revealed that deblurring from a single image is an ill-
posed problem and these deblurring methods are insufficient for accurate face
recognition. Other methods deduce a PSF using multiple images [22,23], and
M. Nishiyama et al. [6,24] propose to build multiple PSFs and use the best
match as the final PSF. Even if the PSF could be correctly estimated, deblur-
ring could not be very robust due to unknown noise n.

As regards blur-invariant descriptors, researchers have tried to find blur
insensitive descriptors. Useful descriptors include local binary pattern ‘LBP’ [25,
26], the subspace [27], manifold [28], sparse representation [29] and the local
phase quantization ‘LPQ’ [30]. The ‘LPQ’ descriptor performs best when the
blur is centrally symmetric [31], which is invariant with respect to blur effects.
Recently, Gopalan et al. [32] proposed a new blur-robust descriptor using sub-
space techniques. These blur-invariant-descriptor relevant methods could also be
viewed as direct methods.

Our Contributions: All of the approaches mentioned above could be viewed as
preprocessing for feature extraction. We offer a new perspective that handling
the effects of blur and extracting features at the same time via Transforma-
tion Learning. Based on the intuition that face recognition algorithms perform
best when the gallery images and their corresponding blurred ones are in the
same kind of feature spaces, we transform the features of sharp gallery images
and blurred query images to a same space. We adopted Multidimensional Scal-
ing (MDS) [33] to learn the desired transformation from training images using
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iterative majorization algorithm [34]. Extensive experiments on FERET and
CMU-PIE datasets show that our MDS-based feature extraction could efficiently
weaken the degradation caused by blur.

Outline of the Paper: The rest of the paper is organized as follows. In Sect. 2,
we present our method for blur-robust face recognition. In Sect. 3, we describe the
detailed experiments and show that our method not only outperforms others, but
also demonstrates excellent capability of generalization. Finally, a brief summary
and discussion is provided in Sect. 4.

2 Our Approaches

We try to find a subspace into which the sharp original images and their blurred
counterparts are mapped in the same way. What’s more, the performance of face
recognition algorithms has been taken into consideration by combining classifiers.

We introduce Multidimensional Scaling (MDS) method to conduct trans-
formation learning to solve the blur problem. It should be noticed that MDS
assumes already knowing the blur degree, as the transformation is performed
between the sharp images and those with certain blur degrees.

For an image with unknown blur degree, we first infer the PSF with the method
in [6]. Then, we select the corresponding transformation matrix from the previ-
ously learned MDS matrices. Finally, classification methods are applied in the
transformed space.

An overview of our method could be found in Fig. 1.

Fig. 1. Overview of our method
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Recently, Biswas et al. [35] also adopted MDS to solve various pose and res-
olution problem in face recognition, but we handle clearly different tasks in face
recognition. Moreover, our work differs from [35] in the following two respects:

(i) In [35], an uniform W is trained for all kinds of variations in pose and res-
olution, while we differentiate different blur levels, and train a series of transfor-
mations W1 . . . Wn. This enables us to acquire the most accurate transformation
for the blurred query image from the series of matrices (see Fig. 1). For the blur
problem, all kinds of blur have certain blur kernels [2], which means detailed
PSF quantization is feasible and effective for solving the problem. (ii) Tradi-
tional multidimensional scaling is adopted in [35] to transform data from a high
dimension to a low dimension. In contrast, we transform the data to a higher
dimension, which is indeed a linear kernel trick.

2.1 PSF Inference

We adopt the methods proposed in [6] to infer the PSF. The basic idea is to find
a subspace which is much more sensitive to the variance caused by blur than
differences between individuals. The algorithm is shown as follows, which finally
gives the subscript s of the inferred PSF:

Algorithm 1. PSF Inference

1: Extract feature image x(ε
′
, η

′
) from a blurred image g(u, v) as:

x(ε
′
, η

′
) = [log(|g(ε, η)|)] ↓ (2)

where g(ε, η) is the Fourier transform of g(u, v), || takes the amplitude, and [] ↓
stands for down-sampling. It should be mentioned that x is normalized so that
||x||2 = 1.

2: Running PCA in the training set. Training images are blurred with each PSF Hi,
We extract the feature images for the whole blurred training set, forming correlation
matrix Ai = 1

M
ΣM

k=1x
′
ik(x

′
ik)

T , where x
′
ik represents the feature image extracted

from image gik which is blurred with Hi. A subspace θi = {bij}D
j=1 is got with the

first D eigenvectors by decreasing eigenvalue.
3: Infer the PSF. For a new query image with unknown blur, we calculate the closest

subspace with cosine distance to determine the PSF Hs:

s = arg max
i

ΣD
j=1(b

T
ijx)2 (3)

2.2 Feature Selection

Feature selection is an issue worth considering for blurred face recognition. Pre-
vious researchers attempted to find a blur invariant descriptor, however, this is
an ill-posed problem and we could only find approximately invariant ones. For
instance, Local Phase Quantization(LPQ) is such a descriptor, and only when the
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facial image is boundless could it be invariant to blur. More details about how LPQ
is applied in face recognition can be found in [30]. In fact, blur is closely related
to scaling, making global descriptors inappropriate for the problem. Instead, local
descriptors like LPQ, LBP and EF describe a pixel in an image with its neighbor-
hood content, and are therefore capable of handling the invariants of blur to some
extent. In our experiments, we first choose uniformed LBP as our feature. For a
new coming face image, we first resize it to 64 × 64. Then, we compute the uni-
formed LBP(ranging from 0 to 58) for the pixels of the whole image. Later, each
image is divided into 8 × 8 cells, and we would obtain the histograms for each
cell. Combining these histograms together will result in a feature with dimension
59 × 8 × 8. Besides, we also extract LPQ features similarly, while the cell size is
set to be 6 × 6 and cell is slid with a gap of 4 pixels.

2.3 Transformation Learning

High-dimensional transformation learning is always terribly high in time and space
complexity. For instance, the dimension of using uniformed LBP is 3776, and the
raw pixel dimension is 4096. Therefore, before we perform transformation learn-
ing, PCA (Principal Component Analysis), which is a standard technique to cre-
ate low-dimensional representation of high-dimensional data, is always required.
It helps to reduce the complexity significantly while preserving the performance of
Transformation Learning. Besides, PCA is also effective for reducing noises. When
the training set contains enough images for each individual, LDA (Linear Discrim-
inant Analysis) is performed to make the distances between facial images of differ-
ent classes as large as possible while preserving the distances between same-class
images. Based on this, LDA further reduces the dimensions of the data. However,
later we would demonstrate that PCA and LDA only help promote the recognition
performance – it is the multidimensional scaling that really counts.

Objective Function. We denote f as the transformation from Rl to Rt, here
l represents the dimension of the input space, while t is the dimension of the
transformed space. f could be written as:

f(x) = WT x (4)

where x ∈ Rl is the feature vector we got from LBP, PCA and LDA. W is a l× t
matrix, denoting the weights to be learned. Traditional metric multidimensional
scaling tends to set t = 2 or 3 for visualization; while on the contrary, we
find that mapping data to a higher dimension may lead to better separability,
just as Support Vector Machine reveals. Suppose we have N original training
images, all of which are processed with feature extraction (always followed with
PCA for high dimensional feature), and we denote them as {xs

1, x
s
2, . . . x

s
N}, and

their corresponding blurred images are {xb
1, x

b
2, . . . x

b
N}. We apply the objective

function of [34] to solve the problem:

min J(W ) = λJSP (W ) + (1 − λ)JCS(W ) (5)
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where JSP (W ) is a structure-preserving term. Our objective is to make sure the
distance of transformed feature space between the original sharp image f(xs

i )
and the blurred image f(xb

j) approximates the distance of input space between
original sharp images ds

ij as well as possible. We define JSP (W ) as:

JSP (W ) =
N∑

i=1

N∑

j=1

(qij(W ) − ds
ij)

2 (6)

where

qij(W ) = |f(xs
i ) − f(xb

j)| = |WT (xs
i − xb

j)| (7)

stands for the distance between the sharp and the blurred images in the trans-
formed space. ds

ij is the distance between two sharp images in the input space,
usually defined as |xs

i − xs
j |. This formulation could effectively handle the two

main problems we have presented.
JCS(W ) is the class-separation term. Similar to Koontz and Fukunaga, we

propose to define the separability term as:

JCS(W ) =
∑

i

∑

j

δijq
2
ij(W ) (8)

However, our term differs from Koontz and Fukunaga in that both i and j are
taken from 1 to N , and we define δij as:

δij =

⎧
⎨

⎩

0 if wi �= wj

1 if wi = wj(i �= j)
2 if i = j

(9)

where wi stands for the class label of image i. λ is the balance parameter between
the structure-preserving term and class-separation term, whose value is taken in
the range [0, 1]. Combining the Eqs. (5)–(9), we could transform the objective
function as:

J(W ) =
N∑

i=1

N∑

j=1

αij(qij(W ) − βijd
s
ij)

2 (10)

where

αij = (1 − λ)δij + λ (11)

and

βij = λ/αij . (12)

We then adopt the iterative majorization algorithm [33,34] to solve the min-
imization problem (10).
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2.4 Iterative Majorization

Here, we quickly review the iterative majorization algorithm, which is also called
stress majorization. If we define:

J2
m(W,V ) = Tr{WT AW} +

N∑

i=1

N∑

j=1

αijd
2
ij

−2Tr{V T D(V )W}
(13)

where

A =
N∑

i=1

N∑

j=1

αij(xi − xj)(xi − xj)T (14)

and

D(V ) =
N∑

i=1

N∑

j=1

Cij(V )(xi − xj)(xi − xj)T (15)

with

Cij(V ) =
{

λds
ij/qij(V ) if qij(V ) > 0

0 if qij(V ) = 0 (16)

The solution for W that minimizes J2
m(W,V ) satisfies

AW = D(V )V (17)

based on the theory that J(W ) ≤ J2
m(W,V ) ≤ J(V ). The detailed minimization

procedure is:

Algorithm 2. Iterative Majorization
1: set t = 0, initial convergence precision ξ with a predefined value, initial W with

random value in the range [−1, 1].
2: set V = W t

3: update W t to W t+1 as

W t+1 = A−1D(V )V (18)

where A−1 stands for the Moore-Penrose pseudoinverse of A.
4: check for convergence. If |W t+1 − W t| < ξ, stop the iteration and output W ; If

otherwise, set t = t + 1 and go to step 2.

2.5 Recognition Across Blur

The transformation above gives a common feature space for sharp and blurred
images, in which distance metrics such as Euclidean distance and cosine distance
can be utilized for recognition. Here we choose cosine distance for verification,
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considering its best performance in verification, or choose Euclidean distance for
face recognition combined with an NN classifier.

The gallery set and the query set consist of sharp and blurred images respec-
tively. A query blurred image could be compared to all of the sharp gallery
images using cosine distance metrics for verification, or be put into the trained
classifier Cs with Euclidean distance for recognition.

3 Experiments and Results

The following experiments are conducted to demonstrate the effectiveness of our
method. We assume that the blur degrees of the test images are the same and
already known, thus we can construct training images with the same blur effect.
We shall discuss how to deal with unknown degree of blur in the Conclusion part.

3.1 Databases

We perform different experiments based on the following two databases. It should
be noted that blur does not matter much in face detection, as the current face
detector could detect faces as small as 15 × 15 pixels.

CMU-PIE Database. Reference [36] contains 68 subjects with 41368 images
on the whole. For each subject, the illumination subset (C27), which contains 21
distinct sources of lights, was used in our experiment. For both datasets, all the
images were first normalized by a similarity transformation that sets the inter-
eye line horizontal and the two eyes 70 pixels apart, and then cropped to the
size of 128 × 128 with the centers of the eyes located at (29, 34) and (99, 34) to
extract the pure face region. No additional preprocessing procedure is required
in our experiments.

FERET Database. Reference [37] is a standard database used for algorithm
development and testing, which is divided into development portion and sequeste-
red portion. The development portion provides a common database for designing
algorithms, and the sequestered portion is for testing and evaluating face recog-
nition algorithms. In our experiments, we select three subsets, ‘bk’,‘bj’, and ‘ba’,
from the development portion, and two subsets, ‘fa’ and ‘fb’, from the sequestered
portion. The faces of all subsets are detected with a V-J face detector and the
facial area is cropped to the size of 128 × 128.

3.2 Transformation Learning: Intuition

To give an intuition as to how T́ransformation Learningẃorks, we select two indi-
viduals from database CMU-PIE, and each individual consists of 21 images. First
of all, we resize the images to 64×64 bilinearly. Then all the images are artificially
blurred with Gaussian blur PSF: H(u, v) = 1

Z exp(−(u2+v2)
2σ2 ), where σ denotes

the standard deviation, and Z is a normalization term. In our experiment, we set
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(a) sharp image of
individual 1

(b) sharp image of
individual 2

(c) blur image of
individual 1

(d) blur image of
individual 2

Fig. 2. Example images from 2 different individuals. Each one is artificially blurred
with a Gaussian blur filter whose size is 5 × 5 and the standard deviation is 3.

σ = 3 and the filter size is fixed to be HSIZE = [5 5]. Typical images of the two
individuals and their corresponding blurred ones are shown in Fig. 2.

To exclude the effects of other factors, we simply choose raw pixel data as the
feature vector. We use data of another 34 individuals to learn a PCA matrix and a
transformation matrix. Then dimension reductions are conducted on all the orig-
inal sharp images and their corresponding blurred ones, to 100 dimension after
PCA and then to 900 dimension after MDS. The reason why PCA is used and
why the dimension is 100 are that we want to perform MDS in a rapid way and
to give a convenient visualization at the same time. The first 3 dimensions (the
biggest 3 principals) are chosen for visualization. The result is shown in Fig. 3.

It’s obvious that the non-separable data in the original data space becomes
linear-separable in the transformed space through MDS, which means a simple
linear classifier would be sufficient to work well.

3.3 Face Identification with and Without MDS

Next, we conduct a face identification experiment on the CMU-PIE database. This
time, all the cropped images are used. We randomly select 34 individuals for train-
ing, the remainings are used as gallery set. The training set images are blurred
using Gaussian PSF, where σ is set to be 3, and HSIZE is set to be [33]. After
resizing the images to 64×64, we extract the LBP features of the images and then
conduct PCA, LDA to reduce the dimension to 100. We use the training set (34×21
images) to train PCA and MDS transformation matrix. Note that we set the ini-
tial MDS transformation matrixes W as equal values to give a fair comparison.
Finally, given the test images and gallery ones, we adopt Cosine distance rather
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(b) image visualization with MDS

Fig. 3. Visualization of the effectiveness of our method. Different shapes denote differ-
ent individuals with ‘cross’ represents individual 1, and ‘star’ represents individual 2.
And we mark the sharp images in blue color and the blurred ones in red (Color figure
online).

than Euclidean distance as the distance metric to get the identification results.
See Eq. 19.

d̃(i, j) =
x̃ix̃j

|xi||xj | (19)

The nature of the results would be affected by the threshold value. Take false
detection rate as x axis, and true positive rate as y axis, and if we change the
threshold value continuously, an ROC curve would be acquired. In our experi-
ment, we change threshold value of identification for 505521 times, meaning that
505521 points (fpi, tpi) would be acquired. Here fpi stands for false positive rate,
while tpi denotes true positive rate. The result is shown in Fig. 4.

The result indicates that PCA and LDA help to improve the performance of
identification, yet only marginally. The next experiment may reveal that PCA
could even degrade the recognition rate sometimes. We calculate the Area Under
Curve (AUC) of the ROC curve with the Trapezoidal Rule:

AUC =
n−1∑

i=1

(fpi+1 − fpi)
tpi+1 + tpi

2
(20)

Here n = 505521, which denotes the number of sample points.
As shown in Table 1, MDS significantly improves the performance of face

identification, as the AUC value is much higher when MDS is employed.

3.4 Comparison with State-of-Art Methods

The state-of-art method is FADEIN+LPQ [6]. To make a fair comparison, we fol-
low the same approaches. FERET database is adopted where all images could be
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Table 1. Comparison of methods with and without MDS. We calculate the accuracy
with false positive rate of 0.01. And the AUC values are based on the ROC curve shown
in Fig. 4

Method Accuracy (false positive rate=0.01) AUC

LBP 37.66 % 0.762

LBP+PCA+LDA 37.64 % 0.787

LBP+PCA+LDA+MDS 87.36% 0.989

considered sharp. We choose 10001 images of 1001 individuals from subset ‘fa’ as
the gallery set. Meanwhile, their corresponding images in ‘fb’ subset are selected
to build up the target set, which have been filtered with Gaussian blur and added
with 30 dB Gaussian white noise. It should be mentioned that Gopalan et al.
[32] improperly set the filter sizes to be the same (hsize = 5) for different stan-
dard deviations, while in fact, the filter size should increase with the standard
deviation. Specifically, we set hsize = 1.5 ∗ δ, then around 87% energy would
be preserved for all filters. Our objectives imply that only one image for each
individual is not enough for learning the transformation matrix, so we combine
‘bk’,‘bj’,‘ba’ subsets together for training, with 3 images for each individual. We
artificially blur these images as we did to those in the ‘fb’ subset. For the feature,
we choose uniformed LPQ, where the cell size is set to be 6 × 6 and the sliding
step to be 4. PCA is performed on the extracted features to reduce the dimen-
sion to 400, and a transformation to a dimension of 900 is learned through our
MDS method, where we set λ = 0.2. Here we simply denote ‘LPQ+PCA+MDS’
as ‘LPQ+MDS’. Finally, NN classifier is used for recognition, and the result is
shown in Fig. 5.

It can be seen clearly that our method could compete with the FADEIN+LPQ
method. Both of them present considerable improvement over the pure LPQ
method, which means that both of our MDS method (without deblurring) and
FADEIN (with deblurring) are effective for improving the recognition accuracy.
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3.5 Performance on Mixed Blur Settings

The experiments above assume that all the training images and query images
are blurred by PSFs with a certain standard deviation. The question is, what
if there is no information available about the PSF? We solve this problem by
adopting the PSF inference method by M. Nishiyama and A. Hadid [6]. While our
experiment considers only Gaussian blur, the method could handle all kinds of
blur indeed. First of all, we test the PSF inference accuracy on FERET database.
The chosen datasets are the same as in Sect. 2.4, and we still set hsize = 1.5∗σ.
We blur the whole query set with different Gaussian PSFs each time. The result
is shown in Table 2.

Table 2. PSF inference accuracy for different standard deviation.

Standard deviationσ Inference accuracy

0 99.80 %

2 98.49 %

4 97.68 %

6 98.39 %

8 98.19 %

The average inference accuracy is 98.43%, proving the effectiveness of the
PSF inference method.

Then, we blur the images with random standard deviation chosen from
{0, 2, 4, 6, 8}, for each query image, we infer the PSF first, and then choose
the corresponding transformation matrix, using transformed feature to recog-
nize with the corresponding classifier. The result is shown in Table 3.
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Table 3. PSF inference accuracy for different standard deviation.

Method Recognition rate

LPQ 83.56 %

FADEIN 82.45 %

FADEIN+LPQ 88.12 %

LPQ+PCA+MDS 88.56%

It can be noticed that without deblurring, our method performs slightly
better than FADEIN combined with LPQ, thus demonstrating the effectiveness
of our method.

3.6 Time Costs

It is the training procedure that takes much time. When we set the convergence
precision to be 0.1, it would take around 30 iteration steps to complete the
transformation from 400 to 900 dimensions. In our Matlab implemention on
3.2 GHZ core i5 CPU, about 3 h was consumed to compute the matrix W . After
obtaining W , however, it takes very short time for testing, thus making it suitable
for real-time face recognition applications.

4 Conclusion

In this paper, we solve the blur problem of face recognition based on a new
point of view, which is transforming both the sharp images and blurred ones to
a common subspace. Our approach could be regarded as a procedure coming after
feature extraction, thus compatible with various existing methods. One problem
with our method is that we assume the blur degree to be already known, which
could be solved by training a set of W with different blurs. Concretely, when a
new test image is coming, we could first infer the blur degree with PSF inference
methods, and then select the best matched W . Further research may focus on
improving the transformation learning matrix through finding a subspace for
various degrees of blur.
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