
A Computational Comparison of Different
Algorithms for Very Large p-median Problems

Pascal Rebreyend1(B), Laurent Lemarchand2, and Reinhardt Euler2

1 School of Technology and Business Studies, Dalarna University, Falun, Sweden
prb@du.se

2 Lab-STICC/UBO, Université Européenne de Bretagne, Brest, France
{laurent.lemarchand,reinhardt.euler}@univ-brest.fr

Abstract. In this paper, we propose a new method for solving large
scale p-median problem instances based on real data. We compare dif-
ferent approaches in terms of runtime, memory footprint and quality of
solutions obtained. In order to test the different methods on real data,
we introduce a new benchmark for the p-median problem based on real
Swedish data. Because of the size of the problem addressed, up to 1938
candidate nodes, a number of algorithms, both exact and heuristic, are
considered. We also propose an improved hybrid version of a genetic
algorithm called impGA. Experiments show that impGA behaves as well
as other methods for the standard set of medium-size problems taken
from Beasley’s benchmark, but produces comparatively good results in
terms of quality, runtime and memory footprint on our specific bench-
mark based on real Swedish data.

1 Introduction

Facility location problems consider a set of demand points to be served from a
set of possible locations. Solution quality takes into account costs for associating
demand points to locations and also costs of choosing a particular location. In the
p-median version, the latter is not considered, i.e., we can describe the p-median
problem as finding a set of p facilities such that the sum of distances between
demand points and the closest facility is minimized. The p-median problem has
been introduced by Hakimi [15] who describes its basic properties.

Previous approaches to the p-median problem [1,11,14] have included numer-
ical tests using Beasley’s benchmark [7]. The largest graph of this benchmark
has 900 candidate nodes on which we can locate facilities. Graphs are generated
with a uniform distribution of the demand, which is not representing accurately
a true problem since the population in most countries and therefore the demand
is not uniformly distributed due to the presence of natural factors like islands,
lakes, mountains, rivers,. . . , and the concentration areas related to urbanization.
Further, to represent most regional or national location problems with just 900
candidate nodes is rather limited and implies a high degree of problem simplifica-
tion together with a loss of information accuracy. Another set of abstract graphs
has been used by Avella [4], with the same drawback of uniform distribution of
the demand.
c© Springer International Publishing Switzerland 2015
G. Ochoa and F. Chicano (Eds.): EvoCOP 2015, LNCS 9026, pp. 13–24, 2015.
DOI: 10.1007/978-3-319-16468-7 2

14 P. Rebreyend et al.

Due to these two limitations of the Beasley benchmark, one of our interest in
this paper is to introduce and use a new set of problem instances based on real
data. This new set is based on Swedish real data. Sweden is a good candidate
to test methods for the p-median problem since the distribution of population
is not uniform as we can see in Fig. 1. The size of the country (449, 964 km2)
is big enough to test algorithms designed for country-related problems. Swe-
den exhibits also some particular characteristics which make a clear difference
between an abstract graph and those obtained from real data such as the pres-
ence of natural barriers i.e., lakes or mountains. The non-uniform distribution
of the population is also taken into account by distinguishing between demand
nodes and candidate nodes. Demand nodes indicate where people are living while
candidate nodes are possible locations for a facility. The number of facilities p
will vary from 10 to 100 in our cases to cover different practical p-median prob-
lems such as locating universities (p = 10), courts, public hospitals (p = 100),. . . .
Locating hospitals is the practical problem we focus on, without limitation on
the capacity of a facility. This corresponds to most of the computational exper-
iments done so far [22].

Some tests on larger graphs have been carried out by Avella [4] using the
Birch set of abstract graphs (with up to 89 000 nodes). Birch graphs have sim-
ilar to those of Beasley a uniform distribution of the demand but points are
grouped into clusters. Real graphs with up to 67,000 nodes have been used by
Rebreyend et al. [21] to investigate effects of the quality of different road net-
works on the p-median problem. But in their case only one heuristic method was
tested and the number of candidate nodes to locate on was high in comparison
to the geographical area as was the number of nodes representing locations of
population, since data represent only a single Swedish province. The authors of
[21] conclude that fewer nodes lead to better results also because they are using
an approximate method.

Sweden has an asymmetrical distribution of the population and natural bar-
riers are spread all over the country. Therefore, we need to use the road distances
since Euclidian distances may lead to poor results [9].

The p-median problem is described in the next section. Section 3 presents
previous work and algorithms related to the p-median problem. A detailed expla-
nation on the algorithms we have used is given in Sect. 4. Section 5 describes our
new algorithm. Section 6 presents the data used. Results in terms of quality,
runtime and memory footprint for the tested algorithms in Sects. 7, and Sect. 8
concludes the paper.

2 The p-median Problem

In the rest of this paper, the following terms are used:

– N for the number of candidate nodes (number of possible locations for a
facility),

– D for the number of demand nodes,
– p for the number of facilities to allocate.

A Computational Comparison of Different Algorithms 15

Fig. 1. Distribution of two populations, Dalecarlia province on the left, Sweden on the
right

A common formulation of the p-median problem due to Revelle and Swain
[23] is the following:

minimize
D∑

i=1

N∑

j=1

hidijYij (1)

subject to
N∑

j=1

Yij = 1 ∀i, 1 ≤ i ≤ D (2)

N∑

j=1

Xj = p (3)

Yij − Xj ≤ 0 ∀i, j, 1 ≤ i ≤ D, 1 ≤ j ≤ N (4)
Xj ∈ {0, 1} ∀j, 1 ≤ j ≤ N (5)
Yij ∈ {0, 1} ∀i, j, 1 ≤ i ≤ D, 1 ≤ j ≤ N (6)

where

– hi is the weight of the demand of customer i,
– dij is the distance between customer i and facility j,
– Xi is a decision variable, indicating whether facility i is selected or not,
– Yij is a decision variable, indicating whether customer i is served by facility j

or not,
– p is the number of facilities to be selected.

16 P. Rebreyend et al.

Equation (2) ensures that a customer is served by exactly one facility. The
number of facilities is fixed by Eq. (3). Constraint set (4) reflects the objective
that demand points are assigned only to a selected facility. Binary decision vari-
ables X and Y are defined by Eqs. (5) and (6).

At least one optimal location exists if the facilities are located on the nodes
of the graph only [15]. Kariv and Hakimi [16] have shown that the p-median
problem is NP-Hard.

3 Related Work

Reese [22] has recently published a bibliography on the main methods used for
solving the p-median problem. A survey of metaheuristics has been published by
Mladenovic [20]. The earliest solution techniques mentioned are enumeration-
based or heuristics such as vertex-substitution [3,18]. Simulated Annealing (SA)
based approaches have also been applied to the p-median problem [1,9,20].
Genetic algorithms (GA) have been used in [2,11]. Some approaches rely on
hardware to improve runtimes, and thus enlarge the applicability of algorithms.
Parallel versions of GA-based approaches have also been implemented [8]. More
specifically, GPU-based implementations of the Vertex substitution heuristic [17]
or of the Volume algorithm onto multi-core systems [14] can lead to impressive
speedups. Exact methods like 0-1 programming have also been proposed [5].

In this paper we focus on sequential algorithms that are suitable for very
large problem instances. A detailed description will be given in the next section.

4 Tested Algorithms

4.1 CPlex

The p-median problem can be formulated as a 0-1 programming problem (BP)
and then be solved by a Mixed Integer Problem (MIP) solver, using a branch and
cut approach. In our tests, we have used the CPlex software from IBM (version
12.6, Linux 64 bits) to test the BP approach. Some parameters of the solver have
been tuned in order to adapt CPlex to work on large problem instances, i.e.,
removing default computation time limits, allowing intermediate data storage,
and tuning branch & cut search tree strategies according to [13]. In the following
we will refer to this implementation as CPLEX.

4.2 Volume

Barahona and Anbil have given in [6] a description of the Volume algorithm.
This algorithm solves Mixed Integer Programs (MIP) by working on the dual of
a linear problem using the sub-gradient method [14]. At each iteration approx-
imations of the primal variable values are computed in addition. By working
both on the primal and dual problem, the Volume algorithm computes lower
and upper bounds for a given problem instance very efficiently, thanks to the

A Computational Comparison of Different Algorithms 17

subgradient method. The Volume algorithm has been successfully tested on the
p-median problem by specializing it to the associated LP-relaxation. The relaxed
solution is then exploited by fast heuristics to compute an integral solution of
the original p-median problem [10,14].

The version of the Volume algorithm we used1 to solve the p-median problem
is based on the formulation given in Sect. 2, except that constraint (4) is replaced
by the following [10]:

∑

i�=j

Yij + Xj = 1,∀j, 1 ≤ j ≤ N (7)

Yij ≤ Xj ,∀i, j, 1 ≤ i ≤ D, 1 ≤ j ≤ N (8)

Equation (7) indicates that either a node is selected, or it is connected to one
candidate. Equation 8 is identical to constraint (4). As a first step for solving a
p-median problem instance, the LP-relaxation of the dual problem is formulated,
and the heuristic of Bourges-Cleraux [10] is used to find a feasible integer solution
from the vector of real numbers found: the p highest values of this vector are
selected as the set of locations used. The second step is to select for each customer
the closest facility. This is done by sorting edges of the graph according to their
distance, from the shortest to the highest and going through them. The next step
is to go through all edges in this order. If an edge connects a selected location to
a customer with no location assigned to, the corresponding location is assigned
to this customer. Altogether, the complexity of this heuristic is O(m log m) if m
is the number of edges since a sort on all edges is done. Default values have been
used for the different parameters.

4.3 Simulated Annealing

Al-Khedhairi presents a general version of a Simulated Annealing (SA) algorithm
for the p-median problem [1]. Carling et al. have later used a similar approach
to solve the p-median problem in the real context of a Swedish province [9,21].

In this paper, we use Carling et al.’s algorithm. The starting point is a random
solution of the p-median problem instance. The neighbourhood of a solution s
is defined as the set of all solutions s′ in which one of the selected nodes of s
has been replaced by another candidate node. All the candidate nodes have the
same probability to be chosen.

The initial temperature of the SA is fixed to 400◦. At every iteration the
temperature is multiplied by 0.95. A main concern with simulated annealing is
the risk to get stuck at a frozen state. To detect such a situation and reheat
the system, we proceed as follows: if 10 consecutive iterations do not result in
any improvement, the following formula is applied to modify the temperature t:
t = t ∗ 3β . The initial value of β has been set to 0.5 after some experiments. If
between two modifications no solution has been accepted, β is increased by 0.5.
1 We thank C. Cleraux for providing us the code.

18 P. Rebreyend et al.

As soon as a solution is accepted, β is reset to its value of 0.5. These parameters
have been set up according to previous experiments done with the p-median
problem [19,21].

4.4 Genetic Algorithm

Several researchers have proposed genetic algorithms (GA) for solving the
p-median problem [2,11]. Most of them use a classical string representation,
i.e. each chromosome is represented as a single string of length p embedding
the index of the selected facilities or nodes. In our experiments, we are using a
genetic algorithm based on Correa et al. [11], that has proven its efficiency for
large scale instances. We add the constraint that in all chromosomes no facility
is duplicated. The initial population of our algorithm is randomly generated and
all the candidate locations have the same probability to be chosen.The crossover
used is the one described in [11]. It takes as input 2 chromosomes (called A
and B) and generates two new offsprings (A’ and B’) which replace the ones
used as input in the global population. The two new chromosomes are generated
by the following procedure:

1. Numbers that appear in both A and B are copied into A’ and B’
2. Two exchange vectors EA and EB are computed as follows: EA (resp. EB)

are integers in A (resp. B) which are not a member of B (resp. A); (obviously
EA and EB have the same size).

3. Let r be a random integer between 0 and the size of EA.
4. r integers are randomly selected from EA and EB and exchanged against each

other.
5. EA (resp. EB) is copied into A’ (resp. B’)

We also reuse the mutation of Correa et al. [11]. For a given chromosome,
let r be a random integer between 1 and p/10. Pick at random r integers from
A and for each of them choose at random an integer not in A to replace it. The
resulting genetic algorithm will be called basic-GA in the rest of the paper.

Correa et al. [11] also introduce a local search method in their GA by means
of a new mutation called hypermutation. This operation works as follows for a
given chromosome: the heuristic loops on all selected facilities represented by
the chromosome. Each selected facility is successively replaced by a facility not
already present in the solution, and for every new chromosome produced in this
way, the best solution with respect to fitness is kept. hyper-GA is the version of
the genetic algorithm which uses hypermutation.

5 Improved Genetic Algorithm

In this section an improved genetic algorithm called imp-GA is proposed. It is
designed to perform well on very large p-median problems to be described in
Sect. 6. This improved algorithm is based on the hyper-GA of Correa et al. [11].
In hyper-GA, the local search is done via hypermutation and has a complexity

A Computational Comparison of Different Algorithms 19

of O(pN). Instead, imp-GA has a lower complexity for its local search which
is shown below as Algorithm 1. It selects a chromosome and returns the best
solution found in its neighborhood.

We have designed a new version of the hypermutation operation which turns
out to work well on very large problem instances. Its main idea is to diminish the
space of the local search in order to reduce the computing cost of hypermutation
as soon as we increase the graph size. The new hypermutation has a complexity
of O(N) since only a small, fixed number F of selected candidates are considered
for replacement.

begin
Let A be the chromosome;
Choose randomly F facilities that appear in A;
foreach facility among the P chosen nodes do

for 0 ≤ i ≤ N do
replace the selected facility by facility i (if i is not already in A);
if fitness(A′) < fitness(A) then

A ←− A′ ;
end

end

end

end
Algorithm 1. The new hypermutation operation

In our experiments, we have limited the number of iterations to 100, and the
parameter F has been set to 5. Since the new hypermutation has a lower com-
plexity, it is run at each iteration of the genetic algorithm in contrast to that of
the hypermutation of the previously described genetic algorithm whose proba-
bility of being used for a given generation is only 0.5%. The new hypermutation
has only a reduced local search space, but this leads to small computation times
and therefore we can apply it more often. All other parameters have been set to
the same values as those used in [11].

We have applied two selections. Correa is using rank selection. The biased
roulette wheel is another selection scheme commonly used [12]. These two selec-
tion methods have been tested and experiments have shown that the roulette
wheel gives better results than the rank selection. Therefore, for the rest of the
article we will only consider the biased roulette wheel selection. It works as fol-
lows: we have n chromosomes. Each of them has a fitness value fi,i = 1, ..., n.
The probability for an individual i to be chosen is p(i) = Max−fi∑

i Max−fi
, where Max

is the highest fitness value among all chromosomes of the population. Once the
probability of each individual is computed, the selection will choose randomly n
new candidates according to their probabilities.

20 P. Rebreyend et al.

Table 1. Results for the Beasley benchmark (40 graphs)

CPlex SA Genetic algorithms Volume

basic-GA hyper-GA imp-GA

1000 iterations 1000 iterations 100 iterations

optimal 40 11 20 20 23 5

Deviation in % 0.0 2.35 0.1 0.14 0.2 4.2

Total time (secs) 64329 2294 70 5246 4862 112

6 Data

For our experiments, we have used two different instance sets. One is the set of
graphs from Beasley [7] which is commonly used for testing p-median algorithms.
The number of candidate nodes varies from 100 to 900. Before running the tested
algorithms, we have precomputed for each instance the matrix of distances.

The second instance set is based on official Swedish data. The distance
matrix is derived from the National Road Database (NVDB) of the Swedish
Road Administration. From the database which stores all road segments, a graph
representing the road network is built by identifying crossings using the x,z,y
coordinates [19]. Islands or strongly connected components are detected and vir-
tual links are added to simulate ferries. Then, the graph is cleaned from data
unnecessary for the p-median problem such as dead-end roads with no people
living along, or points which are neither crossings nor demand nodes. After this
process, we still have several millions of nodes. According to Hakimi [16], these
points are the set of points we should consider for the p-median location nodes.
This graph will be used to compute distances between location and demand
nodes. The set of demand nodes is provided by Statistic Sweden [19] and con-
sists of 188, 325 weighted points. Each point indicates how many persons at the
age of 20 to 64 are living in a square centered around this point (in 2012). The
size of the square varies from 250 by 250 m to 1 km by 1 km depending on its
location. The total size of the population is 5, 411, 373 persons. The average
number of people represented by a point is thus 29 and the highest one 2, 302.

Observe that the approach used by Carling et al., and Rebreyend et al. [9,21]
for the Swedish province of Dalecarlia cannot be used directly due to the lack
of information on the road type. In order to reduce the number of candidate
nodes, and to have a good tradeoff between quality and accuracy, we have there-
fore chosen as candidate node the centers of 1938 Swedish settlements. Some
further arguments can be put forward to justify this approach. First, according
to previous results of [9,21], since p will be small (less than 100 for all Swe-
den), a smaller number of candidate points may not degrade the solution found.
Another argument is that all hospitals in Sweden are located less than 3 Km to
the city center. Finally, settlements represent well the area where most of the
people are located and therefore highly densely populated areas will have more
candidate points than sparse areas which is important when the distribution of
the demand is non-uniform. Smaller tests were created by restricting locations to
the Dalarna province (named Dalarna) and to both the Dalarna and Gävleborg

A Computational Comparison of Different Algorithms 21

 0.001

 0.01

 0.1

 1

 10

 100

 1000

S10
S20

S49
S50

S73
S100

D05
D10

D20
d05

d10
G05

G10
G20

%
 G

ap
 to

 b
es

t k
no

w
n

bo
un

d

data set
CPlex SA bGA hGA iGA vol

Fig. 2. Compared quality of the solutions obtained by different algorithms on the
Swedish benchmark. Quality of a solution is expressed as the percentage of the gap
with respect to the best known bound

provinces (named DalGavle). A third smaller case was created by taking only
54 candidate nodes for Dalarna instead of the 108 settlements.

7 Results

We aim to compare the different algorithms described in Sect. 4, with the one
we designed, imp-GA, applied to the benchmark set of Beasley [7], and then to
the real Swedish data set described in Sect. 6. We want to check the quality of
solution and of the runtimes, and also to verify if similar results are obtained
for standard benchmark and real-life testcases. For the algorithms’ settings, we
have used values by default from the corresponding software for CPlex and the
Volume algorithm. Since SA is sensitive to its starting point, results are the best
of 4 runs from different starting points, each run having 2, 000, 000 iterations.

Table 1 synthesizes our results for the Beasley benchmark set. Average results
in terms of quality are perfect for CPlex, solving all of the cases to optimality: the
benchmark scale (900 nodes maximum) is affordable by up to date software and
hardware. Concerning heuristic approaches, imp-GA solves the most important
set of cases to optimality (23) and is always close to, with a standard deviation
of 0.2 %. Other GAs also perform well, with similar standard deviations. SA is
worst, with a deviation of 2.35 %. The Volume algorithm is the less accurate
approach for those cases, with a standard deviation of 4.2 %, but it is the fastest
in term of global runtime: 112 s vs 4862 s for imp-GA, and 64329 secs for CPlex.
Globally, these results show that all algorithms are applicable to “small” cases
solvable to optimality with an exact approach.

22 P. Rebreyend et al.

Table 2. Results for the Swedish benchmark. (*) excluding Sweden subset

Problem N p Best SA Genetic algorithms Volume

(known CPLEX

lower bound) basic-GA hyper-GA imp-GA

1000 iterations 1000 iterations 100 iterations

Sweden 1938 10 40553 MEM 58590 59398 TIME 57332 62163

20 35338 MEM 38154 37720 TIME 37614 38965

49 19848 MEM 21744 22228 TIME 21042 20487

50 19633 MEM 21661 22346 TIME 20788 20225

73 15633 MEM 171961 17766 TIME 16621 15761

100 12930 MEM 14291 14598 TIME 13689 13095

Dalarna 108 5 19863 19879 19879 20008 19879 19879 20093

10 11660 11673 11673 11674 11673 11674 11661

20 7237 7280 7343 7280 7280 7281 7237

Dalarna54 54 5 20910 21075 21075 21075 21075 21075 21041

10 12270 12323 12323 17510 12323 12323 12275

20 8398 8472 8472 10404 8472 8472 8398

DalGavle 195 5 27937 27948 27948 27948 27948 27948 30221

10 17486 17510 17782 17510 17630 17510 17492

20 10294 10323 10502 10404 10323 10323 10302

% Quality std dev. 0.3(*) 6.7 11.8 0.4(*) 5.0 5.4

Total time (secs) 18128(*) 153595 21717 699(*) 52591 71554

Figure 2 shows our results on the solution quality in a comparative way
for our real-case problem instances of large size. The gap between the result
of a given method and the best known bound is shown. On the abcisse, Sxx
represents the different graphs for the case of Sweden, Gxx represents DalGavle
graphs, Dxx Dalarna graphs and dxx dalarna54 graphs. As shown in Table 2,
some results are missing, due to unterminated solution processes. The table
details the quality results for Sweden data, and also indicates the computational
effort via the total runtime of the different algorithms. TIME and MEM indi-
cate that the corresponding algorithm was not able to complete, either within
a limited amount of time (2 days) or due to memory limitations (the software
aborts before completion on our computer with 32 Gb of memory).

The quality deviation row of Table 2 shows the average deviation in percent
between the solution found by the corresponding algorithm and the best lower
bound. The best lower bound is the lower bound found either by CPlex or by
the Volume algorithm. To compute this standard deviation, we only take into
account the set of problem instances for which the algorithm terminates. This
explains why algorithms which fail on large graphs (like CPlex) have suprisingly
good values. The same explanation holds for global runtimes.

Among the algorithms that can handle all of the Swedish cases, imp-GA pro-
vides the best results on average, with a standard deviation of 5.0 %. It performs
particularly well for small values of p. Concerning runtimes, as opposed to the
Beasley “small” benchmark results, it outperforms the Volume algorithm with
a total benchmark runtime of 52591 s vs 71554 s.

Memory utilization is a major concern for the CPlex algorithm which fails on
some instances. For the Volume algorithm, almost 22 GB of memory are needed

A Computational Comparison of Different Algorithms 23

to work on graphs representing Sweden while Simulated Annealing and imp-GA
use less than 2.8 GB for the largest cases.

8 Conclusion and Future Work

In this paper, we have compared the quality of several algorithms with respect to
real-case instances of the p-median problem, which are large and whose demand
is non-uniformly distributed. For this, we have introduced a new benchmark
including up to 1938 candidates nodes. The CPlex approach is able to find
optimal solutions for all of the Beasley testcases but fails to provide results for
our set of very large graphs. Simulated annealing and the basic genetic approach
exhibit average results. A hybrid genetic algorithm called hyper-GA has been
tested. It improved the results of the basic GA on most of the graphs but failed
on the largest graphs. The Volume algorithm has also been tested but its results
vary in quality depending on the size of the problem instance.

To obtain better results for the large graphs, we have introduced a new
hybrid genetic algorithm called imp-GA. This algorithm outperforms all other
tested methods on large graphs and has a memory footprint which is as small
as that of Simulated Annealing. Its runtime is lower than that of the Volume
algorithm. Our results exhibit well the trade-off between exact and approximate
methods in dependence on the size of the problem. The effect of a hybrid muta-
tion within a genetic algorithm is important. Therefore, a good design of such
a mutation, smartly restricting neighborhood search, leads to an efficient algo-
rithm, especially for large problem instances. Since genetic algorithms can be
efficiently parallelized, the proposed method imp-GA is a good candidate to deal
with large real-case p-median problems.

In the future, we envisage to study other heuristics with respect to large
problem instances. Observe, that in our approach distances have been precom-
puted from the graph. As an alternative we could design methods which extract
an interesting set of candidate nodes from a dense graph, or which better exploit
the planarity which is typical for graphs arising from geographical problems.

References

1. Al-Khedhairi, A.: Simulated annealing metaheuristic for solving p-median problem.
Int. J. Contemp. Math. Sci. 3(25–28), 1357–1365 (2008)

2. Alp, O., Erkut, E., Drezner, Z.: An efficient genetic algorithm for the p-median
problem. Ann. Oper. Res. 122(1–4), 21–42 (2003)

3. Ashayeri, J., Heuts, R., Tammel, B.: A modified simple heuristic for the p-median
problem, with facilities design applications. Robot. Comput. Integr. Manufact.
21(4–5), 451–464 (2005)

4. Avella, P., Boccia, M., Salerno, S., Vasilyev, I.: An aggregation heuristic for large
scale p-median problem. Comput. Oper. Res. 39(7), 1625–1632 (2012)

5. Avella, P., Sassano, A., Vasil’ev, I.: Computational study of large-scale p-median
problems. Math. Program. 109(1), 89–114 (2007)

24 P. Rebreyend et al.

6. Barahona, F., Anbil, R.: The volume algorithm: producing primal solutions with
a subgradient method. Math. Program. 87(3), 385–399 (2000)

7. Beasley, J.E.: OR-library: distributing test problems by electronic mail. J. Oper.
Res. Soc. 41(11), 1069–1072 (1990)

8. Cantú-Paz, E.: A survey of parallel genetic algorithms. Calculateurs Parallèles,
Réseaux et Systèmes Répartis 10, 141–171 (1998)

9. Carling, K., Han, M., H̊akansson, J.: Does Euclidean distance work well when the
p-median model is applied in rural areas? Ann. Oper. Res. 201(1), 83–97 (2012)

10. Cleraux, C., Bourges, P.: Relaxation Lagrangienne et le problème du p-médian.
Master’s thesis, Institut Supérieur d’informatique, de modélisation et de leurs
applications, Campus de Clermont-Ferrand/Les Cézeaux, BP 10125, 63173 Aubière
CEDEX, France (2009)

11. Correa, E., Steiner, M., Freitas, A.A., Carieri, C.: A genetic algorithm for the
P-median problem. In: Proceedings of 2001 Genetic and Evolutionary Computation
Conference (GECCO-2001), pp. 1268–1275 (2001)

12. Corrêa, R., Ferreira, A., Rebreyend, P.: Scheduling multiprocessor tasks with
genetic algorithms. IEEE Trans. Parallel Distrib. Syst. 10(8), 825–837 (1999)

13. CPlex online reference manual
14. Gay, J.: Résolution du Problème du p-médian, Application à la Restructuration

de Bases de Données Semi-Structurées. Ph.D. thesis, Université Blaise-Pascal,
Clermont-II (2011)

15. Hakimi, S.L.: Optimum locations of switching centers and the absolute centers and
medians of a graph. Oper. Res. 12(3), 450–459 (1964)

16. Kariv, O., Hakimi, L.: An algorithmic approach to network location problems.
SIAM J. Appl. Math. 37(3), 539–560 (1979)

17. Lim, G.J., Ma, L.: Gpu-based parallel vertex substitution algorithm for the
p-median problem. Comput. Ind. Eng. 64(1), 381–388 (2013)

18. Lim, G.J., Reese, J., Holder, A.: Fast and robust techniques for the Euclidean
p-median problem with uniform weights. Comput. Ind. Eng. 57(3), 896–905 (2009)

19. Meng, X., Rebreyend, P.: From the road network database to a graph for localiza-
tion purposes. Technical report 2014:09, Dalarna University, Statistics (2014)

20. Mladenoviç, N., Brimberg, J., Hansen, P., Moreno-Pérez, J.A.: The p-median prob-
lem: a survey of metaheuristic approaches. Eur. J. Oper. Res. 179(3), 927–939
(2007)

21. Rebreyend, P., Han, M., H̊akansson, J.: How do different algorithms work when
applied on the different road networks when optimal location of facilities is searched
for in rural areas? In: Huang, Z., Liu, C., He, J., Huang, G. (eds.) WISE Workshops
2013. LNCS, vol. 8182, pp. 284–291. Springer, Heidelberg (2014)

22. Reese, J.: Solution methods for the p-median problem: an annotated bibliography.
Networks 48(3), 125–142 (2006)

23. ReVelle, C.S., Swain, R.W.: Central facilities location. Geogr. Anal. 2(1), 30–42
(1970)

http://www.springer.com/978-3-319-16467-0

	A Computational Comparison of Different Algorithms for Very Large p-median Problems
	1 Introduction
	2 The p-median Problem
	3 Related Work
	4 Tested Algorithms
	4.1 CPlex
	4.2 Volume
	4.3 Simulated Annealing
	4.4 Genetic Algorithm

	5 Improved Genetic Algorithm
	6 Data
	7 Results
	8 Conclusion and Future Work
	References

