
Chapter 2
Bifurcations and Chaos in Dynamical Systems

Complex system theory deals with dynamical systems containing often a large num-
ber of variables. It extends dynamical system theory, which deals with dynamical
systems containing a few variables. A good understanding of dynamical systems
theory is therefore a prerequisite when studying complex systems.

In this chapter we introduce important concepts, like regular and irregular
behavior, attractors and Lyapunov exponents, bifurcations, and deterministic chaos
from the realm of dynamical system theory. An introduction to catastrophe theory
and to the notion of global bifurcations is also provided.

Most of the chapter will be devoted to ordinary differential equations and maps,
the traditional focus of dynamical system theory, venturing however towards the end
into the intricacies of time-delayed dynamical systems.

2.1 Basic Concepts of Dynamical Systems Theory

Dynamical systems theory deals with the properties of coupled differential equa-
tions, determining the time evolution of a few, typically a handful of variables. Many
interesting concepts have been developed and we will present a short overview
covering the most important phenomena.

Fixpoints and Limit Cycles We start by discussing an elementary non-linear
rotator, just to illustrate some procedures that are typical for dynamical systems
theory. We consider a two-dimensional system x D .x; y/. Using the polar
coordinates

x.t/ D r.t/ cos.'.t//; y.t/ D r.t/ sin.'.t// ; (2.1)
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Fig. 2.1 The solution of the non-linear rotator, compare Eqs. (2.1) and (2.2), for � < 0 (left, with
a simple fixpoint) and � > 0 (right, with a limit cycle)

we assume that the following non-linear differential equations:

Pr D .� � r2/ r; P' D ! (2.2)

govern the dynamical behavior. The typical orbits .x.t/; y.t// are illustrated in
Fig. 2.1. The limiting behavior of Eq. (2.2) is

lim
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: (2.3)

In the first case, � < 0, we have a stable fixpoint x�
0 D .0; 0/ to which the

trajectories are attracted. In the second case, � > 0, the dynamics approaches a
limit cycle.

Bifurcation. When a dynamical system, described by a set of parameterized differential
equations, changes qualitatively, as a function of an external parameter, the nature of its
long-time limiting behavior in terms of fixpoints or limit cycles, one speaks of a bifurcation.

The dynamical system (2.1) and (2.2) shows a bifurcation at � D 0, a fixpoint
turns into a limit cycle at � D 0. One denotes this specific type of bifurcation as a
“Hopf bifurcation”; we will discuss bifurcation theory in greater detail in Sect. 2.2.

Stability of Fixpoints The dynamics of orbits close to a fixpoint or a limiting orbit
determines its stability.

Stability Condition. A fixpoint is stable (unstable) if nearby orbits are attracted (repelled)
by the fixpoint, and metastable if the distance does not change.

An illustration is given in Fig. 2.2. The stability of fixpoints is closely related to
their Lyapunov exponents, as discussed in Sect. 2.4.
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Fig. 2.2 A fixpoint is stable
(unstable) when orbits are
attracted (repelled)

stable

unstable

One can examine the stability of a fixpoint x� by linearizing the equation of
motions for x � x�. For the fixpoint r� D 0 of Eq. (2.2) we find

Pr D �
� � r2

�
r � � r r � 1 ;

and r.t/ decreases (increases) for � < 0 (� > 0). For a d -dimensional system
x D .x1; : : : ; xd / the stability of a fixpoint x� is determined by calculating the
d eigenvalues of the linearized equations of motion. The system is stable if all
eigenvalues are negative and unstable if at least one eigenvalue is positive.

First-Order Differential Equations Let us consider the third-order differential
equation

d 3

dt3
x.t/ D f .x; Px; Rx/ : (2.4)

Using

x1.t/ D x.t/; x2.t/ D Px.t/; x3.t/ D Rx.t/ ; (2.5)

we can rewrite (2.4) as a first-order differential equation:

d

dt

2
4 x1

x2

x3

3
5 D

2
4 x2

x3

f .x1; x2; x3/

3
5 :

Autonomous Systems It is then generally true that one can reduce any set of
coupled differential equations to a set of first-order differential equations by
introducing an appropriate number of additional variables. We therefore consider
in the following only first-order, ordinary differential equations such as

dx.t/

dt
D f.x.t//; x; f 2 Rd ; t 2 Œ�1; C1� ; (2.6)

when time is continuous, or, equivalently, maps such as

x.t C 1/ D g.x.t//; x; g 2 Rd ; t D 0; 1; 2; : : : ; (2.7)
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Fig. 2.3 The Poincaré map
x ! P.x/, mapping an
intersection x of the trajectory
with a hyperplane (indicated
by shaded region) to the
consecutive intersection P.x/

x
P(x)

when time is discrete. Together with the time evolution equation one has to set the
initial condition x0 D x.t0/. An evolution equation of type Eq. (2.6) is denoted
“autonomous”, since it does not contain an explicit time dependence. A system of
type Px D f.t; x/ is dubbed “non-autonomous”.

The Phase Space. One denotes by “phase space” the space spanned by all allowed values
of the variables entering the set of first-order differential equations defining the dynamical
system.

The phase space depends on the representation. For a two-dimensional system
.x; y/ the phase space is just R2, but in the polar coordinates Eq. (2.1) it is

n
.r; '/

ˇ̌̌
r 2 Œ0; 1�; ' 2 Œ0; 2�Œ

o
:

Orbits and Trajectories A particular solution x.t/ of the dynamical system
Eq. (2.6) can be visualized as a “trajectory”, also denoted “orbit”, in phase space.
Any orbit is uniquely determined by the set of “initial conditions”, x.0/ � x0, since
we are dealing with first-order differential equations.

The Poincaré Map It is difficult to illustrate graphically the motion of x.t/ in
d dimensions. Our retina as well as our print media are two-dimensional and it
is therefore convenient to consider a plane ˙ in Rd and the points x.i/ of the
intersection of an orbit � with ˙ , see Fig. 2.3.

For the purpose of illustration let us consider the plane

˙ D f .x1; x2; 0; : : : ; 0/ j x1; x2 2 R g

and the sequence of intersections (see Fig. 2.3)

x.i/ D .x
.i/
1 ; x

.i/
2 ; 0; : : : ; 0/; .i D 1; 2; : : :/

which define the Poincaré map

P W x.i/ 7! x.iC1/ : (2.8)
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The Poincaré map is therefore a discrete map of the type of Eq. (2.7), which can
be constructed for continuous-time dynamical systems like Eq. (2.6). The Poincaré
map is very useful, since we can print and analyze it directly. A periodic orbit, to
give an example, would show up in the Poincaré map as the identity mapping.

Constants of Motion and Ergodicity We mention here a few general concepts
from the theory of dynamical systems.

– The Constant of Motion: A function F.x/ on phase space x D .x1; : : : ; xd / is
called a “constant of motion” or a “conserved quantity” if it is conserved under
the time evolution of the dynamical system, i.e. when

d

dt
F .x.t// D

dX
iD1

�
@

@xi

F.x/

�
Pxi .t/ � 0

holds for all times t . In many mechanical systems the energy is a conserved
quantity.

– Ergodicity: A dynamical system in which orbits come arbitrarily close to any
allowed point in the phase space, irrespective of the initial condition, is called
ergodic.

All conserving systems of classical mechanics, obeying Hamiltonian dynam-
ics, are ergodic. The ergodicity of a mechanical system is closely related to
“Liouville’s theorem”, which will be discussed in Sect. 3.1.1.

Ergodicity holds only modulo conserved quantities, as is the case for the
energy in many mechanical systems. Then, only points in the phase space having
the same energy as the trajectory considered are approached arbitrarily close.

– Attractors: A bounded region in phase space to which orbits with certain initial
conditions come arbitrarily close is called an attractor.

Attractors can be isolated points (fixpoints), limit cycles or more complex
objects.

– The Basin of Attraction: The set of initial conditions that leads to orbits
approaching a certain attractor arbitrarily closely is called the basin of attraction.

It is clear that ergodicity and attractors are mutually exclusive: An ergodic system
cannot have attractors and a dynamical system with one or more attractors cannot
be ergodic.

Mechanical Systems and Integrability A dynamical system of type

Rxi D fi .x; Px/; i D 1; : : : ; f

is denoted a “mechanical system” since all equations of motion in classical
mechanics are of this form, e.g. Newton’s law. f is called the degree of freedom
and a mechanical system can be written as a set of coupled first-order differential
equations with 2f variables

.x1 : : : xf ; v1 : : : vf /; vi D Pxi ; i D 1; : : : ; f
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Fig. 2.4 A KAM-torus. Left: The torus can be cut along two lines (vertical/horizontal) and
unfolded. Right: A closed orbit on the unfolded torus with !1=!2 D 3=1. The numbers indicate
points that coincide after refolding (periodic boundary conditions)

constituting the phase space, with v D .v1; : : : ; vf / being denoted the generalized
velocity. A mechanical system is integrable if there are ˛ D 1; : : : ; f independent
constants of motion F˛.x; Px/ with

d

dt
F˛.x; Px/ D 0; ˛ D 1; : : : ; f :

The motion in the 2f -dimensional phase space .x1 : : : xf ; v1 : : : vf / is then
restricted to an f -dimensional subspace, which is an f -dimensional torus, see
Fig. 2.4.

An example of an integrable mechanical system is the Kepler problem, viz the
motion of the earth around the sun. Integrable systems, however, are very rare, but
they constitute important reference points for the understanding of more general
dynamical systems. A classical example of a non-integrable mechanical system is
the three-body problem, viz the combined motion of earth, moon and sun around
each other.

The KAM Theorem Kolmogorov, Arnold and Moser (KAM) have examined the
question of what happens to an integrable system when it is perturbed. Let us
consider a two-dimensional torus, as illustrated in Fig. 2.4. The orbit wraps around
the torus with frequencies !1 and !2, respectively. A key quantity is the ratio of
revolution frequencies !1=!2; it might be rational or irrational.

We remember that any irrational number r may be approximated with arbitrary
accuracy by a sequence of quotients

m1

s1

;
m2

s2

;
m3

s3

; : : : s1 < s2 < s3 < : : :

with ever larger denominators si . A number r is “very irrational” when it is
difficult to approximate r by such a series of rational numbers, viz when very large
denominators si are needed to achieve a certain given accuracy jr � m=sj.
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The KAM theorem states that orbits with rational ratios of revolution frequencies
!1=!2 are the most unstable under a perturbation of an integrable system and that
tori are most stable when this ratio is very irrational.

Gaps in the Saturn Rings A spectacular example of the instability of rational
KAM-tori are the gaps in the rings of the planet Saturn.

The time a particle orbiting in Cassini’s gap (between the A-ring and the B-ring,
r D 118;000 km) would need around Saturn is exactly half the time the “shepherd-
moon” Mimas needs to orbit Saturn. The quotient of the revolving frequencies is 2:1.
Any particle orbiting in Cassini’s gap is therefore unstable against the perturbation
caused by Mimas and it is consequently thrown out of its orbit.

2.2 Fixpoints, Bifurcations and Stability

We start by considering the stability of fixpoint x� of a one-dimensional dynamical
system

Px D f .x/; f .x�/ D 0 : (2.9)

A rest- or fixpoint is per definition invariant under the dynamical flow and one can
generalize the concept of a fixpoint to invariant manifolds in general; we will touch
this subject further in Sect. 3.1.4. Fixpoints are the only possible invariant manifolds
for d D 1 dimension, in two dimensions fixpoints and limiting cycles are possible
and more complicated objects, such as strange attractors, become possible in three
and higher dimensions.

Stability of Fixpoints The stability of a fixpoint is determined by the direction
of the flow close to it, which can be determined by linearizing the time evolution
equation Px D f .x/ around the fixpoint x�,

d

dt

�
x � x�� D Px � f .x�/ C f 0.x�/.x � x�/ C : : : ; (2.10)

where f 0./ denotes the first derivative. We rewrite (2.10) as

d

dt
�x D f 0.x�/ �x; �x D x � x�

where we have neglected terms of order .x � x�/2 and higher and where we have
made use of the fixpoint condition f .x�/ D 0. This equation has the solution

�x.t/ D �x.0/ etf 0.x�/ !
� 1 f 0.x�/ > 0

0 f 0.x�/ < 0
: (2.11)
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The perturbation �x decreases/increases with time and the fixpoint x� is hence
stable/unstable for f 0.x�/ < 0 and f 0.x�/ > 0 respectively. For more than a
single variable one has to find all eigenvalues of the linearized problem and the
fixpoint is stable only when all eigenvalues are negative, as discussed more in depth
in Sect. 2.2.1.

Lyapunov Exponents The flow of Px D f .x/ changes sign at the locus of the
fixpoint x�, compare Fig. 2.9.

Lyapunov exponent. The time evolution close to a fixpoint x� is generically exponential,
� exp.�t/, and one denotes by � D f 0.x�/ the Lyapunov exponent.

The Lyapunov exponent controls the sign change and the direction of the flow
close to a fixpoint. Orbits are exponentially repelled/attracted for � > 0 and for
� < 0 respectively.

Fixpoints of Discrete Maps For a discrete map of type

x.t C 1/ D g.x.t//; x� D g.x�/ (2.12)

the stability of a fixpoint x� can be determined by an equivalent linear analysis,

x.t C 1/ D g.x.t// � g.x�/ C g0.x�/.x.t/ � x�/ :

Using the fixpoint condition g.x�/ D x� we write above expression as

�x.t C 1/ D x.t C 1/ � x� D g0.x�/ �x.t/ ;

with the solution

�x.t/ D �x.0/
	
g0.x�/


t
; j�x.t/j D j�x.0/j e�t : (2.13)

The Lyapunov exponent

� D log jg0.x�/j D
�

< 0 for jg0.x�/j < 1

> 0 for jg0.x�/j > 1
(2.14)

controls the stability of the fixpoint. Note the differences in the relation of the
Lyapunov exponent � to the derivatives f 0.x�/ and g0.x�/ for differential equations
and maps respectively, compare Eqs. (2.11) and (2.14).
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2.2.1 Fixpoints Classification and Jacobian

We now consider a general d -dimensional dynamical system of type (2.6),

dx.t/

dt
D f.x.t//; x; f 2 Rd ; f.x�/ D 0 ; (2.15)

having a fixpoint x�.

Jacobian and Lyapunov Exponents For a stability analysis of the fixpoint x� one
linearizes (2.15) around the fixpoint, using xi .t/ � x�

i C ıxi .t/, with small ıxi .t/.
One obtains

dıxi

dt
D

X
j

Jij ıxj ; Jij D @fi .x/

@xj

ˇ̌
ˇ̌
xDx�

: (2.16)

The matrix Jij of all possible partial derivatives is called the Jacobian of the
dynamical system (2.15). One then generalizes the definition of the Lyapunov
exponent for one-dimensional systems, as given previously in Sect. 2.2.

Lyapunov exponents. The set of eigenvalues f�i g of the Jacobian i D 1; ::; d are the
Lyapunov exponents characterizing the fixpoint x�.

Lyapunov exponents �n D �0
n C i�00

n may have real �0
n and imaginary �00

n

components and characterize the time evolution

e�nt D e�0

nt ei�00

n t

of infinitesimal perturbations around the fixpoint. A Lyapunov exponent �n is
attracting/neutral/repelling when �0

n is negative/zero/positive respectively.

Hyperbolic Fixpoints The flow is well defined in linear order when all �0
i ¤ 0. In

this case the fixpoint is said to be hyperbolic. For a non-hyperbolic restpoint at least
one of the Lyapunov exponents is neutral. All Lyapunov exponents are neutral for a
vanishing Jacobian.

Pairwise Conjugate Exponents With � D �0 C i�00 also its conjugate �� D �0 �
i�00 in an eigenvalue of the Jacobian, which is a real matrix. � and �� differ for
�00 ¤ 0 and in this case there are two eigenvalues having the same real part �0.

Classification of Fixpoints for d D 2 In Fig. 2.5 some example trajectories are
shown for several fixpoints in d D 2 dimensions.

– Node: Both eigenvalues are real and have the same sign, which is negative/posi-
tive for a stable/unstable node.

– Saddle: Both eigenvalues are real and have opposite signs.
– Focus: The eigenvalues are complex conjugate to each other. The trajectories

spiral in/out for negative/positive real parts.
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Fig. 2.5 Example trajectories for a stable node (left), with a ratio �2=�1 D 2, for a saddle (middle)
with �2=�1 D �3 and for a unstable focus (right)

Fixpoints in higher dimensions are characterized by the number of respective
attracting/neutral/repelling eigenvalues of the Jacobian, which may be, in turn,
either real or complex.

Stable and Unstable Manifolds For real eigenvalues �n ¤ 0 of the Jacobian J ,
with eigenvectors en and a sign sn D �n=j�nj, we can define via

lim
t!�sn1 xn.t/ D x� C et�n en; J en D �nen ; (2.17)

trajectories xn.t/ called stable manifolds (for �n < 0) and unstable manifolds (for
�n > 0).

For a neutral Lyapunov exponent with �n D 0 one can define a center manifold
which we will discuss in the context of catastrophe theory in Sect. 2.3.1. The term
manifold denotes in mathematics, loosely speaking, a smooth topological object.

Stable and unstable manifolds control the flow infinitesimal close to the fixpoint
along the eigendirections of the Jacobian and may be continued to all positive and
negative times t . Typical examples are illustrated in Figs. 2.5 and 2.6.

Heteroclinic orbits One speaks of a heteroclinc orbit when the unstable manifold
of one restpoint connects to the stable manifold of another fixpoint. As an example,
we consider a two dimensional dynamical system defined by

Px D 1 � x2

Py D yx C �
�
1 � x2

�2 J.x�/ D
� �2x� 0

0 x�
�

(2.18)

with the two saddles x�̇ D .x�; 0/, where x� D ˙1. The eigenvectors of the
Jacobian J.x�/ are aligned with the x and the y axis respectively, for all values
of the control parameter �.

The flow diagram is illustrated in Fig. 11.4, it is invariant when inverting both
x $ .�x/ and y $ .�y/. The system contains additionally the y D 0 axis as a
mirror line for a vanishing � D 0 and there is a heteroclinic orbit connecting the
unstable manifold of x�� to one of the stable manifolds of x�C. A finite � removes the
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Fig. 2.6 Sample trajectories of the system (2.18). for � D 0 (left) and � D 0:2 (right). Shown
are the stable manifolds (thick green lines), the unstable manifolds (thick blue lines) and the
heteroclinic orbit (thick red line)

mirror line y D 0, present at � D 0, and destroys the heteroclinic orbit. Real world
systems are often devoid of symmetries and heteroclinic orbits hence rare.

2.2.2 Bifurcations and Normal Forms

The nature of the solutions to a dynamical system, as defined by a suitable first
order differential equation (2.6), may change abruptly as a function of some control
parameter a. The most commonly observed transitions in dynamical states are
“bifurcations” and we discuss here the most important classes of bifurcations. For
this purpose we consider a selection of simple equations, which can be viewed as
archetypical, and to which more complex dynamical systems will generically reduce
close to the transition point.

Saddle-node Bifurcation We consider the dynamical system defined by

dx

dt
D a � x2 ; (2.19)

for a real variable x and a real control parameter a. The fixpoints Px D 0

x�C D Cp
a; x�� D �p

a; a > 0 (2.20)

exist only for positive control parameters, a > 0; there are no fixpoints for negative
a < 0. For the flow we find

dx

dt
D

8<
:

< 0 for x >
p

a

> 0 for x 2 Œ�p
a;

p
a�

< 0 for x < �p
a

(2.21)
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Fig. 2.7 The saddle-node bifurcation, as described by Eq. (2.19). There are two fixpoints for a >

0, an unstable branch x�

�
D �p

a and a stable branch x�

C
D Cp

a. Left: The phase diagram, the
arrows indicate the direction of the flow. Right: The bifurcation potential U.x/ D �ax C x3=3,
compare Eq. (2.25)

for a > 0. The upper branch x�C is hence stable and the lower branch x�� unstable,
as illustrated in Fig. 2.7.

For a saddle-node bifurcation a stable and an unstable fixpoint collide and
annihilate each other, one speaks also of a fold bifurcation.

Transcritical Bifurcation We now consider the dynamical system

dx

dt
D ax � x2 ; (2.22)

again for a real variable x and a real control parameter a. The two fixpoint solutions
Px D 0,

x�
0 D 0; x�

a D a; 8a (2.23)

exist for all values of the control parameter. The direction of the flow Px is positive for
x in between the two solutions and negative otherwise, see Fig. 2.8. The respective
stabilities of the two fixpoint solutions exchange consequently at a D 0.

Bifurcation Potentials In many cases one can write the dynamical system under
consideration, in analogy to the Newton equation of motion of classical dynamics, as

dx

dt
D � d

dx
U.x/ ; (2.24)

where U.x/ is the potential. Local minima of the potential then correspond to stable
fixpoints, compare Fig. 2.2. The potentials for the saddle-node and the transcritical
bifurcation are

Usaddle.x/ D �ax C 1

3
x3; Utrans.x/ D �a

2
x2 C 1

3
x3 ; (2.25)
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Fig. 2.8 The transcritical bifurcation, see Eq. (2.22). The two fixpoints x�

0 D 0 and x�

a D a

exchange stability at a D 0. Left: The phase diagram, the direction of the flow is illustrated by the
arrows. Right: The bifurcation potential U.x/ D �ax2=2 C x3=3, compare Eq. (2.25)

respectively, see the definitions (2.19) and (2.22). The bifurcation potentials, as
shown in Figs. 2.7 and 2.8, bring immediately to evidence the stability of the
respective fixpoints.

Pitchfork Bifurcation The “supercritical” pitchfork bifurcation is described by

dx

dt
D ax � x3; x�

0 D 0; x�C D Cp
a; x�� D �p

a : (2.26)

A trivial fixpoint x�
0 D 0 becomes unstable at criticality, a D 0, and two symmetric

stable fixpoints appear, see Fig. 2.9. The respective bifurcation potential,

Upitch.x/ D �a

2
x2 C 1

4
x4 ; (2.27)

is identical to the Landau-Ginzburg potential describing second-order phase transi-
tions in statistical physics, which we will discuss, in the context of self-organized
criticality, in Sect. 6.1. One also considers the “subcritical” pitchfork transition
defined by Px D ax C x3, we leave its discussion to the reader.

Bifurcation Symmetries The three bifurcation scenarios discussed above, saddle-
node, transcritical and pitchfork, are characterized by their symmetries close to the
critical point, which has been set to x D 0 and a D 0 for all three cases. The
normal forms, such as (2.26), and their respective bifurcation potentials, constitute
the simplest formulations consistent with the defining symmetry properties.

The bifurcation potentials of the saddle-node and the pitchfork transitions are
respectively antisymmetric and symmetric under a sign change x $ �x of the
dynamical variable, compare Eqs. (2.25) and (2.27).

.C/ $ .�/ saddle-node transcritical pitchfork
x anti – symm

a; x – anti –
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Fig. 2.9 The supercritical pitchfork bifurcation, as defined by Eq. (2.26). The tx�

0 D 0 becomes
unstable for a > 0 and two new stable fixpoints, x�

C
D Cp

a and x�

�
D �p

a appear. Left: The
phase diagram, the direction of the flow indicated by the arrows. Right: The bifurcation potential
U.x/ D �ax2=2 C x4=4, compare Eq. (2.25)

The bifurcation potential of the transcritical bifurcation is, on the other hand,
antisymmetric under the combined symmetry operation x $ �x and a $ �a,
compare Eq. (2.25).

2.2.3 Hopf Bifurcations and Limit Cycles

Hopf Bifurcation A Hopf bifurcation occurs when a fixpoint changes its stability
together with the appearance of an either stable or unstable limiting cycle, e.g. as
for non-linear rotator illustrated in Fig. 2.1. The canonical equations of motions are

Px D �y C d.� � x2 � y2/ x

Py D x C d.� � x2 � y2/ y
(2.28)

in Euclidean phase space .x; y/ D .r cos '; r sin '/, which reduce to the non-linear
rotator of Eq. (2.2) when setting d ! 1. There are two steady-state solutions for
� > 0,

.x�
0 ; y�

0 / D .0; 0/; .x�
� ; y�

� / D p
� .cos.t/; sin.t// ; (2.29)

a fixpoint and a limit cycle. The limit cycle disappears for � < 0.

Supercritical Hopf Bifurcations For d > 0 the bifurcation is denoted supercrit-
ical. The fixpoint x�

0 D .x�
0 ; y�

0 / is stable/unstable for � < 0 and � > 0 and the
limit cycle x�

� D .x�
� ; y�

� / is stable, as illustrated in Fig. 2.1.

Subcritical Hopf Bifurcations The direction of flow is reversed for d < 0, with
respect to the supercritical Hopf bifurcation illustrated in Fig. 2.1, and the limit
cycle x�

� becomes repelling. The fixpoint x�
0 is then unstable/stable for � < 0 and

� > 0, one speaks of a subcritical Hopf bifurcation as a function of the bifurcation
parameter � .
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Hopf Bifurcation Theorem One may be interested to find out whether a generic
two dimensional system

Px D f	.x; y/

Py D g	.x; y/
: (2.30)

can be reduced to the normal form (2.28) for a Hopf bifurcation, where 	 is the
bifurcation parameter. Without loss of generality one can assume that the fixpoint
x�

0 stays at the origin for all values of 	 and that the transition takes place for 	 D 0.
To linear order the normal form (2.28) and (2.30) are equivalent if the Jacobian

of (2.30) has a pair of complex conjugate eigenvalues, with the real value crossing
with a finite slope zero at 	 D 0, corresponding to a transition from a stable to an
unstable focus.

Comparing (2.28) and (2.30) to quadratic order one notices that quadratic terms
are absent in the normal form (2.28) but not in (2.30). One can however show, with
the help of a suitable non-linear transformation, that it is possible to eliminate all
quadratic terms from (2.30).

The nature of the bifurcation is determined by a combination of partial derivatives
up to cubic order,

a D 	
fxxx C fxyy C gxxy C gyyy



=16

C 	
fxy.fxx C fyy/ � gxy.gxx C gyy/ � fxxgxx � fyygxx



=.16!/

where ! > 0 is the imaginary part of the Lyapunov exponent at the critical point
	 D 0 and where the partial derivatives as fxy are to be evaluated at 	 D 0 and
x ! x�

0 . The Hopf bifurcations is supercritical and subcritical respectively for a < 0

and a > 0.

Interplay Between Multiple Limit Cycles A dynamical system may dispose
generically of a number of limit cycles, which may merge or disappear as a function
of a given parameter. Here we consider the simplest case, generalizing the non-linear
rotator (2.2) to next order in r2,

Pr D �.r2 � ��/.r2 � �C/ r; P' D !; �� � �C : (2.31)

Real-world physical or biological systems have bounded trajectories and Pr must
be negative for large radii r ! 1. This requirement has been taken into account
in (2.31), which is also called the Bautin normal form.

For �� < 0 the first factor .r2 � ��/ is smooth for r2 � 0 and does not influence
the dynamics qualitatively. In this case (2.31) reduces to the supercritical Hopf
bifurcation, as a function of the bifurcation parameter �C (Fig. 2.10).
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Fig. 2.10 The locations R
˙

D
q

1 ˙ p
	 of the stable and unstable limit cycles, R� and RC,

for the non-linear rotator (2.31) and the parametrization (2.32). At 	 D 0 a fold bifurcation of
limit cycles occurs and a subcritical Hopf bifurcation at 	 D 1, compare Fig. 2.11

Phenomenological Parametrization The roots �˙ of r2 in (2.31) typically result
from some determining relation. As a possible simple assumption we consider a
quadratic relation of the form

�˙ D 1 ˙ p
	 ; (2.32)

where 	 will be our bifurcation parameter. For 	 2 Œ0; 1� we have two positive roots
and consequently also two limit cycles, a stable and an unstable one. For 	 ! 1 the
unstable limit cycle vanishes in a subcritical Hopf bifurcation, compare Fig. 2.11.

Fold Bifurcation of Limit Cycles For a saddle-node bifurcation of fixpoints, also
termed fold bifurcation, a stable and an unstable fixpoint merge and annihilate each
other, as illustrated in Fig. 2.7. The equivalent phenomenon may occur for limit
cycles, as shown in Fig. 2.11 and happens in our model when 	 becomes negative,

�˙ D 1 ˙ i
p

j	j; Pr D �	
.r2 � 1/2 C j	j
r :

No limit cycle exists anymore for 	 � 0, only a stable fixpoint at r�
0 D 0 remains.

2.3 Global Bifurcations

The bifurcations discussed in Sect. 2.2.3 can be termed local as they are based on
Taylor expansions around a local fixpoint, and the dynamical state changes smoothly
at the bifurcation point. There are, on the other hand, bifurcations characterized by
the properties of extended orbits. These kinds of bifurcations are hence of global
character.
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Fig. 2.11 Flow diagram for the non-linear rotator (2.31) using the parametrization (2.32) for the
roots of r2. The filled/open circles denote stable/unstable limit cycles. For 	 ! 1 the unstable
limit cycle vanishes, a subcritical Hopf bifurcation. The stable and the unstable limit cycle collided
for positive 	 ! 0 and annihilate each other, a fold bifurcation of limit cycles

The Taken-Bogdanov System We consider a mechanical system with a cubic
potential V.x/ and velocity-dependent forces,

Rx D .x � 	/ Px � V 0.x/ Px D y

V.x/ D x3=3 � x2=2 Py D .x � 	/y C x.1 � x/
: (2.33)

The conservative contribution to the force field is �V 0.x/ D x.1 � x/. An
illustration of the potential V.x/ is presented in Fig. 2.12.

For x < 	 the term .x � 	/ Px in (2.33) reduces the velocity, and the energy

E D Px2

2
C V.x/;

dE

dt
D 	 Rx C V 0.x/


 Px D .x � 	/ Px2 (2.34)

is dissipated. If, however, x > 	, then energy is taken up and the term .x � 	/ Px
results in an acceleration. This interplay between energy dissipation and uptake is
typical for adaptive systems and will be discussed further in Sect. 3.1.3.

Fixpoints and Jacobian The Taken-Bogdanov system (2.33) has two fixpoints
.x�; 0/, with x� D 0; 1, and the Jacobian

J D
�

0 1

.1 � 2x�/ .x� � 	/

�
;

�˙.0; 0/ D �	=2 ˙ p
	2=4 C 1

�˙.1; 0/ D .1 � 	/=2 ˙ p
.1 � 	/2=4 � 1

The fixpoint .0; 0/ is always a saddle, since the mechanical potential V.x/ has a
quadratic maximum at x D 0.

The local minimum .1; 0/ of the potential is a stable/unstable focus for 	 > 1 and
	 < 1 respectively, with 	 D 1 being the locus of a supercritical Hopf bifurcation.
We consider now 	 2 Œ0; 1� and examine the further evolution of the resulting limit
cycle.
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Fig. 2.12 Left: The potential V .x/ of the Taken-Bogdanov system (2.33). Energy is dissipated to
the environment for x < 	 and taken up for x > 	. The value for 	 illustrated in the figure is the
critical 	c � 0:8645. For 	 < 1 the local minimum x D 1 of the potential becomes an unstable
focus. Right: The flow for 	 D 	c . The stable and unstable manifolds form an homoclinic loop
(red line)

Escaping the Potential Well We consider a particle starting with a vanishing
velocity close to x D 1, the local minimum of the Potential well.

When the particle takes up enough energy from the environment, due to the
velocity dependent force .x � 	/v, it will be able to reach the local maximum at
x D 0 and escape to x ! �1. This is the case for 	 < 	c � 0:8645 and all orbits
will escape.

The particle remains trapped in the local potential well if, on the other side,
dissipation dominates, which is the case for 	 > 	c . The particle is both trapped in
the local well and repelled, at the same time, from the unstable minimum at x D 1,
if 	 < 1 holds additionally. The orbit hence performs an oscillatory motion for
	 2 Œ	c; 1�, with the trajectory in phase space .x; y/ approaching a limit cycle.
This limit cycle increases in size for decreasing 	 ! 	c , exactly touching .0; 0/ for
	 D 	c , and breaking apart for 	 < 	c , as illustrated in Fig. 2.13.

The bifurcation occurring at 	 D 	c depends non-locally on the overall energy
balance and is therefore an example of a global bifurcation.

Homoclinic Bifurcation With a homocline one denotes a loop formed by joining
a stable and an unstable manifold of the same fixpoint. Homoclines may generically
only occur if either forced by symmetries or for special values of bifurcation
parameters, with the later being the case for Taken-Bogdanov system.

An unstable and a stable manifold cross at 	 D 	c , compare Figs. 2.12 and 2.13,
forming a homocline. The homocline is also the endpoint of the limit cycle present
for 	 > 	c , which disappears for 	 < 	c . One speaks of a homoclinic bifurcation,
an incidence of a global bifurcation. The limit cycle is destroyed when maximal
for a homoclinic bifurcation, and not when minimal, as for a supercritical Hopf
bifurcation.

Coupled Oscillators For a further example of how a limit cycle may disappear
discontinuously we consider two coupled harmonic oscillators within the Kuramoto
model, see Sect. 9.1, having individual phases 
1 and 
2 respectively. A typical
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Fig. 2.13 The flow for the Taken-Bogdanov system (2.33), the critical bifurcation parameter is
	c � 0:8645. Left: The flow in the subcritical region, for 	 D 0:9 > 	c . The thick black line is
the limit cycle. For 	 ! 	c the red- and orange-colored unstable and stable and manifolds join
to form a homoclinic loop which is, at the same time, identical with the locus of the limit cycle
for 	 ! 	c . Right: The flow in the supercritical region, for 	 D 0:8 < 	c . The limit cycle has
broken after touching the saddle at .0; 0/

evolution equation for the phase difference ' D 
1 � 
2 is then

P' D 1 � K cos.'/ ; (2.35)

which corresponds to Eq. (9.8) when including a phase shift. We can inter-
pret (2.35) via

Pr D �
1 � r2

�
r; x D r cos.'/; y D r sin.'/ (2.36)

within the context of a two dimensional limit cycle, compare Eq. (2.2).
The phase difference ' continuously increases for jKj < 1 and the system settles

into a limit cycle. For jKj > 1 two fixpoints for P' D 0 appear, a saddle and a stable
node, as illustrated in Fig. 2.14, and the limit cycle is broken up.

Infinite Period Bifurcation The limit cycle for jKj < 1 has a revolution period
T of

T D
Z T

0

dt D
Z 2�

0

dt

d'
d' D

Z 2�

0

d'

P' D
Z 2�

0

d'

1 � K cos.'/
D 2�p

1 � K2
;

which diverges in the limit jKj ! 1. The global transition occurring at jKj D 1 is
termed infinite period bifurcation, being characterized by a diverging time scale.

2.3.1 Catastrophe Theory

A catchy terminology for potentially discontinuous bifurcations in dynamical
systems is catastrophe theory, especially when placing emphasis on a geometric
interpretation. Catastrophe theory is interested in bifurcations with codimension two
or higher.
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y

x

Fig. 2.14 The flow for a system showing an infinite period bifurcation, as defined by Eqs. (2.35)
and (2.36), and for K D 1:1. The stable fixpoint and the saddle are depicted by black filled and
open circles respectively, they merge in the limit K ! 1, thus showing a saddle-node bifurcation
on an invariant cycle

Codimension. The degrees of freedom characterizing a bifurcation diagram.

The codimension corresponds, colloquially speaking, to the number of parame-
ters one may vary such that something interesting happens. All bifurcation normal
forms discussed in Sect. 2.2.2 had a codimension of one.

The Pitchfork Bifurcation with a Symmetry Breaking Term We consider a one-
dimensional system,

Px D h C ax � x3 : (2.37)

For h D 0 the system reduces to the pitchfork normal form of Eq. (2.26), and (2.37)
is then invariant under the parity transformation x $ �x.

Parity is broken whenever h ¤ 0 and (2.37) can hence be considered as
the simplest case allowing to study the influence of symmetry breaking onto a
bifurcation diagram. There are two free parameters, h and a, the codimension is
hence two.

The Pitchfork Bifurcation and Phase Transitions The pitchfork system (2.37)
has a close relation to the theory of thermodynamic phase transitions, as discussed
further in Sect. 6.1, when assuming that

a D a.T / D a0.Tc � T /; a0 > 0 ;

where T is the temperature of the system.
There is, in the absence of an external field h, only a single fixpoint x� for T >

Tc , viz for temperatures above the critical temperature Tc . In the ordered state, for
T < Tc , there are two possible phases, characterized by the positive and negative
stable fixpoint x� respectively.
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Fig. 2.15 Left: The self-consistency condition x3 D h C ax for the fixpoints x� of the symmetry
broken pitchfork system (2.37), for various fields h and a positive a > 0. The unstable fixpoint
at x D 0 becomes stable for a < 0, compare Fig. 2.9. Right: The hysteresis loop .1/ ! .2/ !
.3/ ! .4/ ! : : : occurring for a > 0 as function of the field h

Hysteresis and Memory The behavior of the phase transition changes when an
external field h is present. Switching the sign of the field is accompanied, in the
ordered state for T < Tc , with a hysteresis-loop

.1/ ! .2/ ! .3/ ! .4/ ! : : : ;

as illustrated in Fig. 2.15.

– The field h changes from negative to positive values along .1/ ! .2/, with the
fixpoint x� remaining negative.

– At (2) the negative stable fixpoint disappears and the system makes a rapid
transition to (3), the catastrophe.

– Lowering eventually again the field h, the system moves to (4), jumping in the
end to (1).

The system retains its state, x� being positive or negative, to a certain extend and
one speaks of a memory in the context of catastrophe theory.

Center Manifold A d -dimensional dynamical system with a fixpoint x� and a
Jacobian J ,

Px D f.x/; Jij D @fi

@xj

ˇ̌
ˇ
xDx�

; J en D �en ;

may have a number of neutral Lyapunov exponents with vanishing eigenvalues �i D
0 of the Jacobian.

Center Manifold. The space spanned by the neutral eigenvectors ei is denoted the center
manifold.

Catastrophe theory deals with fixpoints having a non-vanishing center manifold.
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Center Manifold for the Pitchfork System The Lyapunov exponent

� D a � 3
�
x��2

of the pitchfork system (2.37) vanishes at the jump-points .2/ and .4/ at which the
catastrophe occurs, compare Fig. 2.15. At the jump-points h C ax is per definition
tangent to x3, having identical slopes:

d

dx
x3 D d

dx

�
h C ax

�
; 3x2 D a : (2.38)

At these transition points the autonomous flow becomes hence infinitesimally slow,
since � ! 0, a phenomenon called critical slowing down in the context of the theory
of thermodynamic phase transitions.

Center Manifold Normal Forms The program of the catastrophe theory consists
of finding and classifying the normal forms for the center manifolds of stationary
points x�, by expanding to the next, non-vanishing order in ıx D x � x�. The
aim is hence to classify the types of dynamical behavior potentially leading to
discontinuous transitions.

Catastrophic Fixpoints A generic fixpoint x� D x�.c/ depends on control param-
eters c D .ci ; ::; cS / of the equations of motion, with S being the codimension. The
flow is however smooth around a generic fixpoint and a finite center manifold arises
only for certain sets fcc

i g of control parameters.
The controlling parameters of the pitchfork system (2.37) are h and a, in our

example system, and a center manifold exists only when (2.38) is fulfilled, viz when

3
	
x�.hc; ac/


2 D ac; x�.hc; ac/ D x�
c

holds, which determines the set of catastrophic fixpoints x�
c .

Changing the Controlling Parameters How does the location x� of a fixpoint
change upon variations ıc around the set of parameters cc determining the catas-
trophic fixpoint x�

c ? With

x�
c D x�.cc/; x� D x�.c/; ıc D c � cc

we expand the fixpoint condition f.x; c/ D 0 and obtain

J ıx� C P ıc D 0; Jij D @fi

@xj

; Pij D @fi

@cj

; (2.39)

which we can invert if the Jacobian J is non-singular,

ıx� D �J �1P ıc; if jJ j ¤ 0 : (2.40)
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Fig. 2.16 The fixpoints x�

(upper folded plane) of the
symmetry broken pitchfork
system (2.37), as a function
of the control parameters a

and h. The catastrophic
manifold .ac; hc/, compare
Eq. (2.41), has a cusp-like
form (green lines)

The fixpoint may change however in a discontinuous fashion whenever the determi-
nant jJ j of the Jacobian vanishes, viz in the presence of a center manifold. This is
precisely what happens at a catastrophic fixpoint x�

c .cc/.

Catastrophic Manifold The set x�
c D x�

c .cc/ of catastrophic fixpoints is deter-
mined by two conditions, by the fixpoint condition f D 0 and by jJ j D 0. For the
pitchfork system (2.37) we find,

ac D 3
�
x�

c

�2
; hc D �

x�
c

�3 � acx
�
c D �2

�
x�

c

�3
;

when using (2.38). Solving for x�
c D p

ac=3 we can eliminate x�
c and obtain

hc D �2 .ac=3/3=2 ; .hc=2/2 D .ac=3/3 ; (2.41)

which determines the catastrophic manifold .ac; hc/ for the pitchfork transition, as
illustrated in Fig. 2.16.

Classification of Perturbations The control parameters .ac; hc/ of the pitchfork
transition may be changed in two qualitatively distinct ways, namely along the
catastrophic manifold (2.41), or perpendicular to it.

It would hence be useful to dispose of a list of canonical perturbations charac-
terizing all possible distinct routes to change catastrophic fixpoints x�

c D x�.cc/

qualitatively, upon small changes ıc D c � cc of the control parameters c. It is the
aim of catastrophe theory to develop such a canonical classification scheme for the
perturbations of center manifolds.

Gradient Dynamical Systems At times the flow f.x/ of a dynamical system may
be represented as a gradient of a bifurcation potential U.x/,

Px D f.x/ D �rU.x/ : (2.42)
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This is generically the case for one-dimensional systems, as discussed in Sect. 2.2.2,
but otherwise not. For the gradient representation

Px D f .x; y/ f D Ux.x; y/

Py D g.x; y/ g D Uy.x; y/

of a two-dimensional system to be valid, to give an example, the cross-derivatives
fy D Uxy D Uyx D gx would need to coincide. This is however normally not the
case.

For gradient dynamical systems one needs to discuss only the properties of the
bifurcation potential U.x/, as scalar quantity, and they are hence somewhat easier
to investigate than a generic dynamical system of the form Px D f.x/. Catastrophe
theory is mostly limited to gradient systems.

2.4 The Logistic Map and Deterministic Chaos

Chaos The notion of “chaos” plays an important role in dynamical systems theory.
A chaotic system is defined as a system that cannot be predicted within a given
numerical accuracy. At first sight this seems to be a surprising concept, since
differential equations of the type of Eq. (2.6), which do not contain any noise
or randomness, are perfectly deterministic. Once the starting point is known, the
resulting trajectory can be calculated for all times. Chaotic behavior can arise
nevertheless, due to an exponential sensitivity to the initial conditions.

Deterministic Chaos. A deterministic dynamical system that shows exponential sensibility
of the time development on the initial conditions is called chaotic.

This means that a very small change in the initial condition can blow up even after
a short time. When considering real-world applications, when models need to be
determined from measurements containing inherent errors and limited accuracies,
an exponential sensitivity can result in unpredictability. A well known example is
the problem of long-term weather prediction, as illustrated in Fig. 2.17.

The Logistic Map One of the most cherished models in the field of deterministic
chaos is the logistic map of the interval Œ0; 1� onto itself:

xnC1 D f .xn/ � r xn .1 � xn/; xn 2 Œ0; 1�; r 2 Œ0; 4� ; (2.43)

where we have used the notation xn D x.n/, for discrete times n D 0; 1; : : : . The
logistic map is illustrated in Fig. 2.18. The logistic map shows, despite its apparent
simplicity, an infinite series of bifurcations and a transition to chaos.

Biological Interpretation We may consider xn 2 Œ0; 1� as standing for the
population density of a reproducing species in the year n. In this case the factor
r.1 � xn/ 2 Œ0; 4� is the number of offspring per year and animal, which is limited
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Fig. 2.17 The average accuracy of weather forecasting, normalized to Œ0; 1�, decreases rapidly
with increasing prediction timespan, due to the chaotic nature of weather dynamics. Increasing the
resources devoted for improving the prediction accuracy results in decreasing returns close to the
resulting complexity barrier (From Gros (2012))

in the case of high population densities x ! 1, when resources become scarce. The
classical example is that of a herd of reindeer on an island.

Knowing the population density xn in a given year n we may predict
via Eq. (2.43) the population density for all subsequent years exactly; the system
is deterministic. Nevertheless the population shows irregular behavior for certain
values of r , which one calls “chaotic”.

Fixpoints of the Logistic Map We start considering the fixpoints of f .x/:

x D rx.1 � x/ ” x D 0 or 1 D r.1 � x/ :

The non-trivial fixpoint is then

1=r D 1 � x; x.1/ D 1 � 1=r; r1 < r; r1 D 1 : (2.44)

It occurs only for r1 < r , with r1 D 1, due to the restriction x.1/ 2 Œ0; 1�.

Stability of the Fixpoint We examine the stability of x.1/ against perturbations by
linearization of Eq. (2.43), using

yn D xn � x.1/; xn D x.1/ C yn; jynj � 1 :

We could use the general formalism developed in Sect. 2.2, or go through the
derivation step by step:

x.1/ C ynC1 D r.x.1/ C yn/.1 � x.1/ � yn/

D rx.1/.1 � x.1/ � yn/ C ryn.1 � x.1/ � yn/ :
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Fig. 2.18 Illustration of the logistic map f .x/ (thick solid line) and of the iterated logistic map
f .f .x// (thick dot-dashed line) for r D 2:5 (left) and r D 3:3 (right). Also shown is an iteration
of f .x/, starting from x D 0:1 (thin solid line) Note, that the fixpoint f .x/ D x is stable/unstable
for r D 2:5 and r D 3:3, respectively. The orbit is attracted to a fixpoint of f .f .x// for r D 3:3,
corresponding to a cycle of period 2 for f .x/

Using the fixpoint condition x.1/ D f .x.1// and neglecting terms � y2
n , we obtain,

in agreement with the general expression (2.13),

ynC1 D �rx.1/yn C ryn.1 � x.1// D r.1 � 2x.1// yn

D f 0 �
x.1/

�
yn; f 0.x/ D r.1 � 2x/

and, using Eq. (2.44), we find

ynC1 D r.1 � 2.1 � 1=r// yn D .2 � r/ yn D .2 � r/nC1 y0 : (2.45)

The perturbation yn increases/decreases in magnitude for j2�r j > 1 and j2�r j < 1,
respectively. Noting that r 2 Œ1; 4�, we find

j2 � r j < 1 ” r1 < r < r2

r1 D 1

r2 D 3
(2.46)

for the region of stability of x.1/.

Fixpoints of Period 2 For r > 3 a fixpoint of period 2 appears, which is a fixpoint
of the iterated function

f .f .x// D rf .x/.1 � f .x// D r2x.1 � x/.1 � rx.1 � x//:
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The fixpoint equation x D f .f .x// leads to the cubic equation

1 D r2.1 � rx C rx2/ � r2x.1 � rx C rx2/;

0 D r3x3 � 2r3x2 C .r3 C r2/x C 1 � r2 : (2.47)

In order to find the roots of Eq. (2.47) we use the fact that x D x.1/ D 1 � 1=r is
a stationary point of both f .x/ and f .f .x//, see Fig. 2.18. We divide (2.47) by the
root .x � x.1// D .x � 1 C 1=r/:

.r3x3 � 2r3x2 C .r3 C r2/x C 1 � r2/ W .x � 1 C 1=r/ D
r3x2 � .r3 C r2/x C .r2 C r/ :

The two new fixpoints of f .f .x// are therefore the roots of

x2 �
�

1 C 1

r

�
x C

�
1

r
C 1

r2

�
D 0 :

We obtain

x
.2/

˙ D 1

2

�
1 C 1

r

�
˙

s
1

4

�
1 C 1

r

�2

�
�

1

r
C 1

r2

�
: (2.48)

Bifurcation We have three fixpoints for r > 3 (two stable ones and one unstable),
and only one fixpoint for r < 3. What happens for r D 3?

x
.2/

˙ .r D 3/ D 1

2

3 C 1

3
˙

s
1

4

�
3 C 1

3

�2

�
�

3 C 1

9

�

D 2

3
D 1 � 1

3
D x.1/.r D 3/ :

At r D 3 the fixpoint splits into two stable and one unstable branch, see Fig. 2.19, a
typical bifurcation, as discussed in Sect. 2.2.

More Bifurcations We may now carry out a stability analysis for x
.2/

˙ , just as we
did for x.1/. We find a critical value r3 > r2 such that

x
.2/

˙ .r/ stable ” r2 < r < r3: (2.49)
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Fig. 2.19 Left: The values xn for the iterated logistic map (2.43). For r < r1 � 3:57 the xn go
through cycles with finite but progressively longer periods. For r > r1 the plot would be fully
covered in most regions, if all xn would be shown. Right: The corresponding maximal Lyapunov
exponents, as defined by Eq. (2.51). Positive Lyapunov exponents � indicate chaotic behavior

Going further on one finds an r4 such that there are four fixpoints of period 4, that
is of f .f .f .f .x////, for r3 < r < r4. In general there are critical values rn and
rnC1 such that there are

2n�1 fixpoints x.n/ of period 2n�1 ” rn < r < rnC1:

The logistic map therefore shows iterated bifurcations. This, however, is not yet
chaotic behavior.

Chaos in the Logistic Map The critical rn for doubling of the period converge:

lim
n!1 rn ! r1; r1 D 3:5699456 : : :

There are consequently no stable fixpoints of f .x/ or of the iterated logistic map in
the region

r1 < r < 4 :

In order to characterize the sensitivity of Eq. (2.43) with respect to the initial
condition, we consider two slightly different starting populations x1 and x0

1:

x1 � x0
1 D y1; jy1j � 1 :

The key question is then whether the difference in populations

ym D xm � x0
m
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is still small after m iterations. Using x0
1 D x1 � y1 we find for m D 2

y2 D x2 � x0
2 D f .x1/ � f .x0

1/ D f .x1/ � f .x1 � y1/

� f .x1/ � 	
f .x1/ � f 0.x1/ y1


 D df .x/

dx

ˇ̌
ˇ
xDx1

y1 ;

where we have neglected terms � y2
1 . We hence obtain

y2 D df .x/

dx

ˇ̌
ˇ
xDx1

y1 D �rx1y1 C ry1.1 � x1/ D r.1 � 2x1/ y1 � � y1 :

For j�j < 1 the map is stable, as two initially different populations close in with
time passing. For j�j > 1 they diverge; the map is “chaotic”.

Lyapunov Exponents We remind ourselves of the definition

j�j D e�; � D log

ˇ̌
ˇ̌df .x/

dx

ˇ̌
ˇ̌ (2.50)

the Lyapunov exponent � D �.r/ introduced in Sect. 2.2. For positive Lyapunov
exponents the time development is exponentially sensitive to the initial conditions
and shows chaotic features,

� < 0 , stability; � > 0 , instability :

This is indeed observed in nature, e.g. for populations of reindeer on isolated islands,
as well as for the logistic map for r1 < r < 4, compare Fig. 2.19.

Maximal Lyapunov Exponent The Lyapunov exponent, as defined by Eq. (2.50)
provides a description of the short time behavior. For a corresponding characteriza-
tion of the long time dynamics one defines the “maximal Lyapunov exponent”

�.max/ D lim
n�1

1

n
log

ˇ̌
ˇ̌df .n/.x/

dx

ˇ̌
ˇ̌ ; f .n/.x/ D f .f .n�1/.x// : (2.51)

Using Eq. (2.50) for the short time evolution we can decompose �.max/ into an
averaged sum of short time Lyapunov exponents. �.max/ is also denoted the “global
Lyapunov exponent”.

One needs to select advisedly the number of iterations n in Eq. (2.51). On one
side n should be large enough such that short-term fluctuations of the Lyapunov
exponent are averaged out. The available phase space is however generically finite,
for the logistic map y 2 Œ0; 1�, and two initially close orbits cannot diverge ad
infinitum. One needs hence to avoid phase-space restrictions, evaluating �.max/ for
large but finite numbers of iterations n.
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Routes to Chaos The chaotic regime r1 < r < 4 of the logistic map connects
to the regular regime 0 < r < r1 with increasing period doubling. One speaks of
a “route to chaos via period-doubling”. The study of chaotic systems is a wide field
of research and a series of routes leading from regular to chaotic behavior have been
found. Two important alternative routes to chaos are:

– The Intermittency route to chaos.
The trajectories are almost periodic; they are interdispersed with regimes of

irregular behaviour. The occurrence of these irregular bursts increases until the
system becomes irregular.

– Ruelle–Takens–Newhouse route to chaos.
A strange attractor appears in a dissipative system after two (Hopf) bifurca-

tions. As a function of an external parameter a fixpoint evolves into a limit cycle
(Hopf bifurcation), which then turns into a limiting torus, which subsequently
turns into a strange attractor.

2.5 Dynamical Systems with Time Delays

The dynamical systems we have considered so far all had instantaneous dynamics,
being of the type

d

dt
y.t/ D f .y.t//; t > 0 (2.52)

y.t D 0/ D y0 ;

when denoting with y0 the initial condition. This is the simplest case: one
dimensional (a single dynamical variable only), autonomous (f .y/ is not an explicit
function of time) and deterministic (no noise).

Time Delays In many real-world applications the couplings between different
sub-systems and dynamical variables is not instantaneous. Signals and physical
interactions need a certain time to travel from one subsystem to the next. Time
delays are therefore encountered commonly and become important when the delay
time T becomes comparable with the intrinsic time scales of the dynamical system.
We consider here the simplest case, a noise-free one-dimensional dynamical system
with a single delay time,

d

dt
y.t/ D f .y.t/; y.t � T //; t > 0 (2.53)

y.t/ D �.t/; t 2 Œ�T; 0� :
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Due to the delayed coupling we need now to specify an entire initial function �.t/.
Differential equations containing one or more time delays need to be considered
very carefully, with the time delay introducing an additional dimension to the
problem. We will discuss here a few illustrative examples.

Linear Couplings We start with the linear differential equation

d

dt
y.t/ D �ay.t/ � by.t � T /; a; b > 0 : (2.54)

The only constant solution for a C b ¤ 0 is the trivial state y.t/ � 0. The trivial
solution is stable in the absence of time delays, T D 0, whenever a C b > 0. The
question is now, whether a finite T may change this.

We may expect the existence of a certain critical Tc , such that y.t/ � 0 remains
stable for small time delays 0 � T < Tc . In this case the initial function �.t/ will
affect the orbit only transiently, in the long run the motion would be damped out,
approaching the trivial state asymptotically for t ! 1.

Hopf Bifurcation Trying our luck with the usual exponential ansatz, we find

� D �a � be��T ; y.t/ D y0e�t ; � D p C iq : (2.55)

Separating into a real and an imaginary part we obtain

p C a D �be�pT cos.qT /;

q D be�pT sin.qT /:
(2.56)

For T D 0 the solution is p D �.aCb/, q D 0, as expected, and the trivial solution
y.t/ � 0 is stable. A numerical solution is shown in Fig. 2.20 for a D 0:1 and
b D 1. The crossing point p D 0 is determined by

a D �b cos.qT /; q D b sin.qT / : (2.57)

The first condition in Eq. (2.57) can be satisfied only for a < b. Taking the squares
in Eq. (2.57) and eliminating qT one has

q D
p

b2 � a2; T � Tc D arccos.�a=b/=q :

One therefore has a Hopf bifurcation at T D Tc and the trivial solution becomes
unstable for T > Tc . For the case a D 0 one has simply q D b, Tc D �=.2b/.
Note, that there is a Hopf bifurcation only for a < b, viz whenever the time-delay
dominates, and that q becomes non-zero well before the bifurcation point, compare
Fig. 2.20. One has therefore a region of damped oscillatory behavior with q ¤ 0

and p < 0.
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Fig. 2.20 The components p and q for the solution e.pCiq/t (2.55) of the time-delayed system,
Eq. (2.54), for a D 0:1 and b D 1. The state y.t/ � 0 become unstable whenever the real part p

becomes positive. The imaginary part q is given in units of �

Discontinuities For time-delayed differential equations one may specify an arbi-
trary initial function �.t/ and the solutions may in general show discontinuities in
their derivatives, as a consequence. As an example we consider the case a D 0,
b D 1 of Eq. (2.54), with a non-zero constant initial function,

d

dt
y.t/ D �y.t � T /; �.t/ � 1 : (2.58)

The solution can be evaluated simply by stepwise integration,

y.t/ � y.0/ D
Z t

0

dt0 Py.t 0/ D �
Z t

0

dt0y.t 0 � T / D �
Z t

0

dt0 D �t; 0 < t < T :

The first derivative in consequently discontinuous at t D 0,

lim
t!0�

d

dt
y.t/ D 0; lim

t!0C
d

dt
y.t/ D �1 :

For larger times, T < t < 2T , one finds

y.t/ � y.T / D �
Z t

T

dt0y.t 0 � T / D
Z t

T

dt0
	
t 0 � 1


 D t2 � T 2

2
� .t � T / ;

and the second derivative has a discontinuity at t D T .

Dependence on Initial Function The solution of ordinary differential equations is
determined by their initial condition and different initial conditions lead to distinct
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trajectories (injectivity). This is not necessarily the case anymore in the presence of
time delays. We consider

d

dt
y.t/ D y.t � T /

�
y.t/ � 1

�
; �.t D 0/ D 1 : (2.59)

For any �.t/ with �.0/ D 1 the solution is y.t/ � 1 for all t 2 Œ0; 1�.

Non-Constant Time Delays Things may become rather weird when the time
delays are not constant anymore. Consider

d
dt y.t/ D y

�
t � jy.t/j � 1

� C 1
2
; t > 0;

�.t/ D
�

0 �1 < t < 0

1 t < �1
:

(2.60)

It is easy to see, that both functions

y.t/ D t

2
; y.t/ D 3t

2
; t 2 Œ0; 2� ;

are solutions of Eq. (2.60), with appropriate continuations for t > 2. Two different
solutions of the same differential equation and identical initial conditions, this
cannot happen for ordinary differential equations. It is evident, that special care
must be taken when examining dynamical systems with time delays numerically.

Exercises

JACOBIANS WITH DEGENERATE EIGENVALUES

Jacobians with degenerate eigenvalues may not dispose of a corresponding
number of eigenvectors, being non-symmetric. Consider the linear system

Px D �x C y; Py D �ry; r > 0 (2.61)

and determine the eigenvalues of the Jacobian for the fixpoint .0; 0/ and its
eigenvectors. What happens in the limit r ! 1?

CATASTROPHIC SUPERLINEAR GROWTH

The growth of a resource variable x.t/ � 0, as defined by

Px D xˇ � �x; � D 0; 1 ; (2.62)

is sub/super-linear for ˇ < 1 and ˇ > 1 respectively. Start by solving (2.62)
analytically for � D 0. Is there a singularity, viz a finite time ts < 1
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for which limt!ts x.t/ diverges catastrophically? Continue then by discussing
qualitatively the behavior for � D 1.
Next consider sublinear decay, viz Px D �xˇ , with ˇ < 1. Can the stable
fixpoint x� D 0 be reached in finite time?

HETEROCLINIC ORBITS AND SYMMETRIES

Discuss, in analogy to Eq. (2.18), the fixpoints and the stable and unstable
manifolds of

Px D 1 � x2; Py D �y C �
�
1 � x2

�2
:

Is there a heteroclinic orbit?
THE SUBCRITICAL PITCHFORK TRANSITION

Discuss, in analogy to Sect. 2.2, the fixpoints, and their stability, of the
subcritical pitchfork transition described by the canonical equation of motion
Px D ax C x3.

ENERGY CONSERVATION IN LIMIT CYCLES

Evaluate, for the Taken-Bogdanov system (2.33) and 	 2 Œ	c; 1�, the energy
balance, as defined by Eq. (2.34), by integrating numerically dE=dt. How large
is the overall energy dissipation and uptake when completing one cycle? Good
numerical accuracy is important, you will probably need to use the Runge-Kutta
method.

MAXIMAL LYAPUNOV EXPONENT

Show, that the maximal Lyapunov exponent (2.51) can be written as the time-
averaged local exponent (2.50).

LYAPUNOV EXPONENTS ALONG PERIODIC ORBITS

Evaluate the longitudinal Lyapunov exponent �' along the r D 1 trajectory of
Eq. (2.35). Consider both the case when the coupling K is smaller or larger than
the critical Kc D 1 of the infinite period bifurcation. For K < Kc the orbit is
periodic and the integral of the longitudinal Lyapunov exponent over one period
T vanishes. Why is this generically the case for periodic orbits?

GRADIENT DYNAMICAL SYSTEMS

Is it possible to add a term to the evolution equation Px D : : : of the dynamical
system (11.18) such that it becomes a gradient dynamical system, as defined in
Eq. (2.42)?

LIMIT CYCLES IN GRADIENT SYSTEMS

Show that gradient dynamical systems, compare Eq. (2.42), have no limit
cycles.

DELAYED DIFFERENTIAL EQUATIONS

The delayed Eq. (2.54) allows for harmonically oscillating solutions for certain
sets of parameters a and b. Which are the conditions? Specialize then for the
case a D 0.
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CAR-FOLLOWING MODEL

A car moving with velocity Px.t/ follows another car driving with velocity
v.t/ via

Rx.t C T / D ˛.v.t/ � Px.t//; ˛ > 0 ; (2.63)

with T > 0 being the reaction time of the driver. Prove the stability of the
steady-state solution for a constant velocity v.t/ � v0 of the preceding car.
More realistic car-following models are discussed in Chap. 4.

Further Reading

For further studies we refer to introductory texts for dynamical system theory Katok
(1995), classical dynamical systems Goldstein (2002) and chaos Schuster ( 2005);
Devaney (1989); Gutzwiller (1990); Strogatz (1994). For an in-depth introduction
to bifurcation and catastrope theory we recommend Guckenheimer (1983) and
Gilmore (1993), for an overview of differential equations with time delays Erneux
(2009). Other textbooks on complex and/or adaptive systems are those by Schuster
(2001) and Boccara (2003).

References

BOCCARA, N. 2003 Modeling Complex Systems. Springer, Berlin.
DEVANEY, R.L. 1989 An Introduction to Chaotic Dynamical Systems. Addison-Wesley, Reading,

MA.
ERNEUX, T. 2009 Applied Delay Differential Equations. Springer, New York.
GILMORE, R. 1993 Catastrophe theory for scientists and engineers. Courier Dover Publications.
GOLDSTEIN, H. 2002 Classical Mechanics. 3rd Edition, Addison-Wesley, Reading, MA.
GROS, C. 2012 Pushing the complexity barrier: diminishing returns in the sciences. Complex

Systems 21, 183.
GUCKENHEIMER, J., HOLMES, P. 1983 Nonlinear oscillations, dynamical systems, and bifurca-

tions of vector fields. Springer.
GUTZWILLER, M.C. 1990 Chaos in Classical and Quantum Mechanics. Springer, New York.
KATOK, A., HASSELBLATT, B. 1995 Introduction to the Modern Theory of Dynamical Systems.

Cambridge University Press, Cambridge.
SCHUSTER, H.G. 2001 Complex Adaptive Systems. Scator, Saarbrücken.
SCHUSTER, H.G., JUST, W. 2005 Deterministic Chaos. 4th Edition, Wiley-VCH, New York.
STROGATZ, S.H. 1994 Nonlinear Systems and Chaos. Perseus Publishing, Cambridge, MA.



http://www.springer.com/978-3-319-16264-5


	2 Bifurcations and Chaos in Dynamical Systems
	2.1 Basic Concepts of Dynamical Systems Theory
	2.2 Fixpoints, Bifurcations and Stability
	2.2.1 Fixpoints Classification and Jacobian
	2.2.2 Bifurcations and Normal Forms
	2.2.3 Hopf Bifurcations and Limit Cycles

	2.3 Global Bifurcations
	2.3.1 Catastrophe Theory

	2.4 The Logistic Map and Deterministic Chaos
	2.5 Dynamical Systems with Time Delays
	Exercises
	Further Reading
	References


