
Full-Size High-Security ECC Implementation
on MSP430 Microcontrollers

Gesine Hinterwälder1,2(B), Amir Moradi1, Michael Hutter3, Peter Schwabe4,
and Christof Paar1,2

1 Horst Görtz Institute for IT Security, Ruhr-University Bochum, Bochum, Germany
{gesine.hinterwaelder,amir.moradi,christof.paar}@rub.de

2 Department of Electrical and Computer Engineering, University of Massachusetts
Amherst, Amherst, USA

3 Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Graz, Austria

Michael.Hutter@iaik.tugraz.at
4 Digital Security Group, Radboud University Nijmegen, Nijmegen, The Netherlands

peter@cryptojedi.org

Abstract. In the era of the Internet of Things, smart electronic devices
facilitate processes in our everyday lives. Texas Instrument’s MSP430
microcontrollers target low-power applications, among which are wire-
less sensor, metering and medical applications. Those domains have in
common that sensitive data is processed, which calls for strong security
primitives to be implemented on those devices. Curve25519, which builds
on a 255-bit prime field, has been proposed as an efficient, highly-secure
elliptic-curve. While its high performance on powerful processors has
been shown, the question remains, whether it is suitable for use in embed-
ded devices. In this paper we present an implementation of Curve25519
for MSP430 microcontrollers. To combat timing attacks, we completely
avoid conditional jumps and loads, thus making our software constant
time. We give a comprehensive evaluation of different implementations of
the modular multiplication and show which ones are favorable for differ-
ent conditions. We further present implementation results of Curve25519,
where our best implementation requires 9.1 million or 6.5 million cycles
on MSP430Xs having a 16 × 16-bit or a 32 × 32-bit hardware multiplier
respectively.

Keywords: MSP430 ·Carry-save representation ·Karatsuba ·Operand-
caching multiplication · Curve25519

∗ This work was supported in part by the German Federal Ministry for Economic
Affairs and Energy (Grant 01ME12025 SecMobil), by the Netherlands Organisation
for Scientific Research (NWO) through Veni 2013 project 13114, and by the Austrian
Science Fund (FWF) under the grant number TRP251-N23. Permanent ID of this
document: 0b3f1ea83d48e400ad1def71578c4c66. Date: 2014-10-01.

c© Springer International Publishing Switzerland 2015
D.F. Aranha and A. Menezes (Eds.): LATINCRYPT 2014, LNCS 8895, pp. 31–47, 2015.
DOI: 10.1007/978-3-319-16295-9 2

32 G. Hinterwälder et al.

1 Introduction

Implantable medical devices execute services essential for a patient’s well-being.
Their power consumption must be very low, as they operate either entirely based
on harvested power, or contain a battery, which can only be replaced by surgery.
Many of them communicate wirelessly over an RF channel, which allows for
configuration of those devices without surgical intervention. However, the wire-
less channel also poses potential attack possibilities, as shown by Halperin et al.
in [12]. This calls for strong security mechanisms to be implemented on those
very constrained devices.

Texas Instruments designed MSP430 microcontrollers to target low-power
applications, and advertises the application of MSP430s in the domain of med-
ical devices [16]. MSP430s can be operated at low voltages (1.8 to 3.3 V). Newer
devices of the MSP430 family have AES hardware accelerators that support
256-bit AES. Yet, many security services that are desirable for wireless commu-
nication, especially in the domain of medical devices, rely on public-key cryptog-
raphy. This naturally raises the question about the performance of public-key
cryptography on MSP430 microcontrollers.

Bernstein introduced the Curve25519 elliptic-curve Diffie-Hellman key exch-
ange protocol in 2006 [2]. It uses a Montgomery curve defined over a 255-bit
prime field and achieves a security level of 128 bits. Montgomery curves are
known to allow for very efficient variable-base-point single-scalar multiplication,
which makes this curve attractive for elliptic-curve key-agreement schemes.

Our Contribution. In this paper, we present a full implementation of the
Curve25519 Diffie-Hellman key-agreement scheme on MSP430X microcon-
trollers1. We differentiate those MSP430Xs with a 16 × 16-bit and those with a
32 × 32-bit hardware multiplier and developed our code for both platforms. As
all previous implementations of Curve25519, we use projective coordinates for
the elliptic-curve point representation. The main performance bottleneck of the
variable-base-point single-scalar multiplication are thus modular multiplications
in the underlying prime field. We hence put our focus on optimizing the modular
multiplication on the MSP430 architecture, and give a comprehensive evaluation
of different implementation techniques for MSP430 microcontrollers.

We use the Montgomery powering ladder [24] to implement the scalar mul-
tiplication on the elliptic curve, since this is a highly regular algorithm, making
the executed computation independent of the scalar. Our software completely
avoids input-dependent loads and branches, thus executing in constant time and
thus inherently protecting against timing attacks such as [1] or [31].

We evaluate our implementation by executing it on Texas Instrument’s MSP-
EXP430FR5969 LaunchPad Evaluation Kit. This board integrates an MSP430-
FR5969 microcontroller [28] with a 32 × 32-bit hardware multiplier, which is
built into the WISP 5.0 UHF computational RFID tag2, a device that operates

1 The software is available at http://emsec.rub.de/research/publications/Curve25519
MSPLatin2014/.

2 http://wisp.wikispaces.com/WISP%205.0.

http://emsec.rub.de/research/publications/Curve25519MSPLatin2014/
http://emsec.rub.de/research/publications/Curve25519MSPLatin2014/
http://wisp.wikispaces.com/WISP%205.0

Full-Size High-Security ECC Implementation on MSP430 Microcontrollers 33

based on harvested power from the RF field. With a price of a few dollars, this
microcontroller is a suitable target for wireless sensor and medical applications.

Related Work. Curve25519 has been implemented on several platforms. In the
paper introducing Curve25519 [2], Bernstein presented implementation results
for several Intel Pentium and an AMD Athlon processor. In 2009, Costigan and
Schwabe presented Curve25519 software for the Cell Broadband Engine [7]. In
2012, Bernstein and Schwabe presented an implementation for ARM processors
with NEON vector instructions [5]. Recently, Sasdrich and Güneysu presented
an implementation on reconfigurable hardware in [26]. Another recent publica-
tion shows an implementation of Curve25519, that fits into 18 tweets [6,20]. So
far, only one implementation shows performance results of Curve25519 on con-
strained devices, namely the implementation for 8-bit AVR microcontrollers by
Hutter and Schwabe presented in [13]. No previous work has yet shown imple-
mentation results of Curve25519 for 16-bit microcontrollers.

There exist many publications on Elliptic Curve Cryptography (ECC) imple-
mentations on the MSP430 microcontroller architecture. One of the first pub-
lications of asymmetric cryptography on the MSP430 is by Guajardo, Blümel,
Krieger, and Paar in 2001 [11]. They presented an implementation of an elliptic
curve with a security level of 64 bits and show that a scalar multiplication can be
performed within 3.4 million clock cycles. In 2007, Scott and Szczechowiak pre-
sented optimizations for underlying ECC finite-field multiplications [27]. Their
160 × 160-bit (hybrid) multiplication method requires 1746 cycles. In 2009,
Szczechowiak, Kargl, Scott, and Collier presented pairing-based cryptography on
the MSP430 [29]. Similar results have been reported by Gouvêa and López in the
same year [9]. They reported new speed records for 160-bit and 256-bit finite-field
multiplications on the MSP430 needing 1586 and 3597 cycles, respectively. They
further presented an implementation of a 256-bit elliptic curve random scalar
multiplication needing 20.4 million clock cycles. In 2011, Wenger and Werner
compared ECC scalar multiplications on various 16-bit microcontrollers [33].
Their Montgomery-ladder based scalar multiplication needs 23.9 million cycles
using a NIST P-256 elliptic curve. Also in 2011, Pendl, Pelnar, and Hutter pre-
sented the first ECC implementation running on the WISP UHF RFID tag [25].
Their 192-bit NIST curve implementation achieves an execution time of around
10 million clock cycles. They also reported first multi-precision multiplication
results for 192 bits needing 2581 cycles. In 2012, Gouvêa, Oliveira, and López
reported new speed records for different MSP430 architectures. They improved
their results from [9], namely, for the MSP architecture (with a 16 × 16 multi-
plier) their 160-bit and 256-bit finite-field multiplication implementations need
1565 and 3563 cycles, respectively.

Also note that there exist recent works to extend the MSP430 with instruction-
set extensions. In 2013, Wenger, Unterluggauer, and Werner [32] presented an
MSP430 clone in hardware that implements a special instruction-set extension.
For a NIST P-256 elliptic curve, their Montgomery ladder implementation requires
9 million clock cycles – without instruction-set extensions (and to put these num-
bers in relation), their implementation needs 22.2 million cycles.

34 G. Hinterwälder et al.

There also exist several software libraries for the MSP430 that support ECC.
These libraries mainly target sensor nodes such as the Tmote Sky which are
equipped with an MSP430 microcontroller. Examples are the NanoECC [30],
TinyECC [22], and MIRACL [23] libraries, and the RELIC toolkit [8].

Under the common assumption that the execution time of ECC grows approx-
imately as a cubic function of the field size, our software significantly outperforms
all presented ECC implementations on MSP430 microcontrollers in speed, while
executing in constant time, thus providing security against timing attacks.

Organization. Section 2 describes specifics about the MSP430 architecture
important for our implementation. Section 3 describes general basics about the
implementation of Curve25519, Sect. 4 presents a detailed description of the
various implementation techniques for modular multiplications that we investi-
gated. Implementation and measurement results are presented in Sect. 5, and we
conclude our work with Sect. 6.

2 The MSP430X Microcontroller Architecture

We implemented the modular multiplication operation for MSP430X devices
that feature a 16 × 16-bit hardware multiplier as well as for those that feature
a 32 × 32-bit multiplier, and show which implementation technique is preferable
on either platform. We give cycle count estimations for the MSP430F2618 [19],
which has a 16×16-bit hardware multiplier, and cycle count estimations as well as
execution results for the MSP430FR5969 [28], which has a 32 × 32-bit hardware
multiplier. But, our results can be generalized to other microcontrollers from
the MSP430 family. This section describes specifics about the MSP430X archi-
tecture that are important for the discussion of the implementation techniques.
For more details about the MSP430X architecture, we refer the reader to the
MSP430x2xx user’s guide [18].

Processing Unit. Both MSP430 microcontrollers that we consider have a 16-bit
RISC CPU, with 27 core instructions and 24 emulated instructions. The CPU
has 16-bit registers, of which R0 to R3 are special-purpose registers and R4 to R15
are freely usable working registers. The execution time of all register operations
is one cycle, but the overall execution time for an instruction depends on the
instruction format and the addressing mode.

Addressing Mode. The CPU features 7 addressing modes. Our implemen-
tation uses the register mode, indexed mode, absolute mode, indirect auto-
increment mode, and immediate mode. It is important to note that while indirect
auto-increment mode saves one clock cycle on all operations compared to indexed
mode, only indexed mode can be used to store results back to RAM.

Hardware Multiplier. Both devices that we consider feature memory-mapped
hardware multipliers, which work in parallel to the CPU. Four types of multi-
plications, namely signed and unsigned multiply as well as signed and unsigned
multiply-and-accumulate are supported. The multiplier registers are peripheral

Full-Size High-Security ECC Implementation on MSP430 Microcontrollers 35

registers, which have to be loaded with CPU instructions. The result is stored in
two (in case of 16×16-bit multipliers) or four (in case of 32×32-bit multipliers)
16-bit registers. A register SUMEXT is available, which is similar to the status
register in the main CPU. This register shows for the multiply-and-accumulate
instructions, whether a multiplication has produced a carry bit. It is not possible
to accumulate carries in SUMEXT. The time that is required for the multiplication
is determined by the time it takes to load the multiplier registers.

3 Implementation of Curve25519

Curve25519 is an elliptic curve in Montgomery form. This curve has been carefully
chosen to provide very high performance for Diffie-Hellman key agreement at the
128-bit security level. It is defined by the equation y2 = x3 + 486662x2 + x over
the prime field F2255−19. For details about the choice of curve and security see [2].

The key-agreement scheme computes a 32-byte shared secret Qx from a
32-byte secret key n and a 32-byte public key Px. Here Qx and Px are x-coordinates
of points on the elliptic curve. At its core, the Curve25519 Diffie-Hellman key-
agreement scheme executes a variable-base-point single-scalar multiplication
on the elliptic curve, multiplying the public key Px with the secret key n, to
obtain the shared secret Qx. Special conditions are given for the secret scalar n,
namely that the 3 least significant bits and the most significant bit are set to
zero, and the second-most significant bit is set to 1 [4].

We follow the suggestions of [2] for implementing the variable-base-point
single-scalar multiplication on the elliptic curve. We used the Montgomery pow-
ering ladder [24] of 255 “ladder steps”. Each ladder step computes a differential
point addition and a point doubling. Starting with the points R1 and R2, in each
ladder step either R2 is added to R1 (R1 ← R1 + R2) and then R2 is doubled
(R2 ← 2 · R2), or R1 is added to R2 (R2 ← R2 + R1) and then R1 is doubled
(R1 ← 2 · R1). To avoid conditional load addresses that can lead to cache-timing
attacks, we execute the same operations (R1 ← R1+ R2 and R2 ← 2 · R2) in each
iteration, and swap the contents of R1 and R2 depending on the scalar bit b.

Note that for the conditional swap we do not use branch instructions. Instead,
this operation is implemented as follows: An unsigned variable b̂ is cleared. Then
b is subtracted from b̂ leading to b̂ being 0 or 0xffff, depending on whether b is
0 or 1. To swap the contents of x and y, an auxiliary variable is used to store
tswp = x ⊕ y. tswp is anded with the value stored in b̂, resulting in tswp = x ⊕ y
for b = 1 and tswp = 0 otherwise. Then tswp is xored with x and y leading to
either the original values being stored in x and y for b = 0, or the swapped values
for the case of b = 1. Together with the constant-time field arithmetic we thus
obtain a fully timing-attack protected constant-time implementation.

In [24] Montgomery presented x-coordinate-only doubling and differential-
addition formulas for points on a curve defined by an equation of the form By2 =
x3+Ax2+x. He showed the correctness of those formulas, which rely on standard-
projective-coordinate representation of the points, for the case of inputs not being
equal to the point at infinity. In [2] Bernstein extended the proof of correctness

36 G. Hinterwälder et al.

Algorithm 1. x-coordinate-only variable base-point single-scalar point
multiplication on Curve25519 based on the Montgomery powering ladder
[2, 7].
Input : n ∈ Z, Px, x-coordinate of point P .
Output: Qx, x-coordinate of point Q ← n · P .

1 X1 ← Px;X2 ← 1;Z2 ← 0;X3 ← Px;Z3 ← 1

2 for i = 254 downto 0 do
3 if ni �= ni−1 then
4 swap(X2, X3) /* This conditional swapping is implemented */

5 swap(Z2, Z3) /* in constant time (see Sect. 3). */

6 end
7 t1 ← X2 + Z2

8 t2 ← X2 − Z2

9 t3 ← X3 + Z3

10 t4 ← X3 − Z3

11 t6 ← t21
12 t7 ← t22
13 t5 ← t6 − t7
14 t8 ← t4 · t1
15 t9 ← t3 · t2
16 X3 ← (t8 + t9)

2

17 Z3 ← X1(t8 − t9)
2

18 X2 ← t6 · t7
19 Z2 ← t5(t7 + 121666t5)

2

20 end

21 if n0 == 1 then
22 swap(X2, X3) /* This conditional swapping is implemented */

23 swap(Z2, Z3) /* in constant time (see Sect. 3). */

24 end

25 Z2 ← 1/Z2

26 return (X2 · Z2)

to the case of an input being equal to the point at infinity. Using these formulas,
a differential addition of two points requires 4 multiplications and 2 squarings.
Point doubling requires 2 multiplications, 2 squarings, and one multiplication by
the constant (486662+2)/4 = 121666. The differential-addition formula requires
as input the difference of the input points. If the Z-coordinate of this difference
point is one, the addition formula can be reduced to require only 3 multiplications
and 2 squarings. Algorithm 1 summarizes the x-coordinate-only variable-base-
point single-scalar point multiplication on Curve25519 requiring 255 differential
additions and doublings (ladder steps), 255 conditional swaps, and one inversion
at the end to transform the result back to affine coordinates [2,7].

Full-Size High-Security ECC Implementation on MSP430 Microcontrollers 37

4 Implementation of Modular Multiplication in F2255−19

Many techniques have been proposed to improve the performance of multi-
precision multiplication implementations, especially for constrained devices. In
the following we describe which techniques we implemented for the MSP430X
architecture. To have a fair comparison, all methods were implemented in assem-
bly and were fully unrolled.

Representation of Big Integers. We use an unsigned radix-216 represen-
tation for the operand-caching [15] and the Karatsuba multiplication [14,21],
and a signed radix-2�255/26� representation for the carry-save implementation.
In unsigned radix-216 representation, an n-bit integer A is represented as an
array of m = �n/16� words in little-endian order as (a0, a1, . . . am−1), such that
A =

∑m−1
i=0 ai216i where ai ∈ {0, . . . , 216 − 1}. In the radix-2�255/26� representa-

tion an n-bit integer B is represented as an array of � = �26n/255� 16-bit words
in little-endian order as (b0, b1, . . . b�−1), such that B =

∑�−1
j=0 bj2�255j/26�, where

bj ∈ {−215, . . . , 215 −1}. Hence, in the radix-2�255/26� representation an element
in F2255−19 is represented using 26 16-bit words. Since inputs and outputs to
the scalar multiplication on Curve25519 are 32-byte arrays, conversions to and
from the used representations are executed at the beginning and the end of the
complete scalar multiplication.

4.1 Multiplication Using Carry-Save Representation

This implementation follows the fast arithmetic implementation presented in [2].
An integer is represented using the signed radix-2�255/26� representation. Bene-
ficial of this representation is that an addition or subtraction can be executed
without having to consider carry bits. It only requires pairwise addition or sub-
traction of the respective coefficients, as long as the result of coefficient additions
or subtractions does not exceed the word-length. An element in this representa-
tion looks as follows:

B = b0+b1210+b2220+b3230+b4240+b5250+b6259+b7269+b8279+· · ·+b252246.

Figure 1 presents the steps executed to compute the first 8 coefficients ri of
the multiplication r ← f × g. After transforming an integer to radix-2�255/26�

r7 r6 r5 r4 r3 r2 r1 r0

f7 g0 f6 g0 f5 g0 f4 g0 f3 g0 f2 g0 f1 g0 f0 g0

f6 g1 2 f5 g1 f4 g1 f3 g1 f2 g1 f1 g1 f0 g1 38 f24 g2

2 f5 g2 2 f4 g2 f3 g2 f2 g2 f1 g2 f0 g2 38 f25 g2 38 f23 g3

2 f4 g3 2 f3 g3 f2 g3 f1 g3 f0 g3 38 f25 g3 38 f24 g3 38 f22 g4

2 f3 g4 2 f2 g4 f1 g4 f0 g4 38 f25 g4 38 f24 g4 38 f23 g4 38 f21 g5

2 f2 g5 2 f1 g5 f0 g5 38 f25 g5 38 f24 g5 38 f23 g5 38 f22 g5 38 f20 g6

f1 g6 f0 g6 19 f25 g6 19 f24 g6 19 f23 g6 19 f22 g6 19 f21 g6 38 f19 g7

f0 g7 19 f25 g7 19 f24 g7 19 f23 g7 19 f22 g7 19 f21 g7 38 f20 g7 38 f18 g8

Fig. 1. Visualisation computation of coefficients for carry-save multiplication.

38 G. Hinterwälder et al.

representation, each coefficient bi of B is within (−29, 29) or (−210, 210). We
precompute 2f and 19g to easily realize constant multiplication with factors 2,
19, and 38. We use the product-scanning technique to compute the coefficients
ri, interleaving the multiplication with the reduction, i.e., we compute a coeffi-
cient and reduce it right away. For the computation of each ri, 26 products of
coefficients have to be added.

This type of implementation has two disadvantages on the MSP430X archi-
tecture. First of all the MSP430 has very few general-purpose registers, while the
inputs have to be loaded from four different arrays f, g, 2f and 19g. This makes
storing inputs in registers difficult, as different operands are loaded for compu-
tation of the various coefficients. Further, while we use indirect auto-increment
mode to access g and 19g, there is no indirect auto-decrement mode on the
MSP430 and we need to access the other inputs using the costly indexed mode.
The other disadvantage is the highly complex reduction of a coefficient, requiring
several shift operations, which are expensive on MSP430 devices.

Since we could not achieve good performance results with this type of imple-
mentation, we tried to speed things up relying on the refined Karatsuba formulas
presented in [3]. A problem occurs when trying to add the low and the high part
of B in signed radix-2�255/26� representation. For example computing the coef-
ficient of 240 cannot be done by adding b4 and b16 as b16 would be input to
exponent 239. Our solution to this was to represent elements using signed radix-
2�256/26� representation and rely on computations modulo 2256 − 38. Yet still,
the disadvantages of this type of implementation on the MSP430 architecture
dominate the advantages.

4.2 Operand-Caching Multiplication

Operand-caching was proposed by Hutter and Wenger in 2011 [15]. The idea
of this method is to reduce the number of load instructions by organizing the
operations in a way that allows the same input operands to be used for multiple
computations.

Figure 2 shows a toy-size example of the operand-caching multiplication. Here
the execution of computations is divided into the light gray and the dark gray
area. First the light gray block is computed followed by the dark gray area.

r15 r14 r13 r12 r11 r10 r9 r8 r7 r6 r5 r4 r3 r2 r1 r0

f7 g0 f6 g0 f5 g0 f4 g0 f3 g0 f2 g0 f1 g0 f0 g0

f7 g1 f6 g1 f5 g1 f4 g1 f3 g1 f2 g1 f1 g1 f0 g1

f7 g2 f6 g2 f5 g2 f4 g2 f3 g2 f2 g2 f1 g2 f0 g2

f7 g3 f6 g3 f5 g3 f4 g3 f3 g3 f2 g3 f1 g3 f0 g3

f7 g4 f6 g4 f5 g4 f4 g4 f3 g4 f2 g4 f1 g4 f0 g4

f7 g5 f6 g5 f5 g5 f4 g5 f3 g5 f2 g5 f1 g5 f0 g5

f7 g6 f6 g6 f5 g6 f4 g6 f3 g6 f2 g6 f1 g6 f0 g6

f7 g7 f6 g7 f5 g7 f4 g7 f3 g7 f2 g7 f1 g7 f0 g7

Fig. 2. Visualisation of the operand-caching method for 2 elements consisting of 8
words.

Full-Size High-Security ECC Implementation on MSP430 Microcontrollers 39

The empty dark gray and light gray boxes represent space that is required for
carry-bits.

As we have 8 general-purpose registers available for storing operands during
the execution of the multiplication, we chose the row size to be 4. Since each input
array has 16 elements, 16/4 = 4 rows have to be computed. Many loads to the
hardware multiplier can be saved when loading operands in a special order. For
each operation of the hardware multiplier OP2 has to be loaded to start execution.
Yet, MAC does not have to be loaded each time. If it is not loaded, it uses the value
that had been loaded to MAC in the previous use of the hardware multiplier. For
example, if for the computation of r1, as the final step f0 was loaded to MAC and
g1 to OP2, then we start the computation of r2 by loading g2 to OP2.

In this multiplication we first multiply both inputs f and g, resulting in
a double-sized array and then reduce this result. Since reducing mod 2255 − 19
requires bit shifts, we chose to reduce intermediate results mod 2256−38 and only
reduce the final result mod 2255 − 19. We implemented two versions of operand-
caching multiplication, one making use of the 32×32-bit hardware multiplier (in
the following called 32-bit operand-caching) and the other only loading 16-bit
inputs to the multiplier (in the following called 16-bit operand-caching). Natu-
rally the implementation that makes use of the 32×32-bit hardware multiplier is
faster and also requires less code space, since fewer loads to the multiplier have
to be performed.

4.3 Karatsuba Multiplication

This section is based on a very recent paper on the implementation of multi-
precision multiplication on AVR microcontrollers [14]. Karatsuba presented a
sub-quadratic multiplication method that reduces the number of required word
multiplications for multi-precision multiplications [21]. The implementation by
Hutter and Schwabe [14] is based on this idea and first demonstrates that this
method is more advisable on AVRs even for very small input sizes starting from
48 bits. They implemented what they call subtractive Karatsuba. This method
avoids having to take extra carry bits into account by computing |Fl − Fh| and
|Gl − Gh| instead of Fl + Fh and Gl + Gh, which makes it easier to obtain a
constant-time implementation. In the following we report the method, as it was
presented in [14], adapting it to the case of a 16-bit architecture. The steps
for multiplying two n-byte numbers, where in our case n = 32, are described
in detail. Using a 16-bit architecture, we have to process arrays of n/2 = 16
elements. We split those arrays at k = 16/2 = 8.

– Write F = F� + 216kFh and G = G� + 216kGh

– compute L = F� · G�

– compute H = Fh · Gh

– compute M = |F� − Fh| · |G� − Gh| and
– set t = 0, if M = (F� − Fh) · (G� − Gh); t = 1 otherwise;
– compute M̂ = (−1)tM ; and
– obtain the result as FG = L + 216k(L + H − M̂) + 216n/2H.

40 G. Hinterwälder et al.

We use operand-caching multiplication for all multi-precision multiplications
within the Karatsuba multiplication, i.e., the computations of L, H, and M .
|F� − Fh| is computed as follows: first we subtract with borrow all elements in
Fh from those in F� and subtract with borrow from a register bF that was cleared
before. This results in bF = 0 for F� > Fh and bF = 0xffff otherwise. We XOR
bF with F� − Fh resulting in the ones-complement of F� − Fh. We then compute
tF = bF AND 1 add this to the ones-complement of F� −Fh and ripple the carry
through, resulting in the two’s complement of F�−Fh, which is equal to |F�−Fh|.
|G� − Gh| is computed similarly. The value t required for the computation of M̂
is obtained as t = tF ⊕ tG. The same technique that was used to compute the
absolute difference above is used for the computation of M̂ from M , leaving out
the initial subtraction part.

Again we computed the product of the inputs resulting in a double-sized
array and reduced the result mod 2256 − 38. Only at the end of the Curve25519
computation we reduced results mod 2255 − 19. In the following we will refer to
the implementation making use of the 32×32-bit multiplier as 32-bit Karatsuba
and the one for 16 × 16-bit multiplier as 16-bit Karatsuba. We further imple-
mented this method for 2-level Karatsuba, i.e. using subtractive Karatsuba for
the computation of L, H, and M . We will refer to those implementations as
2-Level 32-bit Karatsuba and 2-Level 16-bit Karatsuba, for using 32 × 32-bit
multiplier and 16 × 16-bit multiplier respectively.

5 Performance and Power Consumption Results

We used IAR Embedded Workbench for MSP430 IDE version 5.60.3 to develop
our code and compiled all source code by setting the compiler options to “low”.
This causes dead code, redundant labels and redundant branches to be elimi-
nated and achieves that variables live only as long as they are needed. It further
avoids common subexpression elimination, loop unrolling, function inlining, code
motion and type-based alias analysis [17]. Note that all functions implement-
ing arithmetic in F2255−19 were implemented in assembly, while the higher level
functions are implemented in C. This section describes our implementation and
measurement results.

We first present cycle-count estimates for the modular multiplication imple-
mentations given by IAR Embedded Workbench IDE. We compare these results
for two devices, namely MSP430FR5969 and MSP430F2618 having a 32×32-bit
and a 16 × 16-bit hardware multiplier, respectively. We further present numbers
for the required code space for the multiplication implementations.

For a device that has a 32 × 32-bit hardware multiplier (MSP430FR5969)
we executed the code and measured the execution time using the debugging
functionality of IAR Embedded Workbench IDE. We present the cycle count for
an execution of the Curve25519 variable-base-point single-scalar multiplication
on the MSP430FR5969 for the cases of having a 32 × 32-bit or a 16 × 16-bit
hardware multiplier on this target. Finally, we present our power measurement
results of the execution of different multiplication implementations and the scalar
multiplication on the MSP-EXP430FR5969 Launchpad Evaluation Kit.

Full-Size High-Security ECC Implementation on MSP430 Microcontrollers 41

Table 1. Simulated cycle count for modular multiplication (including reduction) on
MSP430F2618 and MSP430FR5969, given by IAR Embedded Workbench IDE version
5.60.3

MSP430FR5969 MSP430F2618

1 16-bit Operand-caching 3968 3949

2 32-bit Operand-caching 2505 -

3 16-bit Carry-save 7231 7228

4 16-bit Karatsuba 3666 3623

5 32-bit Karatsuba 2501 -

6 16-bit 2-level Karatsuba 3595 3554

7 32-bit 2-level Karatsuba 2705 -

Table 2. Code space (in bytes) required for modular multiplication implementations
(including reduction) on MSP430s.

Code Space (in bytes)

1 16-bit Operand-caching 4762

2 32-bit Operand-caching 2878

3 16-bit Carry-save 8448

4 16-bit Karatsuba 4316

5 32-bit Karatsuba 2826

6 16-bit 2-level Karatsuba 4270

7 32-bit 2-level Karatsuba 3144

5.1 Performance

First we simulated the cycle count and measured the required code space of
the different variants of implementation of the modular multiplication that we
implemented in IAR Embedded Workbench IDE. Table 1 presents the simulated
execution times for the two aforementioned microcontrollers, while Table 2 shows
the required code space for each implementation. It seems quite natural that
the version making use of the 32 × 32-bit hardware multiplier is faster and
requires less code space since fewer load (and store) operations to (and from)
the dedicated registers of the multiplier have to be executed.

We then measured the execution time of all multiplication implementations
on the MSP430FR5969 using the debugging functionality of IAR Embedded
Workbench IDE (Table 3). During this step we realized that wait cycles must
be included when the MSP430FR5969 runs at the frequency of 16 MHz. It is
due to the limited access frequency of FRAM, i.e., 8 MHz. So, the speed of
the implementation is not doubled by increasing the operation frequency from
8 MHz to 16 MHz. Table 3 displays these results. While in simulation the 32-bit
operand-caching multiplication seems to perform similar to the 32-bit Karatsuba

42 G. Hinterwälder et al.

implementation, it turns out that, when executing the implementations on the
board the 32-bit Karatsuba implementation performs a bit better compared to
32-bit operand-caching (cf. Table 3). This is due to the fact that IAR Embedded
Workbench IDE does not correctly simulate the execution time of the hardware
multiplier, i.e. the time it takes until the CPU can read out results from the hard-
ware multiplier. Interestingly, the improvement of using 2-level Karatsuba is only
given when making use of the 16 × 16-bit hardware multiplier (MSP430F2618).
When making use of the 32 × 32-bit multiplier, the overhead required for the
implementation of 2-level Karatsuba seems to dominate over the improvements
in timings. The lowest code space is achieved with 32-bit Karatsuba, but not far
from 32-bit operand-caching (Table 2).

Table 3. Execution time (i.e., cycle count) on MSP-EXP430FR5969 Launchpad Eval-
uation Kit, optimizations set to “low” when running the microcontroller at different
frequencies.

8 MHz 16 MHz

1 16-bit operand-caching 4045 4599

2 32-bit operand-caching 2529 2864

3 16-bit Carry-save 7230 8289

4 16-bit Karatsuba 3696 4203

5 32-bit Karatsuba 2488 2824

6 16-bit 2-level Karatsuba 3606 4119

7 32-bit 2-level Karatsuba 2684 3069

Further we implemented the variable-basepoint single-scalar multiplication
for the cases of having a 32×32-bit and having a 16×16-bit hardware multiplier.
For the implementation that makes use of the 32×32-bit hardware multiplier we
used 32-bit Karatsuba and for the implementation that only requires a 16 × 16-
bit hardware multiplier we used 2-level 16-bit Karatsuba, as those are the fastest
implementations for those cases according to Table 3. On the MSP430FR5969 the
x-coordinate-only variable-basepoint single-scalar multiplication, which makes
use of the 32 × 32-bit hardware multiplier, executes in 6,513,011 clock cycles
and requires 9.1 kB of code space, whereas the 16 × 16-bit hardware multiplier
version, executes in 9,139,739 clock cycles and requires 11.6 kB of code space.

Since there are no implementation results of the plain ECC point multi-
plication on an MSP430X with a 32 × 32-bit hardware multiplier given in the
literature, we compare the results given in the literature to our result for the
16 × 16-bit hardware multiplier (Table 4). Note that Gouvêa et al. obtain better
performance results for a 128-bit-secure elliptic-curve scalar multiplication on
an MSP430X microcontroller with a 32 × 32-bit hardware multiplier, albeit on
a different curve [10], but do not report performance results for the plain scalar
multiplication, but instead for the execution of several ECC-based protocols.

Full-Size High-Security ECC Implementation on MSP430 Microcontrollers 43

Table 4. Execution time (i.e., cycle count) of variable base-point single-scalar multipli-
cations on an elliptic curve providing a security level comparable to 128-bit symmetric
security on MSP430 microcontrollers.

Architecture Cycle count

Wenger et al. [33] MSP 23,973,000

Wenger et al. [32] MSP Clone w/o ISE 22,170,000

Gouvêa et al. [9] MSP 20,476,234

Our implementation MSPX 9,139,739

5.2 Power Consumption

We further examined our code in terms of power consumption on the MSP-
EXP430FR5969 Launchpad Evaluation Kit. We have implemented all multipli-
cations (e.g., listed in Table 1) in such a way that first two random operands
are selected then multiplied together by all multiplication algorithms one after
another. We also used an I/O pin of the MSP-EXP430FR5969 Launchpad Eval-
uation Kit to indicate the start and the end of each algorithm thereby being able
to identify at which period of time each algorithm is executed.

For the power measurements we made use of a LeCroy WaveRunner HRO 66Zi
digital sampling oscilloscope. As the MSP-EXP430FR5969 Launchpad Evalua-
tion Kit has been developed to facilitate power measurements, we could easily
place a 2.2 Ω shunt resistor at the Vdd path of the MSP430FR5969 microcontroller
while no stabilizing capacitor was placed between the measurement point and the
microcontroller. We powered the Evaluation Kit by an external stable power sup-
ply and monitored the current passing through the shunt resistor by means of a
LeCroy AP 033 differential probe at a sampling rate of 1 GS/s.

Figure 3(a) shows a sample power trace where the parts dedicated to each mul-
tiplication are marked. In Fig. 3(b) we also provide a zoomed view of this trace
to highlight several—non-periodic—high peaks which we have observed. We have
observed the same peaks (but periodic) for a couple of NOP operations as well.
The pattern of these high peaks actually differs for different sequence of opera-
tions. The source of this high power consumption peaks are not certainly clear to
us, but it seems that they are relevant to FRAM accesses. That is because fetching
the instructions from the code memory also needs to access the FRAM.

For 1 000 random operand pairs we collected 1000 traces, each of which cov-
ers the execution of all 7 multiplications with the same operands. Correspond-
ing to each multiplication, each trace is divided into 7 parts and the voltage
observed by the differential probe at each sample point is turned into instanta-
neous power as P = V 2/R, where R = 2.2Ω. Average of instantaneous power
values over the period of time corresponding to each multiplication gives us
the power consumption of the device for that operation. We also can turn this
value to amount of energy the device consumed by P · t, where t stands for the
duration of the multiplication. Figure 4 depicts the average of power and energy
consumption of the microcontroller for each multiplication. Note that since the

44 G. Hinterwälder et al.

0.5 1 1.5 2 2.5 3 3.5

3

5

7

9

11

Time [ms]

V
ol

ta
ge

 [
m

v]

 Op_caching_16 Carry_save_16 Karatsuba_32 2-L Kara_32

Op_caching_32 Karatsuba_16 2-L Kara_16

2.19 2.195 2.2 2.205 2.21 2.22 2.225 2.23 2.235 2.24

3

5

7

9

11

2.215
Time [ms]

V
ol

ta
ge

 [
m

v]

(a) full trace

(b) zoomed view

Fig. 3. A sample power trace measured from MSP-EXP430FR5969 Launchpad Eval-
uation Kit when running 7 different multiplications

1 2 3 4 5 6 7
13

13.5

14

14.5

15

Multiplication Algorithm

Po
w

er
 [

µW
]

1 2 3 4 5 6 7
0

3

6

9

12

Multiplication Algorithm

E
ne

rg
y

[n
J]

(a) (b)

Fig. 4. Average of (a) power and (b) energy consumption of different multiplications
(the indices for the algorithms fit to the same order shown in Table 1.)

MSP430FR5969 microcontroller on the Evaluation Kit operates by the internal
oscillator (8 MHz), the duration of each multiplication was not completely the
same for all 1000 measurements due to the small jitter of the oscillator.

As shown by the graphics, 32-bit operand-caching has the lowest power con-
sumption. However, 32-bit Karatsuba consumes less energy as it is the fastest
one (see Table 1). As stated above, using 32-bit Karatsuba the debugging func-
tionality of IAR Embedded Workbench IDE reports 6,513,011 clock cycles for
the execution of a scalar multiplication on Curve25519 on the board having a

Full-Size High-Security ECC Implementation on MSP430 Microcontrollers 45

MSP430FR5969. We verified this result measuring the length of the power trace.
Based on our practical measurements one full execution of the algorithm takes
around 821 ms with operation frequency of 8 MHz. This confirms the cycle count
measured with IAR debugging functionality. To measure its power consumption
we had to decrease the sampling rate to 200 MS/s due to the length of the
trace (825 ms). Based on 100 measurements for random operands, in average the
corresponding power consumption and energy consumption is 14.046µW and
11.623µJ respectively.

6 Conclusion

This paper is the first that presents a full constant-time implementation of
Curve25519 on different MSP430 microcontrollers. In order to evaluate and
improve the efficiency, we implemented and analyzed different finite-field multi-
plication techniques and compared them in terms of speed, code size, and power
consumption. Amongst all considered multiplication techniques, the subtractive
Karatsuba implementation proposed in [14] performs the best. It turned out that
2-level Karatsuba performs better than 1-level Karatsuba in case a 16 × 16-bit
hardware multiplier is available. This is however not the case if the MSP430 has
a 32×32-bit hardware multiplier. We further analyzed our implementation with
the MSP-EXP430FR5969 Launchpad Evaluation Kit. We presented numbers for
the average power and the energy consumption of Curve25519 on this platform.
We showed that with an energy consumption of 11.623µJ the execution of high-
security ECC is feasible on devices operated with battery or harvested power,
such as medical implants.

References

1. Acıiçmez, O., Brumley, B.B., Grabher, P.: New results on instruction cache
attacks. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225,
pp. 110–124. Springer, Heidelberg (2010). http://www.iacr.org/archive/ches2010/
62250105/62250105.pdf. 32

2. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–228.
Springer, Heidelberg (2006). http://cr.yp.to/papers.html#curve25519. 32, 33, 35,
36, 37

3. Bernstein, D.J.: Batch binary edwards. In: Halevi, S. (ed.) CRYPTO 2009.
LNCS, vol. 5677, pp. 317–336. Springer, Heidelberg (2009). http://cr.yp.to/papers.
html#bbe. 38

4. Bernstein, D.J.: Cryptography in NaCl (2009). http://cr.yp.to/highspeed/
naclcrypto-20090310.pdf. 35

5. Bernstein, D.J., Schwabe, P.: NEON crypto. In: Prouff, E., Schaumont, P.
(eds.) CHES 2012. LNCS, vol. 7428, pp. 320–339. Springer, Heidelberg (2012).
http://cryptosith.org/papers/neoncrypto-20120320.pdf. 33

6. Bernstein, D.J., van Gastel, B., Janssen, W., Lange, T., Schwabe, P.,
Smetsers, S.: TweetNaCl: A crypto library in 100 tweets (to appear). Doc-
ument ID: c74b5bbf605ba02ad8d9e49f04aca9a2. http://cryptojedi.org/papers/#
tweetnacl. 33

http://www.iacr.org/archive/ches2010/62250105/62250105.pdf
http://www.iacr.org/archive/ches2010/62250105/62250105.pdf
http://cr.yp.to/papers.htmlcurve25519
http://cr.yp.to/papers.htmlbbe
http://cr.yp.to/papers.htmlbbe
http://cr.yp.to/highspeed/naclcrypto-20090310.pdf
http://cr.yp.to/highspeed/naclcrypto-20090310.pdf
http://cryptosith.org/papers/neoncrypto-20120320.pdf
http://cryptojedi.org/papers/#tweetnacl
http://cryptojedi.org/papers/#tweetnacl

46 G. Hinterwälder et al.

7. Costigan, N., Schwabe, P.: Fast elliptic-curve cryptography on the cell broadband
engine. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 368–385.
Springer, Heidelberg (2009). 33, 36

8. Aranha, D.F., Gouvêa, C.P.L.: RELIC is an Efficient LIbrary for Cryptography
(2014). http://code.google.com/p/relic-toolkit/. Accessed 06 September 2014. 34

9. Gouvêa, C.P.L., López, J.: Software implementation of pairing-based cryptography
on sensor networks using the MSP430 microcontroller. In: Roy, B., Sendrier, N.
(eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 248–262. Springer, Heidelberg
(2009). http://conradoplg.cryptoland.net/files/2010/12/indocrypt09.pdf. 33, 43

10. Gouvêa, C.P.L., Oliveira, L.B., López, J.: Efficient software implementation
of public-key cryptography on sensor networks using the MSP430X microcon-
troller. J. Crypt. Eng. 2(1), 19–29 (2012). http://conradoplg.cryptoland.net/files/
2010/12/jcen12.pdf. 42

11. Guajardo, J., Blümel, R., Krieger, U., Paar, C.: Efficient implementation of elliptic
curve cryptosystems on the TI MSP430x33x family of microcontrollers. In: Kim,
K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 365–382. Springer, Heidelberg (2001). 33

12. Halperin, D., Heydt-Benjamin, T.S., Ransford, B., Clark, S.S., Defend, B., Morgan,
W., Fu, K., Kohno, T., Maisel, W.H.: Pacemakers and implantable cardiac defib-
rillators: Software radio attacks and zero-power defenses. In: IEEE Symposium on
Security and Privacy - IEEE S&P 2008d, pp. 129–142. IEEE Computer Society
(2008). http://www.secure-medicine.org/public/publications/icd-study.pdf. 32

13. Hutter, M., Schwabe, P.: NaCl on 8-Bit AVR microcontrollers. In: Youssef,
A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol.
7918, pp. 156–172. Springer, Heidelberg (2013). http://cryptojedi.org/papers/
avrnacl-20130220.pdf. 33

14. Hutter, M., Schwabe, P.: Multiprecision multiplication on AVR revisited (2014).
http://cryptojedi.org/papers/#avrmul. 37, 39, 45

15. Hutter, M., Wenger, E.: Fast multi-precision multiplication for public-key cryp-
tography on embedded microprocessors. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 459–474. Springer, Heidelberg (2011). https://online.
tugraz.at/tug online/voe main2.getvolltext?pCurrPk=58138. 37, 38

16. T.I. Incorporated: Enabling secure portable medical devices with TI’s MSP430
MCU and wireless technologies (2012). http://www.ti.com/lit/wp/slay027/
slay027.pdf. 32

17. T.I. Incorporated: MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and
MSP430FR69xx family user’s guide (2012). 40

18. T.I. Incorporated: MSP430x2xx family - user’s guide, July 2013. http://www.ti.
com/lit/ug/slau144j/slau144j.pdf. 34

19. T.I. Incorporated: MSP430F261x datasheet (rev. K) (2014). http://www.ti.com/
lit/ds/symlink/msp430f2618.pdf. 34

20. Janssen, W.: Curve25519 in 18 tweets. Bachelor’s thesis, Radboud University
Nijmegen (2014). http://www.cs.ru.nl/bachelorscripties/2014/Wesley Janssen
4037332 Curve25519 in 18 tweets.pdf. 33

21. Karatsuba, A., Ofman, Y.: Multiplication of multidigit numbers on automata.
Soviet Physics Doklady, 7, 595–596 (1963). Translated from Doklady Akademii
Nauk SSSR, Vol. 145, No. 2, pp. 293–294, July 1962. 37, 39

22. Liu, A., Ning, P.: TinyECC: a configurable library for elliptic curve cryptog-
raphy in wireless sensor networks. In: International Conference on Informa-
tion Processing in Sensor Networks - IPSN 2008, pp. 245–256. IEEE (2008).
discovery.csc.ncsu.edu/pubs/ipsn08-TinyECC-IEEE.pdf. 34

http://code.google.com/p/relic-toolkit/
http://conradoplg.cryptoland.net/files/2010/12/indocrypt09.pdf
http://conradoplg.cryptoland.net/files/2010/12/jcen12.pdf
http://conradoplg.cryptoland.net/files/2010/12/jcen12.pdf
http://www.secure-medicine.org/public/publications/icd-study.pdf
http://cryptojedi.org/papers/avrnacl-20130220.pdf
http://cryptojedi.org/papers/avrnacl-20130220.pdf
http://cryptojedi.org/papers/#avrmul
https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=58138
https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=58138
http://www.ti.com/lit/wp/slay027/slay027.pdf
http://www.ti.com/lit/wp/slay027/slay027.pdf
http://www.ti.com/lit/ug/slau144j/slau144j.pdf
http://www.ti.com/lit/ug/slau144j/slau144j.pdf
http://www.ti.com/lit/ds/symlink/msp430f2618.pdf
http://www.ti.com/lit/ds/symlink/msp430f2618.pdf
http://www.cs.ru.nl/bachelorscripties/2014/Wesley_Janssen___4037332___Curve25519_in_18_tweets.pdf
http://www.cs.ru.nl/bachelorscripties/2014/Wesley_Janssen___4037332___Curve25519_in_18_tweets.pdf
http://discovery.csc.ncsu.edu/pubs/ipsn08-TinyECC-IEEE.pdf

Full-Size High-Security ECC Implementation on MSP430 Microcontrollers 47

23. C.U. Ltd.: MIRACL cryptographic SDK (2011). http://www.certivox.com/miracl/
(Accessed 06 September 2014). 34

24. Montgomery, P.L.: Speeding the pollard and Elliptic Curve methods of factoriza-
tion. Math. Comput. 48(177), 243–264 (1987). 32, 35

25. Pendl, C., Pelnar, M., Hutter, M.: Elliptic curve cryptography on the WISP UHF
RFID tag. In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 32–47.
Springer, Heidelberg (2012). 33

26. Sasdrich, P., Güneysu, T.: Efficient elliptic-curve cryptography using
curve25519 on reconfigurable devices. In: Goehringer, D., Santambrogio,
M.D., Cardoso, J.M.P., Bertels, K. (eds.) ARC 2014. LNCS, vol. 8405,
pp. 25–36. Springer, Heidelberg (2014). https://www.hgi.rub.de/media/sh/
veroeffentlichungen/2014/03/25/paper arc14 curve25519.pdf. 33

27. Scott, M., Szczechowiak, P.: Optimizing multiprecision multiplication for public
key cryptography. Cryptology ePrint Archive, Report 2007/299 (2007). http://
eprint.iacr.org/2007/299/. 33

28. I. Systems: IAR C/C++ Compiler reference guide for texas instruments’ msp430
microcontroller family (2011). 32, 34

29. Szczechowiak, P., Kargl, A., Scott, M., Collier, M.: On the application of pair-
ing based cryptography to wireless sensor networks. In: Basin, D.A., Capkun, S.,
Lee, W. (eds.) Proceedings of the Second ACM Conference on Wireless Network
Security - WiSec 2009, pp. 1–12. ACM (2009). 33

30. Szczechowiak, P., Oliveira, L.B., Scott, M., Collier, M., Dahab, R.: NanoECC:
testing the limits of elliptic curve cryptography in sensor networks. In: Verdone,
R. (ed.) EWSN 2008. LNCS, vol. 4913, pp. 305–320. Springer, Heidelberg (2008).
http://www.ic.unicamp.br/ leob/publications/ewsn/NanoECC.pdf. 34

31. Tromer, E., Osvik, D.A., Shamir, A.: Efficient cache attacks on AES, and counter-
measures. J. Cryptol. 23(1), 37–71 (2010). http://www.tau.ac.il/tromer/papers/
cache-joc-20090619.pdf. 32

32. Wenger, E., Unterluggauer, T., Werner, M.: 8/16/32 shades of elliptic curve cryp-
tography on embedded processors. In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT
2013. LNCS, vol. 8250, pp. 244–261. Springer, Heidelberg (2013). 33, 43

33. Wenger, E., Werner, M.: Evaluating 16-bit processors for elliptic curve cryptogra-
phy. In: Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079, pp. 166–181. Springer,
Heidelberg (2011). 33, 43

http://www.certivox.com/miracl/
https://www.hgi.rub.de/media/sh/veroeffentlichungen/2014/03/25/paper_arc14_curve25519.pdf
https://www.hgi.rub.de/media/sh/veroeffentlichungen/2014/03/25/paper_arc14_curve25519.pdf
http://eprint.iacr.org/2007/299/
http://eprint.iacr.org/2007/299/
http://www.ic.unicamp.br/leob/publications/ewsn/NanoECC.pdf
http://www.tau.ac.il/tromer/papers/cache-joc-20090619.pdf
http://www.tau.ac.il/tromer/papers/cache-joc-20090619.pdf

http://www.springer.com/978-3-319-16294-2

	Full-Size High-Security ECC Implementation on MSP430 Microcontrollers
	1 Introduction
	2 The MSP430X Microcontroller Architecture
	3 Implementation of Curve25519
	4 Implementation of Modular Multiplication in F2255-19
	4.1 Multiplication Using Carry-Save Representation
	4.2 Operand-Caching Multiplication
	4.3 Karatsuba Multiplication

	5 Performance and Power Consumption Results
	5.1 Performance
	5.2 Power Consumption

	6 Conclusion
	References

