
Chapter 2
Fundamental Knowledge of Machine
Learning

Abstract This chapter introduces the basic concepts and methods of machine
learning that are related to this book. The classical machine learning methods, like
neural network (CNN), support vector machine (SVM), clustering, Bayesian net-
works, sparse learning, Boosting, and deep learning, are presented in this chapter.

Keywords Machine learning · Support vector machine · Neural network · Deep
learning

Machine learning (ML) is a subfield of artificial intelligence (AI) and computer
science (CS). It concerns the construction and study of systems that learn from
data, rather than following explicitly programmed instructions. ML is widely used
in circumstances where the explicit program cannot be applied. For example, for
navigating on Mars and routing on computer networks, there is no human expertise
or the solutions change in time. Awidely quoted and formal definition is “A computer
program is said to learn from experience E with respect to some task T and some
performance measure P, if its performance on T, as measured by P, improves with
experience E” [1].

ML tasks can be classified as: supervised, unsupervised, semi-supervised, rein-
forcement and development learnings, etc. In supervised learning, the computer is
presented with inputs and the corresponding desired outputs (labels). The target is to
learn a general rule that connects inputs to outputs with the least error between given
labels and predicted labels. In unsupervised learning [2], no labels are provided to
the learning task, leaving it on its own to group similar inputs (clustering) [3]. Unsu-
pervised learning is to seek hidden structure in unlabeled data. As to unsupervised
learning, we cannot evaluate a potential solution since there is no error or reward
signal which comes from the labeled data. Semi-supervised learning combines both
labeled and unlabeled examples to generate an appropriate function or classifier. In
reinforcement learning, a computer program interacts with a dynamic environment
so that it has to execute a certain task without explicit instructions. Developmen-
tal learning is usually designed for robot learning. It generates its own sequences
(also called as curriculum) of learning situations to acquire repertoires of novel

© The Author(s) 2015
L. Xu et al., Visual Quality Assessment by Machine Learning,
SpringerBriefs in Signal Processing, DOI 10.1007/978-981-287-468-9_2

23

24 2 Fundamental Knowledge of Machine Learning

skills cumulatively through autonomous self-exploration and social interaction with
human “teachers.” We next give some representative approaches falling into these
categories.

Many kinds ofML approaches were developed by the pioneer researchers, includ-
ing artificial neural network (ANN), support vector machine (SVM), Bayesian net-
works (BN), clustering, representation learning, sparse dictionary learning, deep
learning, AdaBoost, and so on. In this chapter, we give brief description of various
ML methods (with emphasis in SVM and deep learning) that are relevant to both
existing and future VQA, and their applications will be further investigated in the
following chapters.

2.1 Artificial Neural Networks

An ANN (or “neural network” (NN)) [4] is a kind of learning algorithms with the
inspiration from the structure and functional aspects of biological neural networks.
Computation is structured based on an interconnected group of artificial neurons, and
information is processed by using a connectionist approach. The NNs are designed to
model complex relationships between inputs and outputswhich are usually nonlinear.
They try to find patterns in data, or to capture the statistical structure in an unknown
joint probability distribution between observed variables.

2.2 Support Vector Machine

In ML family, SVM [5, 6] is a supervised learning algorithm, which is usually
used for classification and regression analysis. Given a set of training samples with
associated labels, an SVM classifier is learnt from this training set, and used to assign
new examples into one category or the other. An SVM model is trained to find the
hyperplanes that have the largest distance to the nearest training data point of any
class, so that it can separate samples by a clear gap as wide as possible. Then, the
new examples can be easily classified into one of the categories based on which side
of the gap they fall on. The simplest form of SVM is a linear classifier. SVM can
also perform a nonlinear classification by using the kernels which can convert their
inputs into high-dimensional feature spaces so that a linear classifier can be used in
the high-dimensional space.

Given training data D with n points as

D = {
(xi , yi) | xi ∈ R

p, yi ∈ {−1, 1}}n
i=1 (2.1)

where the yi being either 1 or −1 indicates the class to which the point xi belongs.
Each xi is a p-dimensional real vector. We intend to find the hyperplane that has the
largest distance from the nearest points so that it can divide the points having yi = 1

2.2 Support Vector Machine 25

from those having yi = −1 clearly. Any hyperplane can be represented by a set of
points x that satisfy

w · x − b = 0, (2.2)

where · represents the dot product, the vector w is normal to the hyperplane, and the
offset of the hyperplane from the origin along the normal vector w is quantified by
b/‖w‖.

If the training data are linearly separable, there exist two hyperplanes which
can separate the data points clearly without data points between them as shown in
Fig. 2.1. The region bounded by these two hyperplanes is called “the margin.” These
two hyperplanes can be defined as

w · x − b = 1, (2.3)

and
w · x − b = −1. (2.4)

Observing Fig. 2.1, we know that the distance between these two hyperplanes is
2/‖w‖. The SVM training tries to maximize this distance, i.e., minimize ‖w‖. Since
we also need to prevent data points from falling into the margin, the constraints

Fig. 2.1 Hyperplanes and margin for an SVM trained with samples from two classes

26 2 Fundamental Knowledge of Machine Learning

w · xi − b ≥ 1 and w · xi − b ≤ −1 are imposed for {xi} of the first class and the
second class, respectively. These constraints can be rewritten as

yi (w · xi − b) ≥ 1; 1 ≤ i ≤ n. (2.5)

Then, an optimization problem can be formulated as

min
w,b

‖w‖
s.t. yi (w · xi − b) ≥ 1; 1 ≤ i ≤ n.

(2.6)

2.2.1 Primal Form

By substituting ‖w‖ with 1
2‖w‖2, a quadratic programming optimization problem is

proposed as
min
w,b

1
2‖w‖2

s.t. yi (w · xi − b) ≥ 1; 1 ≤ i ≤ n.
(2.7)

Introducing Lagrange multipliers αi , i = 1, . . . , n, (2.7) can be expressed as

min
w,b

max
αi ≥0

{
1

2
‖w‖2 −

n∑

i=1

αi [yi (w · xi − b) − 1]
}

. (2.8)

2.2.2 Dual Form

Let

L(w, b,α) = 1

2
‖w‖2 −

n∑

i=1

αi [yi (w · xi − b) − 1]. (2.9)

By setting the derivations of L(w, b, α) with respect to w and b to zero. We have

∇w L(w, b, α) = w −
n∑

i=1

αi yi xi = 0

∂

∂b
=

n∑

i=1

αi yi = 0

(2.10)

2.2 Support Vector Machine 27

which implies that

w =
n∑

i=1

αi yi xi. (2.11)

Plugging (2.11) back into (2.8), we get

max
αi ≥0

⎧
⎨

⎩

n∑

i=1

αi − 1

2

n∑

i, j=1

yi y jαiα j < xi , x j >

⎫
⎬

⎭
. (2.12)

This is the dual form of SVM, which indicates that the maximum-margin hyperplane
and the associated classification task only concern the support vectors. In (2.12),
only αi are variables. By solving the dual form (2.12), αi can be obtained. Then,
w can be calculated from (2.11). Having found w, since the hyperplane is given by
w · xi − b = 0, it is also straightforward to find the optimal value for the intercept
term b as

b =
max

i :yi =−1
w · xi + min

i :yi = 1
w · xi

2
. (2.13)

SVM regression was proposed by Drucker et al. in [7]. It is also named as sup-
port vector regression (SVR). The SVR is modeled by the same way of support
vector classification (as mentioned above). It only concerns a subset of the training
data points, since the training data points that lie beyond the margin are excluded
for establishing optimization function (cost function) in SVM/SVR. There are two
general forms of SVR, i.e., ε-SVR, least square (LS)SVR proposed by Suykens and
Vandewalle in [8].

In ε-SVR, the target is to find a function f (x) that has at most ε deviation from
the actually obtained targets yi for all the training data.

Similar to SVM, the optimization function of ε-SVR is written as

min
w,b

1

2
‖w‖2

s.t.yi − w · xi + b ≤ ε;
w · xi − b − yi ≤ ε; 1 ≤ i ≤ n.

(2.14)

A tacit assumption in 2.14 is that such a function f exists that approximates all pairs
(xi , yi) with ε precision, or in other words, that the convex optimization problem is
feasible. However, this assumption is false, or we may want to allow for some errors.
Analogously to the “soft margin” loss function in SVM [5], we introduce slack
variables ξi , ξ∗

i to cope with otherwise infeasible constraints of the optimization
problem 2.14. Then, a new optimization objective function with slack variables is
derived as

28 2 Fundamental Knowledge of Machine Learning

min
w,b

1

2
‖w‖2 + C

n∑

i=1

(ξi + ξ∗
i)

s.t.yi − w · xi + b ≤ ε + ξi ;
w · xi − b − yi ≤ ε + ξ∗

i ;
ξi , ξ

∗
i ≥ 0;

1 ≤ i ≤ n.

(2.15)

The constant C > 0 determines that trade-off between the flatness of f and the
amount up to which deviations larger than ε are tolerated.

By introducing a dual set of variables, a Lagrange function from both the objec-
tive function (called primal objective function) and the corresponding constraints is
constructed as

min
w,b

max
α≥0;ξ≥0

1

2
‖w‖2 + C

n∑

i=1

(ξi + ξ∗
i)

−
n∑

i=1

αi (ε + ξi − yi + w · xi − b) (2.16)

−
n∑

i=1

α∗
i (ε + ξ∗

i + yi − w · xi + b) −
n∑

i=1

(ηiξi + η∗
i ξ∗

i)

Following the procedure of SVM for dual form (Eqs. (2.9)–(2.12)), the dual form of
ε-SVR is derived as

max
α

⎧
⎨

⎩
−1

2

n∑

i, j=1

(αi − α∗
i)(α j − α∗

j)(xi · x j)

−ε

n∑

i=1

(αi + α∗
i) +

n∑

i=1

yi (αi − α∗
i)

}

s.t.
n∑

i=1

(αi − α∗
i) = 0;αi , α

∗
i ∈ [0, C] (2.17)

2.3 Clustering

Cluster analysis is to organize observations into several subsets (called clusters) so
that observationswithin the same cluster are similar,while those observations coming
from different clusters are dissimilar with respect to some predefined criteria. Differ-
ent clustering methods have the different assumptions upon the data structure; they

2.3 Clustering 29

are often defined by some similarity metric and evaluated by internal compactness
(similarity between members of the same cluster) and separation between different
clusters. Other methods are established upon estimated density and graph connectiv-
ity. Clustering method belongs to unsupervised learning, which is used for statistical
data analysis. K-means clustering is a classical representation of clustering methods,
and serves as a prototype of the cluster. It partitions n observations into k clusters in
which each observation belongs to the cluster with the nearest mean.

2.4 Bayesian Networks

ABayesian network (BN) [9], also known as belief network or directed acyclic graph-
ical (DAG) model belongs to the family of probabilistic graphical models (GMs).
These GMs are used to represent a set of random variables and their conditional
independencies via a directed acyclic graph (DAG). Formally, a Bayesian network
B is a DAG that represents a joint probability distribution over a set of random vari-
able V. The network is defined by a pair B = < G,Θ >. G represents the DAG
whose nodes {Xi , i = 1, . . . , n} represent random variables, and edges represent
conditional dependencies between these variables.

2.5 Representation Learning

The success of ML algorithms generally depends on data representation. Although
specific domain knowledge can be used to design representations, learning with
generic priors can also be used. The learned representations are more powerful than
the ones designing for the specific purposes with respect to their generalization abil-
ities. Representation learning [10] is about learning representations of the data that
make it easier to extract useful information when building classifiers or other predic-
tors. It aims at discovering better representations of the data. The typical examples
are principal components analysis [11, 12] and cluster analysis [13]. Representa-
tion learning algorithms can be either unsupervised or supervised, including autoen-
coders, dictionary learning, matrix factorization, restricted Boltzmannmachines, and
various forms of clustering.

2.6 Sparse Dictionary Learning

In sparse dictionary learning, the data are represented by a group of basis functions
[14]. The coefficients are assumed to be sparse. Let x be a d-dimensional datum,
D be a d × n matrix, where each column of D represents a basis function. r is the
coefficient to represent x using D. Mathematically, sparse dictionary learning means

30 2 Fundamental Knowledge of Machine Learning

the following x ≈ D × r where r is sparse. Generally speaking, n is assumed to be
larger than d to allow the freedom for a sparse representation.

Sparse dictionary learning has been used in several circumstances. In classifica-
tion, the problem is to group the unknown input data into the corresponding classes.
Assume that we have already had a dictionary for each class. Then, we determine
the class for a new input such that this new input is best sparsely represented by
the corresponding dictionary. Sparse dictionary learning is also applicable to image
denoising on the basis that a clean image path can be sparsely represented by an
image dictionary, but the noise cannot be represented well [15].

2.7 AdaBoost

“Adaptive Boosting” (AdaBoost) [16, 17] is an ML meta-algorithm. It can be
employed in conjunction with other types of learning algorithms to improve their
performance. An AdaBoost learner is composed by several other learning algorithms
which are called “weak learners.” In ensemble of other learning algorithms, the out-
puts of these learning algorithms are combined into a weighted sumwhich represents
the output of the boosted classifier. AdaBoost highlights the instances that are mis-
classified by these weak classifiers for ensemble. The shortcoming of AdaBoost lies
in that it is sensitive to noisy data and outliers. However, it can be less susceptible
to the overfitting problem than other learning algorithms. In AdaBoost, although
the individual learner is weak, the final synthesized model can converge to a strong
learner as long as the performance of each week learner is slightly better than random
guessing.

AdaBoost refers to a particular method of training a boosted classifier. A boost
classifier is a classifier in the form

FT (x) =
T∑

t=1

ft (x), (2.18)

where ft is a weak learner which takes an object x as input. ft has a real-valued
output which indicates the class of the object belonging to. The sign of the weak
learner output identifies the predicted class of the object x . The absolute value of the
week learner gives the confidence in that classification. In a similar way, the T-layer
classifier would be positive if the sample is regarded to be in the positive class and
negative otherwise.

Each weak learner produces an output, hypothesis h(xi), for each sample in the
training set. At each iteration t , a weak learner is selected, and a coefficient αt is
assigned such that the sum training error Et of the resulting t-stage boost classifier
is minimized.

Et =
∑

i

E[Ft−1(xi) + αt h(xi)], (2.19)

2.7 AdaBoost 31

where Ft−1(x) represents the boost classifier which has been built up to the previous
stage of training, E(F) is error function, and ft (x) = αt h(x) is the weak learner
that is being included for addition to the final classifier.

2.8 Deep Learning

Deep learning is a kind of ML method, and it is used to learn the representations
of data. An observation (e.g., an image) can be represented in many ways (e.g., a
vector of pixels). Some representations are in favor of the tasks of learning from
given samples. The associated research in this area attempts to figure out what are
better representations and how to learn these representations.

Various deep learning architectures, such as convolutional neural networks
(CNNs), deep neural networks (DNNs), and deep belief networks (DBNs) have
been successfully applied to computer vision, natural language processing, auto-
matic speech recognition, and music/audio signal recognition. They have shown the
competitive performance on various tasks. “Deep learning” was initially raised in
1980 [18–20]. However, the time complexity to train the network was every expen-
sive, preventing it from practical use [21]. Thus, it gave the way to another popular
ML technique, SVM temporarily. Until mid of 2000, it once again drawn the interest
of researchers after a publication by Hinton [22]. This publication investigated how
a many-layered feedforward NN could be effectively pretrained one layer at a time,
by treating each layer in turn as an unsupervised restricted Boltzmann machine, and
then using supervised backpropagation for fine-tuning.

Advances in hardware are also an important reason for the renewed interest of
deep learning. Particularly, the graphics processing units (GPUs) are highly suitable
for the kind of number crunching, matrix/vector computations in neural networks.
GPUs have been witnessed to speed up training processing dramatically [23, 24],
making deep learning practical for general use.

For explaining the common architectures of deep learning, two basic models:
DNN and DBN are described as follows.

2.8.1 Deep Neural Networks

A DNN is defined to be an ANN with at least one hidden layer of unit between the
input and output layers. It can model complex nonlinear relationships well. The extra
layers give a DNN-added levels of abstraction, thus increasing its modeling capabil-
ity. A DNN is usually designed as a feedforward network. It also can be recurrent
neural networks, e.g., the application of language modeling in [25]. A DNN can be

32 2 Fundamental Knowledge of Machine Learning

discriminatively trained by the standard backpropagation algorithm. The weights of
neurons are updated via stochastic gradient descent as

Δωi j (t + 1) = Δωi j (t) + η
∂C

∂ωi j
(2.20)

where η represents the learning rate, C is the cost function. The cost function is
chosen depending on the activation function and learning type (supervised, unsu-
pervised, reinforcement, etc.). For example, when encountering a multiclass clas-
sification problem by using supervised learning, the activation function and cost
function are usually the softmax function and cross-entropy function, respectively.
The softmax function is defined as

p j = exp(x j)∑
k exp(xk)

, (2.21)

where p j represents the class probability, and x j and xk are the inputs to units j and
k, respectively. The cross entropy is defined as

C = −
∑

j

d j log(p j), (2.22)

where d j is the target probability for output unit j , and p j represents the probability
output for unit j after applying the activation function [26].

The overfitting and computation time are two common issues in DNNs. DNNs are
very prone to overfitting due to the added layers of abstraction, which allow them to
model rare dependencies in the training data. Therefore, regularization methods such
asweight decay (
2-regularization) or sparsity (
1-regularization) are used during the
training process to prevent overfitting [27]. In [28], another regularization method,
namely “dropout” regularization was applied to DNNs. In dropout, some units are
randomly omitted from the hidden layers during training process, which could break
the rare dependencies which may occur in the training data.

In comparison with other trainingmethods, backpropagation and gradient descent
are easier to be implemented, and tend to converge to better local optima. Thus,
they have been the preferred for the training of DNNs. However, they are very
computationally expensive, especially for trainingDNNs. There aremany parameters
in a DNN, such as the size (number of layers and number of units per layer), the
learning rate, the initial weights, etc. Sweeping through all these parameters may not
be feasible in many tasks due to the expensive time cost. Therefore, various “tricks”
have been used to speed up computation, such as using mini-batching (computing
the gradient on several training examples at once rather than individual examples)
[29]. Since the matrix and vector computations can be well suited for GPUs, the
GPU-facilitated processing contributes significantly for speeding up. However, it is
hard to use large cluster machines for training DNNs, so better parallelizing training
methods are undoubtedly desirable.

2.8 Deep Learning 33

2.8.2 Deep Belief Network

ADBN is a probabilistic, generativemodelmade up ofmultiple layers of hidden units
[30]. It can be regarded as a composition of simple learning modules which make
up each layer. A DBN can be used for generatively pretraining a DNN by using the
learned weights from the DBN as the initial weights of the DNN. Backpropagation
or other discriminative algorithms can then be employed to fine-tune these weights.
This is particularly useful in situations with the limited number of training data since
the initial weights are influential on the performance of the final model. Good initial
weights benefit modeling capability and convergence of the fine tuning [31].

A DBN can be efficiently trained in an unsupervised, layer-by-layer manner.
Each layer is typically made of restricted Boltzmann machines (RBM). An RBM is
an undirected, generative energy-based model with an input layer and single hidden
layer. The visible units of the input layer and the hidden units of the hidden layer are
connected without the connections of visible–visible or hidden–hidden. The training
method for RBMs was initially proposed by Hinton [32] for training Product of
Expert (PoE) models. This method was named as contrastive divergence (CD) which
provided an approximation to the maximum likelihood method [29, 33].

In training a single RBM, weight updates are performed with gradient ascent as

Δωi j (t + 1) = ωi j (t) + η
∂ log(p(ν))

∂ωi j
, (2.23)

where p(ν) is the probability of a visible vector, which is given by

p(v) = 1

Z

∑

h

e−E(ν,h), (2.24)

where Z is used for normalizing, and E(ν, h) is the energy function assigned to
the state of the network. A lower energy indicates that the network is in a more
“desirable” configuration. The gradient ∂ log(p(ν))/∂ωi j has the simple form

〈νi h j 〉data − 〈νi h j 〉model, (2.25)

where 〈·〉p represent averages with respect to distribution p.
In the procedure of CD, we first initialize the visible units to a training vector.

Then, we update the hidden units in parallel provided the visible units by

p(h j = 1 | V) = σ(b j +
∑

i

νiωi j), (2.26)

where σ represents the sigmoid function and b j is the bias of h j . Next, the visible
units are updated in parallel given the hidden units as

34 2 Fundamental Knowledge of Machine Learning

p(νi = 1 | H) = σ(ai +
∑

j

h jωi j), (2.27)

where ai is the bias of vi . This step is called the “reconstruction” step. After that, we
reupdate the hidden units in parallel given the reconstructed visible units as (2.26).
Finally, the weights are updated as

Δωi j ∝ 〈νi h j 〉data − 〈νi h j 〉reconstruction. (2.28)

Once an RBM is trained, another RBM can be “stacked” atop of it to create a
multilayer model. At each time, another RBM is stacked, the input visible layer is
initialized to a training vector and values for the units in the already-trained RBM
layers are assigned using the currentweights and biases. Thefinal layer of the already-
trained layers are used as input to the new RBM. The new RBM is then trained with
the procedure above such that this whole process can be repeated until some desired
stopping criterion is satisfied. Although CD is a crude approximation of maximum
likelihood that would be ideal for training RBM, it has been proved to be an effective
method for training deep architectures [29].

References

1. Mitchell T (1997) Machine learning. McGraw Hill, New York. ISBN 0-07-042807-7
2. Duda RO, Hart PE, Stork DG (2009) Unsupervised learning and clustering, chapter 10 in

pattern classification. Wiley, New York, p 571. ISBN 0-471-05669-3
3. Bishop CM (2006) Pattern recognition and machine learning. Springer, New York. ISBN

0-387-31073-8
4. Golovko V, Imada A (1990) Neural networks in artificial intelligence. Ellis Horwood Limited,

Chichester. ISBN 0-13-612185-3
5. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273
6. Support Vector Machine (2015) In: Wikipedia, The free encyclopedia. http://en.wikipedia.org/

w/index.php?title=Support_vector_machine&oldid=654587935. Accessed 8 Apr 2015
7. Drucker H et al (1997) Support vector regression machines In: Advances in neural information

processing systems 9, NIPS 1997. MIT Press, Cambridge, pp 155–161
8. Suykens JAK, Vandewalle J, Joos PL (1999) Least squares support vector machine classifiers.

Neural Process Lett 9(3):293–300
9. Pearl J, Russel S (2001) Bayesian networks, report (R-277), November 2000, In: Arbib M (ed)

Handbook of brain theory and neural networks. MIT Press, Cambridge, pp 157–160
10. Bengioy Y, Courville A, Vincent P (2014) Representation learning: a review and new perspec-

tives. 1206.5538v3[cs.LG]. Accessed 23 April 2014
11. Jolliffe IT (2002) Principal component analysis. In: Series: springer series in statistics, 2nd ed.

Springer, New York, XXIX, 487, p. 28 illus
12. SmithLI (2002)A tutorial onpricipal component analysis. http://www.cs.otago.ac.nz/cosc453/

student_tutorials/principal_components.pdf. Accessed Feb 2002
13. Coates A, YN Andrew (2012) Learning feature representations with k-means. In: Neural net-

works: tricks of the trade. Springer LNCS, Heidelberg (reloaded)
14. Kenneth K-D et al (2003) Dictionary learning algorithms for sparse representation. Neural

Comput 15.2: 349–396

http://en.wikipedia.org/w/index.php?title=Support_vector_machine&oldid=654587935
http://en.wikipedia.org/w/index.php?title=Support_vector_machine&oldid=654587935
http://arxiv.org/abs/1206.5538v3
http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf
http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf

References 35

15. Aharon M, Elad M, Bruckstein A, Katz Y (2006) K-SVD: an algorithm for designing over-
complete dictionaries for sparse representation. IEEE Trans Signal Process 54(11):4311–4322

16. Freund Y, Schapire RE (1999) A short introduction to boosting. In: Proceedings of the 16-th
international joint conference on artificial intelligence, vol 2, pp 1401–1406

17. AdaBoost (2015) In: Wikipedia, The free encyclopedia. http://en.wikipedia.org/w/index.php?
title=AdaBoost&oldid=647686369. Accessed 8 Apr 2015

18. Deep Learning (2015) In: Wikipedia, The free encyclopedia. http://en.wikipedia.org/w/index.
php?title=Deep_learningoldid=655313266. Accessed 8 Apr 2015

19. Fukushima K (1980) Neocognitron: a self-organizing neural network model for a mechanism
of pattern recognition unaffected by shift in position. Biol Cybern 36:193–202

20. Werbos P (1974) Beyond regression: new tools for prediction and analysis in the behavioral
sciences. Ph.D. thesis, Harvard University

21. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Jackel LD (1989) Backpropagation
applied to handwritten zip code recognition. Neural Comput 1:541–551

22. HintonGE (2007) Learningmultiple layers of representation. Trends Cogn Sci 11(10):428–434
23. Ciresan DC, Meier U, Gambardella LM, Schmidhuber J (2010) Deep big simple neural nets

for handwritten digit recognition. Neural Comput 22:3207–3220
24. Raina R, Madhavan A, YN Andrew (2009) Large-scale deep unsupervised learning using

graphics processors. Proceedings of 26th international conference on machine learning
25. Mikolov T, Karafiat M, Burget L, Cernnocky J, Khudanpur S (2010) Recurrent neural network

based language model. In: Proceedings of NTERSPEECH 2010, 11th annual conference of the
international speech communication association, Makuhari, Chiba, Japan, 26–30 Sept 2010

26. Hinton GE, Li D, Dong Y, Dahl GE et al (2012) Deep neural networks for acoustic modeling
in speech recognition: the shared views of four research groups. IEEE Signal Process Mag
29(6):82–87

27. Bengio Y, Boulanger-Lewandowski N, Pascanu R (2013) Advances in optimizing recurrent
networks. In: Proceedings of IEEE international conference on acoustics, speech and signal
processing (ICASSP), pp 8624–8628, May 2013

28. DahlGE, SainathTN,HintonGE (2013) Improving deep neural networks for LVCSRusing rec-
tified linear units and dropout. In: Proceedings of IEEE international conference on acoustics,
speech and signal processing (ICASSP), pp 8609–8623, May 2013

29. Hinton GE (2010) A practical guide to training restricted Boltzmann machines. Technical
report, UTML TR 2010–003. Universityof Toronto, Department of Computer Science

30. Hinton GE (2009) Deep belief networks. Scholarpedia 4(5):5947
31. Larochelle H, Erhan D, Courville A, Bergstra J, Bengio Y (2007) An empirical evaluation

of deep architectures on problems with many factors of variation. In: Proceedings of 24th
international conference machine learning, pp 473–480

32. Hinton GE (2002) Training product of experts by minimizing contrastive divergence. Neural
Comput 14:1771–1800

33. Fischer A, Igel C (2014) Training restricted Boltzmann machines: an introduction. Pattern
Recogn 47(1):25–39

http://en.wikipedia.org/w/index.php?title=AdaBoost&oldid=647686369
http://en.wikipedia.org/w/index.php?title=AdaBoost&oldid=647686369
http://en.wikipedia.org/w/index.php?title=Deep_learningoldid=655313266
http://en.wikipedia.org/w/index.php?title=Deep_learningoldid=655313266

http://www.springer.com/978-981-287-467-2

	2 Fundamental Knowledge of Machine Learning
	2.1 Artificial Neural Networks
	2.2 Support Vector Machine
	2.2.1 Primal Form
	2.2.2 Dual Form

	2.3 Clustering
	2.4 Bayesian Networks
	2.5 Representation Learning
	2.6 Sparse Dictionary Learning
	2.7 AdaBoost
	2.8 Deep Learning
	2.8.1 Deep Neural Networks
	2.8.2 Deep Belief Network

	References

