
Chapter 2
Double Counting

2.1 Introduction

Often mathematicians want to develop formulas for sums of terms. As we have seen,
induction is one way to establish the truth of such formulas. However, induction
relies on foreknowledge of the formula which has to be derived or guessed in some
other way first. Induction also does not assist with recall. An alternate way to find and
derive many counting formulas is double counting. With this technique, we divide
up a collection of objects in two different ways. The results of the two different
divisions must agree and this can yield a formula for the more complicated one.
Such approaches have the advantage that the technique for finding the formula is
often more memorable than the formula itself.

2.2 Summing Numbers

We wish to find the sum of the first N numbers. Call this xN . So

xN =
N∑

j=1

j.

We can regard the sum as a triangle with 1 stone in the first row, two stones in
the second, three in the third and so on. See Fig. 2.1. Now if we make a copy of the
triangle and rotate it through 180◦, we get N stones in the first row, N − 1 in the
second, N − 2 in the third and so on. Joining the two triangles together, we have N
rows of N + 1 stones. The total number of stones is N (N + 1). So

X N = 1

2
N (N + 1).
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12 2 Double Counting

Fig. 2.1 Stones arranged in
rows with one more stone in
each row together with the
same stones rotated

We could also give this proof algebraically. Before proceeding to the algebra, we
look at a special case. If we have 5 stones, then

X5 = 1 + 2 + 3 + 4 + 5,

X5 = 5 + 4 + 3 + 2 + 1,

2X5 = (1 + 5) + (2 + 4) + (3 + 3) + (4 + 2) + (5 + 1).

Now the algebra, if we reverse the order of the sum, we get

xN =
N∑

j=1

(N + 1 − j).

Adding the two expressions for xN together,

2xN =
N∑

j=1

(N + 1) = N (N + 1),

and the result follows.
A similar argument can be used for the sum of the first N odd numbers

yN =
N∑

j=1

(2 j − 1).

Either by rotating the triangle or by reversing the order of the sum, we have

yN =
N∑

j=1

(2N + 1 − 2 j).
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So

2yN =
N∑

j=1

2N .

We conclude that
yN = N 2.

Aswell as being the sum of the first N odd numbers, N 2 is also the sum of the first
N numbers plus the first N −1 numbers. One way to see this is take an N × N grid of
stones and see how many stones lie on each upwards sloping diagonal. For the first
N diagonals, the j th diagonal has j stones. These contribute the sum of the first N
numbers.After N , the lengthof the diagonals goes downbyone each time.The second
set therefore contribute the sum of the first N − 1 numbers and the result follows.

2.3 Vandermonde’s Identity

Suppose we have m + n jewels of varying sizes. There are m rubies and n sapphires.
How many different ways can we select r jewels to be placed on a bracelet? Clearly,
the answer is (

m + n

r

)
.

Note that since the jewels are all of different sizes, two different selections of r jewels
are essentially different. However, if we first think in terms of using k rubies and
r − k sapphires, we see that the answer is also

r∑

k=0

(
m

k

)(
n

r − k

)
.

(We take the binomial coefficient to be zero when the inputs are out of their natural
range. For example, if r > m, there are zero ways to choose r rubies.) In conclusion,
we have Vandermonde’s identity:

(
m + n

r

)
=

r∑

k=0

(
m

k

)(
n

r − k

)
.
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2.4 Fermat’s Little Theorem

Fermat’s little theorem states

Theorem 2.1 If a is a positive integer and p is prime then p divides a p − a.

An elementary proof can be made using double counting.

Proof Consider strings of letters of length p. The letters are from the first a letters
in the alphabet. (If a > 26, we add extra letters to the alphabet.) How many such
strings are there? Order matters, so we have a choices in each slot and there are p
slots, so we get a p different strings.

Now consider the operation on these strings of chopping off an element at the end
and reinserting it at the front. Call this T 1. We define T j to be the result of applying
T 1 j times. Clearly, T p is the identity map. We give some examples when p = 3
and a = 2.

T 1(AAA) = AAA,

T 1(AB A) = AAB,

T 2(AB A) = B AA.

Two strings, x and y, are said to be in the same orbit if there exists j such that

T j x = y.

Note that then
T p− j y = x .

Also note that if x and y are in the same orbit, and y and z are in the same orbit then
x and z are too. So being in the same orbit is an equivalence relation. (See Appendix
B for further discussion of equivalence relations.) This implies that every string is in
exactly one orbit.

If a string is all one letter, e.g. “AAA”, then it is the only string in its orbit. There
are a such strings and so a orbits of size 1.

Now suppose a string x has more than one letter in it. Consider the strings

x, T x, T 2x, . . . , T p−1x .

These will all be in the same orbit and everything in x’s orbit is of this form. If we
keep going we just get the same strings over again since T px = x . There are at most
p elements in these orbits then. We show that when p is prime there are exactly p
elements. If there were less than p then for some k < p, we would have

T k x = x .
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This means that cutting off the last k elements and sticking them at the front does
not change the string. We also have

x = T k x = T 2k x = T 3k x = T 4k x = . . .

This implies that x is made of p/k copies of the first k elements. However, p is
prime so its only divisor are 1 and p. If k = 1 then we have a string of elements the
same which is the case we already discussed. If k = p then we are just saying that
T px = x which is always true.

So we have two sorts of orbits, those with p elements and those with 1 element.
We showed that there are a of the second sort. Let there be m of the first sort. Since
there are a p strings in total, we have

a p = mp + a,

So
pm = a p − a.

This says precisely that p divides a p − a. �

This proof is due to Golomb (1956).

2.5 Icosahedra

An icosahedron is a polyhedronwith 20 faces.Whenworkingwith three-dimensional
solids, we can divide their surfaces into vertices, edges and faces. A vertex is a
corner, a face is a flat two-dimensional side and an edge is the line defining the side
of two faces.

A regular icosahedron is a Platonic solid. Every face is a triangle and the same
number of faces meet at each vertex. How many edges does an icosahedron have?
Call this number E . We know that there are 20 faces and that each face is a triangle.
Define an edge-face pair to be a face together with one of the sides of the face which
is, of course, an edge of the icosahedron. There are 60 such pairs since each face
has 3 sides.

Each edge of the icosahedron lies in precisely two sides. The number of edge-face
pairs is therefore double the number of edges. That is

2E = 60

and so E = 30.
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2.6 Pythagoras’s Theorem

The reader will already be familiar with the theorem that for a right-angled triangle,
the square of the hypotenuse is equal to the sum of the squares of the other two sides.
So if the sides are a, b and c, with c the longest side, we have

c2 = a2 + b2.

We can use an extension of the double counting pattern to prove this theorem. Instead
of using equal numbers of objects, we use equal areas. We take the triangle and fix a
square with side length c to its side of that length. We then fix a copy of the triangle
to each of the square’s other sides. See Fig. 2.2. At each vertex of the square, we get
3 angles, each of which is one of the angles of the triangle so these add up to 180◦
and make a straight line. We now have two squares: the big one has side a + b and
the small one c. The former’s area is

(a + b)2 = a2 + 2ab + b2.

We can also regard the big square as the small one plus 4 copies of the triangle and
so it has area

c2 + 4 × 0.5ab = c2 + 2ab.

Fig. 2.2 Four right-angled
triangles with sides a, b, c,
placed on a square of side c
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Equating these two, we get
a2 + b2 = c2,

as required. Our proof is complete.

2.7 Problems

Exercise 2.1 Let a and b be integers. Develop a formula for

n∑

j=1

a + jb.

Exercise 2.2 How many vertices does an icosahedron have?

Exercise 2.3 If p is a prime and not 2, and a is an integer, show that 2 divides into
a p − a. (Try to construct a bijection on the set of size p orbits which pairs them.)

Exercise 2.4 Suppose we have three sorts of jewels and apply the arguments for
Vandermonde’s identity, what formula do we find?
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