Sglnt: Safeguarding Interrupts
for Hardware-Based 1/0 Virtualization
for Mixed-Criticality Embedded Real-Time
Systems Using Non Transparent Bridges

Daniel Miinch! ™), Michael Paulitsch?, Oliver Hanka',
and Andreas Herkersdorf?

1" Airbus Group Innovation, Munich, Germany
{Daniel .Muench,Michael.Paulitsch,0Oliver. Hanka}@airbus .com
2 Institute for Integrated Systems, TU Miinchen, Munich, Germany
herkersdorf@tum.de

Abstract. Safety critical systems and in particular higher functional
integrated systems like mixed-criticality systems in avionics require a safe-
guarding that functionalities cannot interfere with each other. A notably
underestimated issue are I/O devices and their (message-signaled) inter-
rupts. Message-signaled interrupts are the omnipresent type of interrupts
in modern serial high-speed I/O subsystems. These interrupts can be
considered as small DMA write packets. If there is no safeguarding for
interrupts, an I/O device associated with a distinct functionality can trig-
ger any interrupt or manipulate any control register like triggering reset
of all processing cores to provoke a complete system failure. This is a par-
ticular issue for available embedded processor architectures, since they
do not provide adequate means for interrupt separation like an IOMMU
with a granularity sufficient for interrupts.

This paper presents the SgInt concept to enable the safeguarding
of interrupts for hardware-based 1/O virtualization for safety-critical
and mixed-criticality embedded real-time systems using non-transparent
bridges in single (multi-core) processor systems and multi (multi-core)
processor systems. The advantage of this Sgint concept is that it is an
general and reusable interrupt separation solution which is scalable from
a single (multi-core) processor to a multi (multi-core) processor system
and builds on available COTS chip solutions. It allows to upgrade spa-
tial separation for interrupts to available processors having no means for
interrupt separation. A practical evaluation shows that the Sgint concept
provides the required spatial separation and even slightly outperforms
state-of-the-art doorbell interrupt handling in transfer time and transfer
rate (by about 0.04 %).

1 Introduction

Driven by the demand for more and more functionality, there is a trend in
avionics similar to other field of electronics to a higher functional integration. To
save space, weight and power, functionalities are integrated onto one computing

© Springer International Publishing Switzerland 2015
L.M. Pinho et al. (Eds): ARCS 2015, LNCS 9017, pp. 15-27, 2015.
DOI: 10.1007/978-3-319-16086-3_-2

16 D. Miinch et al.

platform. This trend is pushed further by integrating functionalities of different
criticality levels onto the same platform to so called mixed-criticality systems.

Functionalities of different criticality levels on one shared (multi-core) plat-
form require that these functionalities cannot interfere with each other or with
the entire system. To manage this interference issue, temporal separation and
spatial separation are essential to grant a safe and secure system operation. The
Input/Output (I/O) subsystem is a central part, because almost every function
needs I/0 for its operation. Since I/O is an often underestimated problem, this
paper focuses on I/0. Temporal separation means having separation in the time
domain. For example, it is guaranteed that an I/O device has a granted transfer
rate or maximum transfer time [1]. Spatial separation means having separation
in the address space domain. For example, it is assured that an I/O device only
writes into a distinct address range or memory area belonging to a distinct func-
tionality or application [2]. A particularly underestimated issue in I/O handling
are (message-signaled) interrupts. Message-signaled interrupts are the ubiqui-
tous type of interrupts in modern memory-mapped I/O subsystems and can be
considered as small Direct Memory Access (DMA) write packets (e.g. with only
4 Byte payload). If there is no spatial separation for interrupts, an erroneous
I/0 device can trigger any interrupt of the system-on-chip of the processor or
manipulate any memory-mapped control register like triggering reset of all pro-
cessing cores. Such a situation could lead to a complete system failure [2] [3].
Therefore, it is common in today’s avionics and similar highly safety-critical
systems to effectively turn off all interrupts and handle I/O via polling. This
is a very resource-consuming and ineffective, but a safe approach to solve the
problem. Further constraints are the use of Commercial Of-The-Shelf (COTS)
components, low complexity, determinism and predictability (cf. Section 3).

The challenge is that available embedded processor architectures do not offer
spatial separation means for interrupts like an Input/Output Memory Manage-
ment Unit (IOMMU) with sufficiently fine granularity (cf. Section 3 and [2]).
Server or high-end workstation processor architectures providing such means (cf.
Section 2 and [4] [5]) are not usable for embedded real-time systems because of
size, weight, power, cooling, harsh environmental conditions, certification con-
siderations, etc. Further constraints are the use of Commercial Off-The—Shelf
(COTS) components. This is essential to keep costs low for products with low
piece numbers / volume like aircraft. A fully customized design of a proces-
sor chip or system-on-chip is economically infeasible. For these reasons, this
paper does not discuss the design of interrupt controllers or IOMMUs. Instead,
it focuses on an approach to extend available embedded COTS processors or
system-on-chip by additional means to provide spatial separation for interrupts
with the least possible impact on performance.

The contribution of the Safeguarding Interrupts (Sglnt) concept of this paper
is an efficient, high-performance and safe interrupt handling approach for highly
safety-critical systems. It enables spatial separation at interrupt level in systems
that does not have already built-in means. This concept is a reusable and gen-
eral solution, which is scalable from a single (multi-core) processor to a multi

Sglnt: Safeguarding Interrupts for Hardware-Based 1/0 Virtualization 17

(multi-core) processor system and builds on available COTS chip solutions. The
Sglnt concept uses a source / origin ID check in the Non-Transparent Bridge
(NTB) with an exclusive address range within the NTB aperture for interrupts
of one distinct I/O device in combination with a dedicated alias page in the
processor only containing the interrupt triggering register as mapping target.
Furthermore, the paper contributes a implementation and an application of the
Sglnt concept in context of hardware-based I/O virtualization (cf. Section 2).
The result of the presented practical evaluation is that the performance in terms
of transfer time and transfer rate of the Sgint concept is by about 0.04% better
than state-of-the-art doorbell interrupt handling.

To our best knowledge, we are the first to discuss an interrupt separation
solution for single (multi-core) processor systems and multi (multi-core) proces-
sor systems in mixed-criticality embedded real-time systems that do not provide
adequate means for interrupt separation.

2 Related Work

The application context of this paper is hardware-based I/O virtualization (cf.
[1,2,6]). This is the hardware-managed sharing of I/O in virtualized embed-
ded systems. Virualized embedded systems are systems where multiple virtual
machines or application partitions are running on a shared computing platform
managed by virtual machine manager or hypervisor. The key point is that the
sharing or virtualization management is offloaded to hardware. This hardware
management provides a Physical Function (PF) (management interface) and sev-
eral Virtual Functions (VFs) interfaces (application interfaces) [7]. A memory-
mapped I/0 like PCI Express (PCle) serves as basic I/O technology. This allows
to map the PF to a control partition or hypervisor. The VFs are mapped to the
corresponding application partitions. Already available means for memory man-
agement and mapping like Memory Management Unit (MMU) and IOMMU
ensure the spatial separation between the application partitions and I/O inter-
faces.

Non-transparent bridging in context of PCle is the non-transparent connec-
tion of two dedicated tree-like (single-root) PCle hierarchies or address spaces
together to enable multiple processors to communicate and exchange data [8]. A
(single-root) PCle hierarchy or address space is a tree-like topology with maxi-
mally one Central Processing Unit (CPU), master or root. Therefore, a commu-
nication between two root or CPUs is originally not possible. To solve this issue,
an NTB connects two PCle hierarchies by presenting itself as an end-point to
both PCle hierarchies. An NTB is constructed by two end-points back to back
with an address translation functionality. Each side of an NTB opens an address
window (aperture) from one PCle single root hierarchy to the other PCle single
root hierarchy. The behavior of an NTB is considered as non-transparent, since
the NTB and its address translation feature has to be setup before it allows to
exchange data. It is not checked if a device or function is allowed to transfer
data to a distinct destination. Interrupts are transferred over an NTB by the

18 D. Miinch et al.

so-called doorbell mechanism. This mechanism consumes the interrupt on the
first side of the NTB and newly generates the interrupt on the second side and
transmits it to the processing unit. It is not checked if a device or function is
allowed to trigger an interrupt. The current concept uses NTB technology in
a different way than formerly intended to enable multi-processor communica-
tion. It extends NTBs to enable spatial separation for interrupts of shared PCle
devices in a single (multi-core) processor or multi (multi-core) processor system.

[9] uses PCle interconnect, NTB and Intel VT-d to share a PCle Single Root
I/O Virtualization (SR-IOV) network card among multiple Intel Xeon hosts
in the IT-server domain. It is suggested to use a dedicated address window
in the NTB to transfer interrupts from one NTB side to the other instead of
using the doorbell mechanism to improve performance. The interrupt remapping
feature of Intel VT-d — the Intel implementation of an IOMMU - is able to check
if a device or function is allowed to trigger an interrupt [4] [10]. AMD provides a
similar technology as part of AMD-Vi or AMD IOMMU [5] [11] [12]. In contrast
to this, the current paper uses PCle interconnect, NTB technology without an
IOMMU - like Intel VT-d — to share a PCle SR-IOV or PCle multifunction
device while still providing spatial separation for data transactions and interrupts
in a mixed-criticality real-time embedded system. The current concept presents
a more general interrupt separation solution, which does not rely on special
interrupt separating features of Intel VT-d or AMD IOMMU.

[6] uses NTB technology to emulate an external IOMMU to provide spatial
separation for data transactions of I/O devices like the separation feature of
an IOMMU for a single (multi-core) computing host lacking an IOMMU. It is
enforced that transactions (for example a DMA write) initiated by I/O device(s)
flow over the NTBs. The control engine in the NTB checks the target address
and source / origin ID (e.g. PCle ID) of these transactions. A rule set in the
control engine (e.g. white list) decides whether to block the transaction or pass
the transaction and translate the target address to the defined target address in
the (bus) address space on the other side of the NTB. [13] extends this idea to
provide spatial separation for sharing I/O devices among multi (multi-core) pro-
cessor systems which usually do not have means for separation like an IOMMU.
The current paper extends this approach to increase the separation granularity
further to provide spatial separation also for interrupts of I/O devices in a single
(multi-core) processor system as well as a multi (multi-core) processor system,
whose processors lack means to separate interrupts. In addition to the origin /
source ID check in the NTB, the Sglnt concept uses an exclusive address range
(page) within the NTB aperture for the interrupts of each I/O device. Mapping
target for this interrupt page is a dedicated page (alias page) in the processor
that only contains the interrupt triggering register.

3 Sglnt (Safeguarding Interrupts)

A fundamental assumption is a static system configuration proving low com-
plexity. This is prioritized over dynamic flexibility to obtain a predictable and

Sglnt: Safeguarding Interrupts for Hardware-Based 1/0 Virtualization 19

deterministic system behavior. Determinism and predictability is an essential pre-
requisite to moderate the effort for the required assurance or certification process
of a safety-oriented and security-oriented development project like in avionics
[14]. Another assumption is the use of COTS components. This is essential to
keep costs low for products with low piece numbers / volume and long life cycles
like aircraft.

The Sglnt concept enables the safeguarding of interrupts for hardware-based
1/0 virtualization for mixed-criticality embedded real-time systems using non-
transparent bridges in single (multi-core) processor systems as well as in multi
(multi-core) processor systems.

The already described separation mechanism (cf. [6] and [13]) using NTBs
with additional checking of the target address and source / origin ID can also be
extended to safeguard interrupts (cf. Figure 1). Message-signaled interrupts are
the omnipresent type of interrupts in modern serial high-speed memory-mapped
1/0 standards, since dedicated interrupt wires are no longer available. Message-
signaled interrupts can be considered as small DMA write transactions (e.g. 4
Byte). The Sglnt concept uses an exclusive entry in the rule set in the NTB per
1/0 device (or PCle function or application interface) for its associated interrupts
(cf. Figure 1). An entry represents an address window or memory page of a typical
size of 4kB. The mapping target of this entry or page is a memory-mapped
page containing the interrupt trigger register of the interrupt controller. The
interrupt trigger register converts the message-signaled interrupt to an actual
interrupt. The access to this NTB entry is controlled by the control engine in the
NTB performing the origin/source ID check (cf. Figure 1). This means that only
the message-signaled interrupt sent by a distinct I/O device (or PCle function
or application interface) can pass this special interrupt window over the NTB.
However, the protection granularity at page level is still not sufficient for a safe
and secure handling of interrupts. The mapping target of this interrupt entry or
page is a page containing this interrupt trigger register and a variety of additional
control registers. Since a message-signaled interrupt is a DMA write packet, it is
able to manipulate any memory-mapped control register within the target page.
For example, an interrupt can trigger interrupts associated with other devices
or other system-on-chip interrupts or processor interrupts by targeting another
interrupt trigger register (cf. Figure 1). In addition, an interrupt can manipulate
any memory-mapped control register of the target page like triggering the reset
of all processing cores (cf. Figure 1). This could lead to a complete system failure.
To prevent this, the granularity or precision of the origin/source ID check needs
to be increased. A possibility is to isolate the interrupt trigger register within a
page. This means, a page only contains this single interrupt trigger register or an
alias register to this interrupt trigger register. An I/O device (or PCle function
or application interface) that is allowed to access this page can only change this
register and nothing else since the page does not contain more control registers.
Such a page is called alias page or page with an alias to the interrupt trigger
register (cf. Figure 1).

20 D. Miinch et al.

Processor age with control registers alias page inttrig A alias page int trig B

NTB
Entry for data transfer <VF1ID> <Ox...> <0x...> “ ‘
Entry for interrupts <VF1ID> <Ox...> <alias page int trig A> J |
Entry for data transfer <VF2ID> <0x...> <Ox...> “‘
Entry for interrupts <VF21D> <Ox...> <alias page int trig B> \/,r‘

10 devtce |

Fig. 1. Sglnt (Safeguarding Interrupts): Origin/source ID check in combination with
alias pages

To demonstrate an application, we have implemented the Sglnt concept in
the context of sharing a DM A-capable multi-function PCle I/O card in a mixed-
criticality embedded processing platform. Figure 2 depicts the implemented sys-
tem setup. A Xilinx VC709 FPGA evaluation board is used as PCle I/O card.
A PLX 8749 chip serves as PCle switch containing the two non-transparent
bridges. The two system hosts are built up by two Freescale QorlQ P4080 Devel-
opment Systems (P4080DS). The P4080 platform is a PowerPC-based embed-
ded multi-core processing platform and a reference model of the Freescale QorIQ
series. Freescale’s Software Development Kit (SDK) Version 1.2 is used as soft-
ware foundation. The avionics industry considers the PowerPC architecture-
based P4080 platform as a platform candidate for embedded avionics systems
[1,2,6,14,15].

For simplicity reasons, the demonstration system considers only two multi-
core processors and one DM A-capable and bus-mastering capable PCle card with
two physical PCle functions. Physical function (PF) 0 is used as management
interface and application interface 1 and PF 1 servers as application interface 2.
However, the Sglnt concept is scalable from one application interface per pro-
cessing host to multiple application interfaces per processing host with one NTB
with multiple windows or multiple NTBs. An additional reason for using only
two physical functions is that the SR-IOV capability of the Xilinx VC709 FPGA
evaluation board is not compatible to the P4080DS. The Xilinx SR-IOV IP-core
requires the optional PCle Alternative Routing-ID Interpretation (ARI) exten-
sion to address VFs. The P4080DS does not support PCIe ARI [1]. Xilinx has

Sglnt: Safeguarding Interrupts for Hardware-Based 1/0 Virtualization 21

Control App App
partition partition 1 partition 2

Software

— —
Hardware ’/Manage- iProcess- \

Ment ing 1
_RP1 |, RP2

/Processing 2

 RP1

W{ NTB1 |

\ itch
~ switc NTB2

[Mngmnt int || _appint1 _appint2
\ l/O-Card |

Fig. 2. Implementation of the Concept

confirmed this and we are in dialog with Xilinx to eliminate this limitation in
the succeeding generation of Xilinx FPGAs.

The demonstration system encompasses two multi-core processors. If desired,
the management part can be outsourced to a third management processor. The left
multi-core processor runs the management section and one application section.
One core and one dedicated (bus) address space or PCle hierarchy or root port
(RP) takes over the tasks of the management section. A second core and a sec-
ond dedicated address space or PCle hierarchy or root port runs one application
section. This part of the demonstration system is representative to apply the
concept in a single (multi-core) processing system. To be able to evaluate the
concept also in multi (multi-core) processor systems, the additional second multi-
processor takes over the task of another application section. This management
control partition sets up the system, controls the main address space and controls
the NTBs and the management interface of the I/O card. Each of the dedicated
address spaces of a application section is connected to the main address spaces
by an NTB. Application partition 1 running on the first multi-core processor is
directly mapped to application interface 1 of the I/O card whereas application
partition 2 running on the second multi-core processor is mapped to application
interface 2 of the I/O card. The IOMMU of the P4080 platform has no means
to safeguard interrupts of multiple PCle devices or PCle devices with multi-
ple functions [2] [16]. Therefore, the spatial separation of interrupts of the two
application interfaces are performed by the Sglnt concept.

22 D. Miinch et al.

4 FEvaluation

4.1 Evaluation Setup

The evaluation of the enforcement of the source / origin ID check for interrupts
is analyzed with the following procedure:
The control partition sets up the NTB and the PCle advanced error report-
ing (AER) registers. A DMA write transaction followed by a synchronization
interrupt is triggered. The interrupt contains an allowed origin / source ID and
target address, which complies to the rule set. Application partition 1 waits for
the receiving of the interrupt while a time out timer is started. In this case, the
receiving of the interrupt is expected and no time out should occur. The AER
registers report no error. As a next step, another DMA write transaction with
a synchronization interrupt is triggered. Here, the interrupt contains a target
address associated to a disallowed origin / source ID. Application partition 1
waits for the receiving of the interrupt while a time out timer is started. The
receiving of the interrupt is expected but does not occur and the time out occurs.
The AER registers report the header and the first 32 data bits of the blocked
packet.

The evaluation of the performance overhead (transfer time, transfer rate) of
the Sglnt concept is investigated with the following procedure:
The control partition configures the NTB and the I/O card. It is defined by the
management interface that application interface 1 is assigned 50% of the avail-
able transfer rate and application interface 2 is assigned 50% of the available
transfer rate. DMA read and write transactions hit the two application parti-
tions. The transfer time and transfer rate of transactions are measured includ-
ing the low-level software overhead and synchronization interrupts. The DMA
transactions are composed of a number of 128 Byte-sized packets sent back to
back. The number of packets is increased from 1 to 255. For each packet count,
the measurements are run 100 times. The described measurement procedure is
executed twice. One time it is conducted using the presented Sglnt concept with
interrupt separation. The other time it is performed using the state-of-the-art
doorbell interrupt mechanism without separation (cf. Section 2 and [8]). Then
both results are compared.

4.2 Evaluation Results

The evaluation result of the enforcement of the source / origin ID check for
interrupts is given by the following output:

Test case 1: ID ok —> pass
//setup NTB
(application interface 1 (source ID=0C00)
is allowed to trigger sync interrupt
(address 0xE070A140, data 0x13)
//trigger DMA write with end interrupt
//printout of application partition 1

Sglnt: Safeguarding Interrupts for Hardware-Based 1/0 Virtualization 23

<no error>
//printout of PCle Advanced Error Reporting (AER) registers
PLX_AER.HEADERO +0x3EFD0: 0x00000000
PLX_AER HEADER1 +0x3EFD4: 0x00000000
PLX AER HEADER2 +0x3EFD8: 0x00000000
PLX_AER.HEADER3 +0x3EFDC: 0x00000000

Test case 2: ID violation —> block
//setup NIB
(source ID=0C03 is allowed
to trigger sync interrupt
(address 0xE070A140, data 0x13);
application interface 1 (source ID=0C00)
is NOT allowed to trigger the interrupt)
//trigger DMA write with end interrupt
//printout of application partition 1
// indicating time out occurred
ntbxpcieappdrv wait for interrupt:
Operation not permitted
//printout of PCle Advanced Error Reporting (AER) registers
PLX_AER HEADERO +0x3EFDO0: 0x40000001
PLX_AER. HEADER1 +0x3EFD4: 0x0C00000F //ID=0C00
PLX_AER HEADER2 +0x3EFD8: 0xE070A140
PLX_AER HEADER3 +0x3EFDC: 0x13000000

Figure 3 shows the relative difference of the transfer time between the Sglnt
concept and no interrupt separation, whereas Figure 4 depicts the relative differ-
ence of the transfer rate between the SgInt concept and no interrupt separation.

For the transfer time, the values of the SgInt concept are about 0.04% (for
writes) to 0.08% (for reads) lower than the values of no interrupt separation. In
case of transfer rate transactions, the data of the SgInt concept are about 0.04%
(for writes) to (0.09%) for reads higher than the data of no interrupt separation.

5 Discussion and Impact

In test case 1 of the interrupt source / origin ID check, the interrupt is allowed
to pass and to trigger the interrupt in the processing system. In test case 2, the
origin ID of the actual sent interrupt does not comply to the origin ID of the
corresponding target address in the rule set in the NTB. Therefore, the interrupt
is blocked. Concluding, the origin ID check of the SgInt concept shows that the
spacial separation in dependency of the origin ID can be enforced for interrupts.

The transfer time figure (cf. Figure 3 and Section 4.2) shows that the Sglnt
concept with separation has a 0.04% better transfer time than the state-of-the-
art NTB configuration without interrupt separation. The reason for this can
be explained by the nature of the state-of-the-art doorbell interrupt mechanism
[8]. This mechanism consumes the interrupt on the first side of the NTB and
generates a new interrupt on the second side and transmits it to the processing

24 D. Miinch et al.

PCl Express data transfer time

100 T .

- - Application interface 1 DMA write

----- Application interface 2 DMA write

Application interface 1 DMA read
50l — Application interface 2 DMA read |

X O frpes

—50F d
_1000 50 100 150 200 250

Data Transfered / Packets of 128 Byte

Fig. 3. Relative difference between the transfer time results using the Sglnt concept
and no interrupt separation

PCI Express data transfer rate

100 T .

- - Application interface 1 DMA write

----- Application interface 2 DMA write

-+= Application interface 1 DMA read
sol — Application interface 2 DMA read |

R 0w

_507 4
~100, 50 100 200 250

Data Transfered / Packets of 128 Byte

Fig. 4. Relative difference between the transfer rate results using the Sglnt concept
and no interrupt separation

Sglnt: Safeguarding Interrupts for Hardware-Based 1/0 Virtualization 25

unit. In contrast to this, the presented Sglnt concept handles the interrupt like
any other data packet passing the NTB. After the source / origin ID check
decided to pass the packet through the NTB window, the packet is forwarded
and its target address is translated. This forwarding process inclusive source /
origin ID check is marginally more efficient than the traditional way of consuming
and recreating without source / origin ID check of the interrupt. The figure for
the transfer rate (cf. Figure 4) confirms the statements of the transfer time.

The the demonstration system considers two multi-core processors sharing
one I /0O card with two application interfaces. However, the scalability of the SgInt
concept ranges from one application interface per processing host to multiple
application interfaces per processing host with one NTB with multiple windows
or multiple NTBs.

A really relevant item is that the Sglnt concept can provide spatial sepa-
ration for interrupts in systems, which do not have an IOMMU or have an
IOMMU that is not able to safeguard interrupts. In contrast to Intel server
systems using Intel VT-d [4], embedded real-time systems do not have means
to protect interrupts. For these systems, the presented Sglnt concept is a real
benefit. The Sglnt concept requires that the processor platform provides special
alias pages encapsulating an interrupt trigger register (cf. Figure 1 and Section
3). The most of Freescale’s PowerPC-based processors (e.g. the Freescale QorIQ
families) provide three to four of such special alias pages for interrupt trigger
registers. This allows to provide spatial separation for three to four application
interfaces using safeguarded interrupts per processor. The Sglnt concept fulfills
the required separation and offers a growth of 300-400% in protected interrupts.
Since the avionics industry currently has most certification-related experience
for critical avionic components for the PowerPC architecture, future develop-
ments based on this architecture are focused. The aircraft certification author-
ities EASA and FAA lately recommended to restrict the usage of multi-core
processors for safety-critical systems due to safety concerns to dual-core proces-
sor systems at the moment [17]. For future (multi-)processor systems making use
of (multiple) dual-core processors (like Freescale’s P5020), the presented Sglnt
concept is practically applicable and has still spare resources for extensions.

6 Summary and Conclusion

The presented Sglnt concept enables the safeguarding of interrupts in single
(multi-core) processor systems and multiple (multi-core) processor systems.
The Sglnt concept uses an exclusive page within the NTB aperture for inter-
rupts of one distinct application interface and a dedicated page in the processor
only containing the interrupt triggering register as mapping target in addition
to the source/ origin ID check in the NTB. The evaluation results of the Sglnt
concept reveals that Sglnt concept slightly outperforms state-of-the-art doorbell
interrupt handling in transfer time and transfer rate (by about 0.04%). The
Sglnt concept can provide spatial separation for interrupts in systems, which
do not have an IOMMU or have an IOMMU that is not able to safeguard

26 D. Miinch et al.

interrupts. This is especially important for safety-critical embedded real-time
systems since these systems usually do not have means to protect interrupts.
This Sglnt concept is not limited to safeguard device interrupts. It can also be
applied to provide spatial separation for inter-processor communication inter-
rupts.

While this paper focuses on avionics, the results are applicable to adjacent
markets which have similar stringent security and safety requirements such as
automotive, railway and industrial control.

Acknowledgments. This work was supported by the projects ARAMiS and SIBASE
funded by the German Federal Ministry of Education and Research (BMBF) under the
funding ID 01IS11035R and 01IS13020B. We also thank Xilinx and PLX Technologies
for their support. Special thanks also to our colleagues from Airbus Defence and Space,
especially Peter Ganal.

References

1. Muench, D., Paulitsch, M., Herkersdorf, A.: Temporal separation for hardware-
based I/O virtualization for mixed-criticality embedded real-time systems using
PClIe SR-IOV. In: International Conference on Architecture of Computing Systems
(ARCS) (2014)

2. Muench, D., Isfort, O., Mueller, K., Paulitsch, M., Herkersdorf, A.: Hardware-based
I/0 virtualization for mixed criticality real-time systems using PCle SR-IOV. In:
International Conference on Embedded Software and Systems (ICESS) (2013)

3. Pek, G., Lanzi, A., Srivastava, A., Balzarotti, D., Francillon, A., Neumann, C.:
On the feasibility of software attacks on commodity virtual machine monitors via
direct device assignment. In: ACM Symposium on Information, Computer and
Communications Security (ASIA CCS) (2014)

4. Intel: Intel Virtualization Technology for Directed I/O (VT-d spec) (2011)

. AMD: AMD I/O Virtualization Technology (IOMMU) Specification Rev2.0 (2011)

6. Muench, D.: IOMPU: Spatial Separation for Hardware-Based I/O Virtualiza-
tion for Mixed-Criticality Embedded Real-Time Systems Using Non Transparent
Bridges (TR-TX4-399). Technical report, Airbus Group (2014)

7. PCI-SIG: Single Root I/O Virtualization and Sharing Specification 1.1 (2010)

8. Regula, J.: Using Non-transparent Bridging in PCI Express Systems. Technical
report, PLX (2004)

9. Tu, C.C., Lee, C.T., Chiueh, T.C.: Secure I/O device sharing among virtual
machines on multiple hosts. In: International Symposium on Computer Architec-
ture (ISCA) (2013)

10. Nguyen, T.L., Carbonari, S.R.: Message Signaled Interrupt Redirection Table
(2004)

11. Hummel, M.D., Strongin, G.S., Alsup, M., Haertel, M., Lueck, A.W.: Address
Translation for Input/Output (I/O) Devices and Interrupt Remapping for I/0O

devices in an I/O Memory Management Unit (IOMMU) (2006)

12. Serebrin, B.C., Wiederhirn, J.F., Cooper, E.M., Hummel, M.D.: Guest Interrupt
Manager that Records Interrupts for Guests and Delivers Interrupts to Executing
Guests (2009)

t

13.

14.

15.

16.

17.

Sglnt: Safeguarding Interrupts for Hardware-Based 1/0 Virtualization 27

Muench, D., Paulitsch, M., Hanka, O., Herkersdorf, A.: MPIOV: scaling hardware-
based I/O virtualization for mixed-criticality embedded real-time systems using
non transparent bridges to (multi-core) multi-processor systems. In: Conference
on Design, Automation and Test in Europe (DATE) (2015)

Muench, D.; Paulitsch, M., Honold, M., Schlecker, W., Herkersdorf, A.: Iterative
FPGA implementation easing safety certification for mixed-criticality embedded
real-time systems. In: Euromicro Conference on Digital System Design (DSD)
(2014)

Jean, X., Gatti, M., Berthon, G., Fumey, M.: MULCORS - Use of Multicore Pro-
cessors in airborne systems. Technical report, EASA (2012)

Freescale: P4080 QorlQ Integrated Multicore Communication Processor Family
Reference Manual (2011)

FAA: Position Paper Certification Authorities Software Team (CAST) CAST-32
Multi-core Processors (2014)

2 Springer
http://www.springer.com/978-3-319-16085-6

Architecture of Computing 5ystems - ARCS 2015

28th International Conference, Forto, Fortugal, March
24-27, 2015, Proceedings

Finhao, L.M.; Karl, W.; Cohen, 4 ; Brinkschulte, L. (Eds.)
2015, XV, 249 p. 19 illus., Softcover

ISBM: 978-3-3219-16085-6

	SgInt: Safeguarding Interrupts for Hardware-Based I/O Virtualization for Mixed-Criticality Embedded Real-Time Systems Using Non Transparent Bridges
	1 Introduction
	2 Related Work
	3 SgInt (Safeguarding Interrupts)
	4 Evaluation
	4.1 Evaluation Setup
	4.2 Evaluation Results

	5 Discussion and Impact
	6 Summary and Conclusion
	References

