
Chapter 2
Introduction to Analytic Curves

The study of analytic curves, which at first sight appears to be unrelated to the
stability analysis of time-delay systems, will be extremely helpful for addressing the
stability problem.

In this book, we will see that the mathematical properties concerning the sin-
gularities of analytic curves provide us with a new angle (called the analytic curve
perspective or point of view in this book) to study the stability of time-delay sys-
tems. New insights for the complete stability problem will be developed based on
this analytic curve perspective. To be more precise, two aspects are essential. First,
it will be used for studying the asymptotic behavior of the critical pairs. Second, the
analytic curve perspective will be used to improve the classical frequency-sweeping
approach. Moreover, as we will discuss later, the analytic curve perspective may be
applied to many other important problems.

In this chapter, we start by presenting some fundamentals concerning analytic
curves. Especially, as an important tool for studying analytic curves, the Puiseux
series will be introduced and discussed in detail.

In Sect. 2.1, we will first present the related concepts on analytic curves and show
that an analytic curve can be understood in an intuitive manner. In Sect. 2.2, the
Puiseux series will be introduced for describing and analyzing an analytic curve.
The convergence of the Puiseux series will be discussed in Sect. 2.3. In Sect. 2.4,
we will briefly review a classical method, the Newton diagram, for computing the
Puiseux series. In Sect. 2.5, wewill explain how to analyze the asymptotic behavior of
an analytic curve by means of the Puiseux series. Finally, some notes and comments
will be given in Sect. 2.6.
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18 2 Introduction to Analytic Curves

2.1 Introductory Remarks to Singularities
of Analytic Curves

Consider a power series Φ(y, x) in two variables x ∈ C and y ∈ C:

Φ(y, x) =
∑

α,β≥0

φα,β yαxβ, (2.1)

where φα,β (α ∈ N, β ∈ N) are complex coefficients.
We suppose that Φ(0, 0) = 0 (that is, the constant term φ0,0 = 0) and

that the power series Φ(y, x) is convergent in a small neighborhood of the point
(x = 0, y = 0).

Remark 2.1 If there exists a point (y∗, x∗) other than (0, 0) such thatΦ(y∗, x∗) = 0,
we may obtain a new power series with a zero constant term. More precisely, we
may define two new variables x̃ = x − x∗ and ỹ = y − y∗. As a result, we obtain a
new power series Φ̃(ỹ, x̃) satisfying that Φ̃(0, 0) = 0 from the original power series
equation Φ(y∗, x∗) = 0 and the local behavior of the original equation Φ(y, x) = 0
as y → y∗ and x → x∗ is reflected by that of the new one Φ̃(ỹ, x̃) = 0 as ỹ → 0
and x̃ → 0.

Remark 2.2 One may have a question why we are now considering a power series.
The reason is related to the fact that for many stability problems in the control area,
we need to study characteristic functions of the form ρ(λ, ξ), where λ and ξ denote,
respectively, the characteristic root and the system parameter under consideration,
and ρ(λ, ξ) is usually analytic. One may notice that in the case of time-delay system
(1.1), the corresponding characteristic function f (λ, τ ) falls in this class. Next, near
a critical pair (λ∗, ξ∗) such that ρ(λ∗, ξ∗) = 0, we may expand ρ(λ, ξ) as a two-
variable Taylor series, which is exactly a power series of the Φ(y, x) type.

From the algebraic geometry point of view, in e.g., [15, 121], the equation
Φ(y, x) = 0 defines an analytic curve in the C

2 plane.1 Instead of studying the
whole curve, we are interested in a small neighborhood of the origin O (i.e., the
point (x = 0, y = 0)) in the C2 plane. In other words, we study how y varies near
“0” with respect to an infinitesimal variation of x near “0”. Such a local study will be
extremely useful in the subsequent study of the asymptotic behavior of time-delay
systems.

Throughout this book, we define the notation ord( · ) as follows.

Definition 2.1 For a function ϕ(x), ord(ϕ(x)) = κ for x = x∗ denotes that di ϕ(x)

dxi =
0 (i = 0, . . . , κ − 1) and that dκϕ(x)

dxκ �= 0 when x = x∗.

Furthermore, for simplicity, we denote by ordy and ordx , respectively, the values
of ord(�(y, 0)) when y = 0 and ord(�(0, x)) when x = 0. If ordx = 1 and/or

1 Note that we cannot explicitly draw such a curve since there are two complex variables.
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2.1 Introductory Remarks to Singularities of Analytic Curves 19

ordy = 1, the curve defined by Φ(y, x) = 0 is called non-singular at the origin O
and the origin O is called a non-singular point of the curve. If both ordx and ordy

are larger than 1, the curve defined by Φ(y, x) = 0 is called singular at the origin
O and the origin O is called a singular point of the curve.

In order to have a better understanding of the above notions and notations,
consider now two simple examples.

Example 2.1 Consider Φ(y, x) = y3 + yx + x (polynomials represent a specific
type of power series). At the point (0, 0), it follows that Φ(0, 0) = 0, ordy = 3

( dΦ(y,0)
dy = d2Φ(y,0)

d y2
= 0, d3Φ(y,0)

d y3
�= 0), and ordx = 1 ( dΦ(0,x)

dx �= 0). The curve

defined byΦ(y, x) = y3+ yx + x = 0 is non-singular at the origin O (ordx = 1).�

Example 2.2 Consider Φ(y, x) = y3 + yx + x2. At the point (0, 0), it follows that

Φ(0, 0) = 0, ordy = 3 ( dΦ(y,0)
dy = d2Φ(y,0)

d y2
= 0, d3Φ(y,0)

d y3
�= 0), and ordx = 2

( dΦ(0,x)
dx = 0, d2Φ(0,x)

dx2
�= 0). The curve defined by Φ(y, x) = y3 + yx + x2 = 0 is

singular at the origin O (both ordy and ordx are larger than 1). �

As we will show later in the book, a critical pair for the time-delay system (1.1)
can be viewed as a non-singular (singular) point if n = 1 and/or g = 1 (both n and
g are greater than 1). As expected, the singular case is much more complicated than
the non-singular case.

For simplicity, we will only study the case where both ordy and ordx are bounded.
In fact, we will see that this case corresponds to the complete stability problem under
consideration in this book.

The study of singularities of analytic curves is a meeting point for various math-
ematical fields such as algebra, geometry, topology, and function theory. The first
systematic contribution on curve singularities is due to Isaac Newton. Later on, some
theoretical framework (for analysis and classification of curve singularities) was
established by many geometers such as Puiseux, Smith, Noether, Halphen, Enriques,
and Zariski. A detailed introduction to this subject can be found in e.g., [2, 15, 121].
It is worth mentioning that the analytic curve perspective to be introduced in this
book is at an elementary level at present.

Intuitively speaking, we may view y = 0 as a root for Φ(y, x) = 0 when x =
0, whose multiplicity is ordy . Clearly, the equation Φ(y, x) = 0 determines the
corresponding ordy root loci near the origin O . Such an angle (we interpret the
relation between y and x as local root loci in the C2 plane) is easy to follow and will
be frequently used in the sequel.

We now recall the classical Weierstrass preparation theorem (see, e.g., [15, 60,
91, 121]). It states that in a small neighborhood of O ,Φ(y, x) can be decomposed as

Φ(y, x) = G(y, x)Q(y, x), (2.2)

where G(y, x) is a convergent power series with G(0, 0) �= 0 and Q(y, x) is a
polynomial in y

http://dx.doi.org/10.1007/978-3-319-15717-7_1


20 2 Introduction to Analytic Curves

Q(y, x) = yordy +
ordy−1∑

i=0

qi (x)yi ,

where for i = 0, . . . , ordy − 1, qi (x) are convergent power series at x = 0 such that
qi (0) = 0. This polynomial Q(y, x) is called a Weierstrass polynomial.

In other words, in a small neighborhood of O , the root loci of y with respect
to x governed by the equation Φ(y, x) = 0 coincide with those for the equation
Q(y, x) = 0.

Now we know that in a small neighborhood of O , for each x there are ordy

continuous solutions for y, denoted by y(x), such that Φ(y(x), x) = 0 (since a
polynomial equation with degree ordy always has ordy solutions in C).

In addition, it is not hard to anticipate that the solutions of y(x) can be expressed
by some appropriate convergent series.

Two questions arise here. First, which class of series do the solutions of y(x)

belong to? Second, how to obtain the corresponding series? In the following two
sections, we will give some answers. It should be pointed out that the factorization
(2.2) is in general difficult to find since all qi (x) are power series.

2.2 Puiseux Series

In this section we will introduce an effective tool, the Puiseux series, to describe
the local behavior of power series Φ(y, x) (i.e., the solutions y(x) in a small neigh-
borhood of O). We start with a specific case. If ∂Φ(y,x)

∂y �= 0 at O (i.e., ordy = 1),
we may apply the well-known implicit function theorem (see Appendix A). In this
particular case (corresponding to the case where the linear time-delay system with
commensurate delays has a simple critical imaginary root), y(x) corresponds to a
Taylor series, and we can calculate the derivatives of y with respect to x (based on
the implicit function theorem) to determine the coefficients of the Taylor series.

However, in the general case, i.e., ordy is allowed to be greater than 1 (corre-
sponding to the general case where the time-delay system is allowed to have a critical
imaginary root with anymultiplicity), the implicit function theorem does not allow to
conclude. For this reason, the analysis of y(x) calls for a different mathematical tool.

In mathematics, the local variation of y(x) can be well studied by using the
Puiseux’ theorem, see, e.g., [91, 121]. Actually, this theorem hasmultiple versions. In
the sequel, we briefly recall some results closely related to the objective of our study.

According to the Puiseux’ theorem, the general solutions of y(x) such that
Φ(y(x), x) = 0 are some series “s” of the form

s =
∞∑

i=1

Ci x
i
N , (2.3)
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where Ci are complex coefficients and N is a positive integer.
The fractional power series of the form (2.3) are called the Puiseux series. The

concept of Puiseux series is not new in mathematics. It was first introduced by
Issac Newton in his correspondence with Leibniz and Oldenburg in 1676 [90] and
further developed by Victor Puiseux in 1850 [101]. The naming of the series after
Puiseux rather than Newton is based upon the fact that Puiseux investigated this
series expansion more thoroughly. The above information can be found in [13].

Remark 2.3 Unlike the well-known Taylor series, the exponents of a Puiseux series
are allowed to be positive fractional numbers.

A Puiseux series s is called a y-root for Φ(y, x) = 0 if Φ(s, x) = 0. In Sect. 2.4,
we will introduce an effective tool for obtaining such y-roots.

Remark 2.4 It should be stressed that a Puiseux series has an infinite number of
terms and, hence, we are unable to entirely obtain a Puiseux series by calculation.
Fortunately, for the stability problem, we only need to invoke finitely many terms of
a Puiseux series (see Chap. 4). In particular, we only need to obtain the first-order
term of a Puiseux series in the nondegenerate case. Of course, the more terms we
obtain, a more elaborate picture of the root loci we have.

At the end of this section, we borrow two examples from the literature on solving
polynomial2 equations.

Example 2.3 Consider a polynomial equation y3 − 3xy + x3 = 0, where y = 0
is a root when x = 0. Following the discussions in Sect. 2.1, there exist three y(x)

solutions near the origin O as ordy = 3. The solutions, which can be found in [115],

are the Puiseux series y = 1
3 x2 + o

(
x2

)
and y = ±√

3x
1
2 + o(x

1
2 ). �

Remark 2.5 It shall be noticed that solving a polynomial equation generally cannot
be accomplished by radicals (for a power series equation, it is obviously more diffi-
cult). It has been proved that the general equation of the fifth degree is not solvable
by radicals [53].

Example 2.4 Consider a polynomial equation y5 + 2x y4 − x y2 − 2x2y − x3 +
x4 = 0, for which y = 0 is a root when x = 0. As ordy = 5, the equation has five
y(x) solutions near the origin O . The solutions, reported in [120], are as follows: Two

solutions are of the form y = −x+o (x) and the other three ones are y = x
1
3 +o(x

1
3 ),

y =
(
− 1

2 +
√
3
2 i

)
x

1
3 + o(x

1
3 ), and y = (− 1

2 −
√
3
2 i)x

1
3 + o(x

1
3 ). �

In Sect. 2.4, we will provide some details on how to acquire the above Puiseux
series solutions.

2 For simplicity, we here give two examples whereΦ(y, x) are polynomials, which represent a spe-
cific form of power series. The approach applies to the general power series equations. Historically,
the study of the singularities of analytic curves stemmed from solving the polynomial equations.

http://dx.doi.org/10.1007/978-3-319-15717-7_4
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2.3 Convergence of Puiseux Series

Before discussing deeper the way to derive the Puiseux series, it is necessary to pay
attention to the corresponding convergence property. Needless to say, a divergent
series will not be useful for the problem studied in this book. A property regarding
the convergence of a Puiseux series is given as follows, see [15].

Property 2.1 A Puiseux series
∞∑

i=1
Ci x

i
N is a convergent series if and only if the

power series
∞∑

i=1
Ciχ

i is convergent.

We see from Property 2.1 that the convergence of a Puiseux series
∞∑

i=1
Ci x

i
N

depends only on the coefficients Ci , i = 1, . . . ,∞ (it does not depend on the inte-
ger N).

As the Puiseux series considered in this chapter are derived from the power series
Φ(y, x), a nice result for the convergence property is available from [15] and given
below.

Property 2.2 If the power series Φ(y, x) are convergent, all the y-roots for
Φ(y, x) = 0 are convergent series.

In light of property 2.2, the convergence of all the Puiseux series used in this book
associated with the complete stability problem for time-delay systemswith commen-
surate delays (including the Puiseux series for studying the asymptotic behavior of
the critical imaginary roots as well as the dual Puiseux series, to be proposed later in
this book, for studying the asymptotic behavior of the frequency-sweeping curves)
can be guaranteed.

2.4 Newton Diagram

The Newton diagram (or Newton polygon) is a geometrical approach proposed by
Newton in order to obtain the y-roots for the equation Φ(y, x) = 0 in terms of the
Puiseux series. In this section, we briefly review this approach.

Consider power series Φ(y, x) described by (2.1), where both ordy and ordx are
bounded. As we just mentioned, according to the Puiseux’ Theorem, all the y-root
solutions are in the form of Puiseux series.

In the sequel, we demonstrate how to find the initial terms of the correspond-
ing Puiseux series by using the classical Newton diagram. More precisely, we will
determine the solutions of the form

y = Cxμ + o(xμ), (2.4)
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where C is the complex coefficient and μ is a rational number. Obviously, C and μ

may have multiple values.
We mark the point (α, β) by a “dot” in a coordinate plane if there is a nonzero

coefficient φα,β in (2.1). In this way, we obtain a discrete set of points with non-
negative integral coordinates in the coordinate plane, called the Newton diagram of
Φ(y, x).

We draw a line through the point (0, ordx ) (this point belongs to the Newton
diagram) coinciding with the ordinate axis and we rotate this line counterclockwise
around the point (0, ordx ) until it touches other points from the Newton diagram.
Among the touched points from the Newton diagram, we select the one with the
greatest abscissa, say (M1,N1). We now have a segment linking the two points
(0, ordx ) and (M1,N1). We next rotate the line counterclockwise around the point
(M1,N1) until it touches new points from the Newton diagram. We also select
the one with the greatest abscissa, say (M2,N2), among the touched points. We
have a new segment linking two points (M1,N1) and (M2,N2). We continue this
procedure till the segment ending at the point (ordy, 0) (this point belongs to the
Newton diagram) is found.

As a result, we obtain the so-called Newton polygon which consists of all the
segments found by the above procedure (referred to as the rotating ruler method).
Without any loss of generality, suppose that the Newton polygon ofΦ(y, x) consists
of p ∈ N+ segments. The starting point and the ending point of the i th segment are
denoted by (Mi−1,Ni−1) and (Mi ,Ni ) (it is easy to see that M0 = 0,N0 =
ordx ,Mp = ordy,Np = 0), respectively. The Newton polygon is depicted in
Fig. 2.1.

Note that on a segment of the Newton polygon, say, the i th segment with
the endpoints (Mi−1,Ni−1) and (Mi ,Ni ), there may exist other points from
the Newton diagram. Without loss of generality, suppose there are q points other
than the endpoints lying on the i th segment: (M̃i1, Ñi1), . . ., (M̃iq , Ñiq), with
Mi > M̃i1 > · · · > M̃iq > Mi−1.

Each segment of the Newton polygon determines a set of solutions of C and μ.
More precisely, from the i th segment linking points (Mi−1,Ni−1) and (Mi ,Ni ),
we have Mi − Mi−1 roots in the form (2.4) with μ = Ni−1−Ni

Mi −Mi−1
(note that −μ is

the slope of the segment). The coefficient C associated with this exponent μ has

Fig. 2.1 Newton polygon
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Mi −Mi−1 (note that this value is equal to the length of the i th segment’s projection
on the abscissa axis) solutions, which are given by the solutions of the polynomial
equation.

φMi ,Ni C
Mi −Mi−1 + φM̃i1,Ñi1

CM̃i1−Mi−1 + · · · + φMi−1,Ni−1 = 0. (2.5)

A rigorous proof of the above results can be found in e.g., [115]. In summary, a
segment of the Newton polygon gives rise to some initial terms of the Puiseux series
with the same exponent. To be more precise, the number of the obtained Puiseux
series equals to the length of the projection of this segment on the abscissa and the
exponent is the negative slope of this segment.

One can see that the p sets of Puiseux series derived from the p segments of the
Newton polygon include all the ordy y-roots (expressed by the first-order terms of
the Puiseux series) for Φ(y, x) = 0.

We now give the Newton polygons, for Examples 2.3 and 2.4, respectively, in
Fig. 2.2a, b, from which one may obtain the Puiseux series solutions by employing
the Newton diagram introduced above.

2.5 A Direct Application of Puiseux Series

It should be pointed out that, to the best of the authors’ knowledge, there are at least
two ways to express the Puiseux series solutions. The expression given in the sequel
is relatively simple to understand.3

Without any loss of generality, the Newton polygon for the power series Φ(y, x)

is supposed to have p segments.

(a) (b)

Fig. 2.2 Newton polygons for Examples2.3 and 2.4. a Example 2.3. b Example2.4

3 In Chap.4, the expression of the Puiseux series will be simplified. However, some additional
algebraic properties (mainly concerning the concept of the conjugacy class) will be required.

http://dx.doi.org/10.1007/978-3-319-15717-7_4
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Following Sect. 2.4, the i th segment determines a set of Puiseux series

y = C̃μi ,l x
μi + o(xμi ), l = 1, . . . ,Mi − Mi−1, (2.6)

where μi is the negative slope of the i th segment, C̃μi ,l are the corresponding coef-
ficients calculated according to (2.5), and Mi − Mi−1 equals to the length of the
segment’s projection on the abscissa axis.

Totally, the p segments give rise to the following Puiseux series

⎧
⎪⎨

⎪⎩

y = C̃μ1,l x
μ1 + o(xμ1), l = 1, . . . ,M1 − M0,

...

y = C̃μp,l xμp + o(xμp ), l = 1, . . . ,Mp − Mp−1.

(2.7)

With the expression (2.7), we may consider each xμi as a single-valued number4

in C. As a result, the Mi − Mi−1 Puiseux series corresponding to the i th segment
as described by (2.6) have Mi − Mi−1 values for y(x). The total p sets of Puiseux
series corresponding to all the p segments (i.e., the total ordy Puiseux series) as
described by (2.7) present all the ordy solutions y(x).

Remark 2.6 In (2.7), we only present the first-order terms (also called the initial
terms) of the Puiseux series. As we will see later in this book, the first-order terms
are sufficient for the stability analysis in the nondegenerate case. However, in the
degenerate case, we need to obtain higher order terms. We will see in Sect. 4.3 that
the Newton diagram can be used in an iterative manner such that higher order terms
of the Puiseux series can be obtained.

Remark 2.7 On may notice that invoking the Puiseux series (by using the Newton
diagram) is not a trivial work, even if only the first-order terms are required. Some
representative examples will be given in Chap. 4. Fortunately, the calculation of the
Puiseux series may be bypassed. It will be interesting to see that we can accomplish
the complete stability analysis for time-delay systems with commensurate delays
(by adopting the frequency-sweeping approach to be proposed in this book) without
explicitly employing the Newton diagram.

2.6 Notes and Comments

In this chapter, we introduced some useful results for analytic curves including the
basic concepts, the Puiseux series, and the Newton diagram. More precisely, we
followed the ideas proposed by [15, 60, 91, 121] in order to introduce some of the

4 In fact, each xμi may have multiple values. We may choose any one among them. As will be
illustrated by the examples in Chap.4, the value set of all the Puiseux series is identical for any
choice.

http://dx.doi.org/10.1007/978-3-319-15717-7_4
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notions and properties needed in the forthcoming chapters. From the next chapter,
we will apply these results to study the complete stability problem of time-delay
systems.

In our opinion, the analytic curve idea in fact may be used for a broader range of
stability and stabilization problems in the area of control, as it is applicable to both
continuous-time and discrete-time systems.

For continuous-time systems (including the time-delay systems considered in the
forthcoming chapters), we are concerned with the variation of the critical roots with
respect to the imaginary axis C0 as some system parameters vary. Recall that for a
continuous-time system a critical root refers to a characteristic root located on the
imaginary axis C0. We may perform a qualitative stability analysis through the real
parts of the corresponding Puiseux series.

For discrete-time systems (e.g., the state transition expression of a networked
control system is a discrete-time model [80]), we are concerned with the variation
of the critical roots (note that for discrete-time systems a critical root refers to a
characteristic root located on the unit circle ∂D) with respect to the unit circle ∂D,
as some system parameters vary. In this case, the stability analysis requires to know
the variation directions of the critical roots with respect to the unit circle ∂D, based
on the Puiseux series. For instance, if for a critical root its variation direction points
to the outside (inside) of the unit circle ∂D, it implies that the critical root becomes
an unstable (stable) root.

It was already pointed out that we only adopt some preliminary results on the
singularities of analytic curves and one will find that they are not hard to follow.
The studies from a decidedly geometrical viewpoint (e.g., resolution of singularities
and classification of singularities) are generally much more complicated and can be
found in [2, 15, 121].
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