
Real-World Clustering for Task Graphs
on Shared Memory Systems

Alexander Herz(B) and Chris Pinkau

Lehrstuhl Für Informatik II/XIV, Technische Universität München,
Boltzmannstraße 3, 85748 Garching b. München, Germany

{herz,pinkau}@in.tum.de

Abstract. Due to the increasing desire for safe and (semi-)automated
parallelization of software, the scheduling of automatically generated
task graphs becomes increasingly important. Previous static scheduling
algorithms assume negligible run-time overhead of spawning and joining
tasks. We show that this overhead is significant for small- to medium-
sized tasks which can often be found in automatically generated task
graphs and in existing parallel applications.

By comparing real-world execution times of a schedule to the pre-
dicted static schedule lengths we show that the static schedule lengths
are uncorrelated to the measured execution times and underestimate the
execution times of task graphs by factors up to a thousand if the task
graph contains small tasks. The static schedules are realistic only in the
limiting case when all tasks are vastly larger than the scheduling over-
head. Thus, for non-large tasks the real-world speedup achieved with
these algorithms may be arbitrarily bad, maybe using many cores to
realize a speedup even smaller than one, irrespective of any theoretical
guarantees given for these algorithms. This is especially harmful on bat-
tery driven devices that would shut down unused cores.

We derive a model to predict parallel task execution times on sym-
metric schedulers, i.e. where the run-time scheduling overhead is homo-
geneous. The soundness of the model is verified by comparing static and
real-world overhead of different run-time schedulers. Finally, we present
the first clustering algorithm which guarantees a real-world speedup by
clustering all parallel tasks in the task graph that cannot be efficiently
executed in parallel. Our algorithm considers both, the specific target
hardware and scheduler implementation and is cubic in the size of the
task graph.

Our results are confirmed by applying our algorithm to a large set of
randomly generated benchmark task graphs.

Keywords: Static scheduling · Run-time overhead · Execution time
prediction

Introduction

The diminishing clock speed gains realized in new processor designs and fabri-
cation processes have produced a rise of multi- and many-core CPUs for servers,
c© Springer International Publishing Switzerland 2015
W. Cirne and N. Desai (Eds.): JSSPP 2014, LNCS 8828, pp. 17–35, 2015.
DOI: 10.1007/978-3-319-15789-4 2

18 A. Herz and C. Pinkau

desktops and even embedded devices. This development increases the pressure
to produce parallel software and schedules for this software which are efficient in
terms of overall execution time and power consumption, especially for battery
driven devices. Due to the NP-completeness of many instances of the schedul-
ing problem, a set of heuristics trying to approximate the best solution have
been proposed. Kwok [14] and McCreary [13] have compared the quality of a
range of well-known heuristics in terms of the static schedule length predicted
by the different scheduling heuristics for a versatile set of input task graphs.
For some heuristics (e.g. linear clustering [8]) it has been proven that the pro-
duced schedule length (the makespan as predicted by the heuristic) is no longer
than the fully sequential schedule. For large-grain task graphs it has been shown
that the schedule lengths from greedy algorithms are within a factor of two of
the optimal schedule [11].

To the best of our knowledge, no comparison of static schedule lengths to
the real-world execution time of the schedule has been undertaken. If the real
execution time of a schedule on a specific target platform does not at least
roughly correlate to the static schedule length, then any guarantees or schedule
length advantages of one heuristic compared to another are purely theoretical
as the static schedule does not model reality.

Developments in the research community show that automatic paralleliza-
tion is an important part of the future of computer science. Implicitly parallel
compilers automatically extract task graphs from user programs. Typically, the
extracted task sizes are small [9] because all computations are considered for
parallel execution. Therefore, the proper scheduling of small-grain task graphs
is fundamental for automatic parallelization.

In contrast to a Gantt-chart’s implication that tasks are started at a prede-
fined time, most parallel systems (e.g. [12,21]) implement a dynamic signaling
mechanism to spawn and join tasks as soon as all preconditions are satisfied.
This removes the burden of providing hard real-time guarantees for the soft-
and hardware which may produce unnecessary long schedules as worst case esti-
mates must be used everywhere.

Our measurements show that on some platforms the overhead is in the order
of 2 · 104 [clocks] so that it can be ignored only in the limiting case when all
tasks are in the order of 106 [clocks] and larger. The maximum possible task
size for a game or numerical simulation running at 60 frames per second on
2 GHz CPUs is in the order of 107 [clocks] and typically much smaller for non-
trivially parallelizable problems. This shows that the overhead is relevant for
typical parallel applications. For task graphs that contain tasks with sizes in the
order of the overhead, traditional scheduling algorithms may produce schedules
with arbitrarily bad speedup (e.g. a speedup smaller than one on more than
one core compared to the fully sequential schedule) as they ignore the run-time
overhead (cost of spawning and joining tasks). This includes algorithms that in
theory guarantee a schedule length shorter than the fully sequential schedule.
The insufficient speedup produced by these algorithms is especially harmful on
battery driven devices that could shut down cores that are used inefficiently.

Real-World Clustering for Task Graphs on Shared Memory Systems 19

Furthermore, the neglected overhead may shift data ready times used to per-
form scheduling in most algorithms asymmetrically, so that tasks which appear
to run in parallel for the algorithm will not run in parallel in reality.

Our main contributions to solve these problems are:

– We derive a generic model to predict run-time scheduler overhead for sym-
metric schedulers, i.e. the scheduling overhead is homogeneous.

– We show that our model accurately predicts scheduling overhead for stealing
[4] and non-stealing schedulers on different hardware.

– We define a task granularity for communication-free task graphs related to
the parallel task execution times on a specific platform.

– We present the first clustering algorithm that guarantees a minimum real-
world speedup per core for communication-free task graphs.

The rest of the paper is structured as follows. In Sect. 1 we show that the
measured execution times of a simple task graph have a non-linear relation-
ship to the static schedule length from traditional scheduling algorithms that
ignore the scheduling overhead. Afterwards, in Sect. 2, we derive a statistical
model to predict scheduling overhead for symmetric schedulers where the run-
time scheduling overhead is homogeneous. This is followed by Sect. 3, where we
show that our overhead model accurately predicts the scheduling overhead on
several platforms and scheduler implementations. The model is used in Sect. 4,
to construct a clustering algorithm which guarantees a user defined minimum
speedup per core in O(n3). Section 5 presents benchmarks showing how our algo-
rithm improves the average speedup of a large set of randomly generated task
graphs with small and large task sizes. Finally, we discuss related work and our
results in Sect. 6, as well as possible future work in Sect. 7.

1 Example

We will examine the task graph in Fig. 1.

int fun(int x)

a = g1(x)
[w:0.01]

int b = g1(x)
[w:0.01]

c = g1w(a)
[w:1000]

g = c + d + e + f
[w:0.01]

d = g1w(a)
[w:1000]

re turn g ;
[w:0.01]

e = g1w(b)
[w:1000]

f = g1w(b)
[w:1000]

Fig. 1. Example task graph containing small tasks.

20 A. Herz and C. Pinkau

Scheduling the program depicted in Fig. 1 on multi-core hardware appears
trivial. Given a machine with more than four cores, perfect scheduling [6] can
be applied to produce the best possible schedule, according to the scheduler’s
model of program execution, in O(n + m). This may produce the Gantt-chart
shown in Fig. 2.

Fig. 2. Gantt-chart for task graph in Fig. 1 produced using perfect scheduling [6].
Arrows show dependencies but do not require any time according to the scheduling
algorithm. The predicted sequential execution time of 4000 clocks compared to the
predicted parallel execution time of 1000 clocks suggests a speedup of about 4. Actually
executing the task graph yields a measured execution time of ca. 4000 clocks on a 4
Core Nehalem for the fully sequential program and a measured ececution time of 6000
clocks for the fully parallel program. In contrast to the prediction shown in the Gantt-
chart, sequential execution is about 1.5 times faster than parallel execution, not 4 times
slower.

Although the Gantt-chart implies that tasks may start execution at a speci-
fied time this is rarely implemented. In order to start tasks based on the times
from the chart, hard real-time constraints need to be placed on the executing
hard- and software and sound worst case execution times for all tasks must be
calculated. In addition, the executed schedule might be less than optimal as some
tasks may be able to execute before the worst case finish time of their predeces-
sors because the predecessors finished earlier than the conservative estimate.

Most scheduler implementations (e.g. [12,21]) signal waiting tasks as soon
as all their preconditions have been fulfilled so that they can start executing as
soon as possible. Usually, spawning tasks without preconditions also requires to
signal to another thread.

The Gantt-chart in Fig. 2 suggests a parallel execution time of about 0.01 +
1000+0.01 = 1000.01 clocks, so a speedup of about 4 compared to the sequential
execution of ca. 2 · 0.01 + 4 · 1000 + 0.01 = 4000.03 clocks is predicted. Actually
running the program in its fully parallel version using TBB’s [12] stealing sched-
uler takes about 6000 clocks per task graph execution on a 4 Core Nehalem.

Real-World Clustering for Task Graphs on Shared Memory Systems 21

In contrast, executing the sequential version of the program on the same hard-
ware yields an execution time of ca. 4000 clocks which is about 1.5 times faster
than the parallel version.

Apparently, the existing scheduling algorithms do not model the real-world
scheduling process, but an artificial scheduler that has no run-time overhead
and always yields linear speedup. This leads to unrealistically small execution
time predictions from these scheduling algorithms. The existing literature does
not define a grain size for task graphs without communication costs (and an
unrealistic one for small tasks with small communication costs). In Sect. 2 we
define such a grain size in direct connection to the parallel execution time of a
task on a specific platform.

In Sects. 3 and 5, it will be shown that the scheduling overhead is not neg-
ligible on real-world systems even for bigger task sizes up to 105 clocks and
more (depending on the specific hardware and scheduler implementation). This
emphasizes that the effect is relevant for normal task graphs that do not contain
minuscule tasks.

2 Model

In this section, a model for the prediction of task execution times that accounts
for the scheduling overhead is derived, improving the execution time prediction
accuracy by up to 1000 % (compared to previous scheduling algorithms which
neglect the scheduling overhead for smaller tasks).

Since the actual execution times on real hardware fluctuate heavily depending
on the overall system state, a stochastic model is developed. Adve and Vernon [1]
have found that random fluctuations have little impact on the parallel execu-
tion time, so that the expectation values we derive should be a good model of
the real execution time. First, we derive the model for a stealing scheduler as
implemented in Thread Building Blocks 4.1 (TBB [12]). Then we generalize the
model to schedulers with symmetric scheduling overhead, i.e. the overhead is
homogeneous.

2.1 Two Node Fork/Join Graphs

In the following, the execution of fork/join task graphs with two tasks are mod-
eled. After deriving a model for two tasks, we will extend the model for more
tasks.

The work weight associated with each task represents the average execu-
tion time of the task on the target platform including all costs (i.e. resource
contention, cache effects, etc.) except for the dynamic scheduling costs. With-
out loss of generality, we assume that the task calculating a (from Fig. 3 with
n = 2) is executed locally after the second task calculating b has been spawned
at time t0. For stealing schedulers, spawning means that the task is enqueued in
a list on the thread where the task is spawned. If no other idle core steals the
task from this list for parallel execution, the task will eventually be executed

22 A. Herz and C. Pinkau

int experiment(int x)

a = g1(x)
[w1:TS]

b = g1(x)
[w2:TS]

.. .
[w n : < = w 2]

re tu rn a + b + . . . ;

ref ref ref

Fig. 3. Generic fork/join task graph with n nodes. Here g1 performs a trivial loop that
takes TS clocks and does not interfere with the other tasks. The tasks are spawned by
the root node and the last task is notified as soon as all predecessor tasks have finished.

locally on the thread that originally spawned the task. The spawned task can be
stolen (and hence be executed in parallel) from the time it was spawned up until
the first task finished execution at t0 + TS (where TS = max{w1, w2, .., wn} is
the maximum size of all tasks because the largest task determines the overall
execution time) and starts to execute the spawned task itself. For convenience,
we set t0 = 0.

First, the time to spawn a task on another core is calculated.
Since the stealing process is independent from the spawn (other idle cores

check regularly if there is something to steal), the normalized probability that a
steal attempt is made at time t is

pattempt =
σ

TS
, (1)

where 0 < σ < 1 determines the steal attempt frequency which depends on the
actual scheduler and hardware. The frequency is smaller than one because less
than one attempt per clock can be made on real systems. A steal attempt need
not succeed, e.g. if there is nothing to steal. The probability that the available
task was not stolen until time t is given by the inverse of the probability that it
was stolen:

pnot-stolen(t) = 1 −
∫ t

0

pattempt dt = 1 − σ

TS
· t. (2)

So the probability that a steal attempt is successful at time t is given by the
probability that it was not yet stolen times the steal attempt probability (when
within the time frame where the task can be stolen at all):

pstolen(t) =

{
pnot-stolen(t) · pattempt 0 ≤ t ≤ TS

0 else.
(3)

Finally, the expected time Tsteal for the second task being stolen is

Tsteal =
∫ TS

0

pstolen(t) · t dt =
(3σ − 2σ2)

6
· TS =: β · TS. (4)

The overall parallel execution time (PET) of the potentially stolen task is
given by

pet(TS) = β · TS + α′ + TS. (5)

Real-World Clustering for Task Graphs on Shared Memory Systems 23

Here, α′ is the expectation value of the fixed overhead required to execute
the steal (which is initiated at time Tsteal) and the join to wait for both tasks.
After all overhead is accounted for, the time TS needed to execute the task must
be added. Like σ, α′ depends on the hard- and software and must be obtained
by running an experiment on the specific target platform.

The speedup achieved when running all tasks in parallel is obtained via

su(w1, ..., wn) =
∑n

i wi

pet(max{wi})
, (6)

where
∑n

i wi is the sequential execution time (SET).
For non-stealing schedulers (e.g. MPI [21] based code), the derivation is

essentially identical. The tasks are signaled rather than stolen. The signaling
is implemented via MPI send and MPI receive or MPI barrier so that only neg-
ligible data sizes are communicated, transmission of larger amounts of data is
not modeled as the article’s scope is limited to cost-free communication. Hence,
pattempt becomes the probability that the signal starting the second task arrives
at time t. In addition, the second task can be signaled long after the first finished
executing when a non-stealing scheduler is used. Assuming there exists a maxi-
mum time Tmax > TS, after which the second task is guaranteed to have been
signaled, we substitute Tmax for all TS in Eqs. 1 to 4 to obtain the expectation
time that the signal arrives Tsignal = β·Tmax. Rewriting this with Tmax = TS+δT
we get

Tsignal = β · TS + β · δT. (7)

As β · δT is a hardware dependent constant we can subsume it into α =
α′+β·δT and add it to the final parallel execution time prediction by substituting
α′ by α in Eq. 5:

petgeneral(TS) = β · TS + α + TS. (8)

The form of the final expression to evaluate the parallel execution time
petgeneral of the tasks is independent of the underlying scheduler.

The break even point (BEP) on a specific target platform is defined as the
task size BEP that gives a speedup of 1:

su(BEP,BEP) = 1. (9)

Finally, granularity for communication-free task graphs is defined as follows.
A task is said to be small-grain if its associated work is smaller than the BEP.
Conversely, it is considered large-grain if its work exceeds the BEP. A task graph
is said to be small-grain if it contains any small-grain tasks.

2.2 Many Node Fork/Join Graphs

Fork/Join graphs with more than two spawned nodes as shown in Fig. 3 are
handled as follows. The base overhead γ of parallel execution (as determined
by the measured execution time of two empty tasks) is subtracted from the

24 A. Herz and C. Pinkau

predicted two node execution time petgeneral and divided by the sequential execu-
tion time to get the speedup of both tasks compared to the sequential execution.
The square root of the combined speedup gives the speedup per task.

sutask(TS) =

√
petgeneral(TS) − γ

TS
(10)

The final execution time for a fork/join graph with n tasks is given in Eq. 11
by applying the speedup per task for every task and adding the base overhead:

petn(TS) = sutask(TS)n · TS + γ (11)

The algorithm presented in Sect. 4 will decompose more complex task graphs
into simple fork/join task graphs compatible to Eq. 11 to predict their speedup.
In order to apply this model, the target (scheduler and hardware) specific con-
stants α and β as well as the base overhead γ must be measured.

In the next section, the quality of the model for two task predictions for
several different target platforms is evaluated. In Sect. 5, the model for many
tasks is applied on a large range of randomly generated task graphs showing
that Eq. 11 can accurately predict parallel execution times.

3 Verification of the Two Task Model

In order to verify that the model derived in Eq. 5 is sound, the execution time of
fork/join task graphs as shown in Fig. 3 executed on several different hardware
platforms with different scheduler implementations are measured and compared
to the model predictions.

Figure 4 shows that the execution times of tasks of different lengths depend
only on the longest task (assuming there are enough hardware resources to exe-
cute all tasks in parallel).

Figure 5 shows that the model predictions are in very good agreement with
the real behavior of the analyzed hardware and schedulers.

As to be expected, TBB’s stealing-based scheduler performs better than the
MPI based scheduler for smaller tasks. The BEP is about half the size for the
stealing scheduler (2242 vs. 4636 clocks) on the Nehalem1 platform. The differ-
ence is more pronounced on the mobile Sandy2 platform (6812 vs. 22918 clocks).
For the experiments, all MPI processes were placed on the same node, so that
no actual network communication was executed.

The final values for α and β for each target platform (hardware and scheduler
combination) are obtained by fitting the model from Eq. 6 to the measurements.

TBB’s stealing scheduler and MPI’s non-stealing task execution differ com-
pletely from a conceptual and implementation point of view. As shown in this
section, they are both well represented by the model.
1 Intel(R) Core(TM) i7 CPU 860 @ 2.80GHz SMP x86 64 GNU/Linux 3.5.0-37-

generic.
2 Intel(R) Core(TM) i7-3667U CPU @ 2.00GHz SMP x86 64 GNU/Linux 3.5.0-17-

generic.

Real-World Clustering for Task Graphs on Shared Memory Systems 25

Fig. 4. Comparison of the execution times of two parallel tasks of different size to the
prediction that the overall run-time is dominated by the longer task. The first task’s
size is increased from 0 to 2 · 106 while the size of the second task is fixed to 0.5 · 106

(and vice versa). Error bars have been omitted for readability, all measured data points
lie within one standard deviation from the model prediction.

Fig. 5. Comparison of the speedup of two parallel tasks with the predicted speedup
from Eq. 6. Here, α and β are determined by fitting the model to the measured data.
β is related to the signal probability per time and α quantifies the delay after the
second thread has received the signal until it can start processing the second task. The
experiment measures the average time it takes the scheduler to spawn, execute and join
two completely independent tasks with equal task size. Error bars have been omitted
for readability, all measured data points lie within one standard deviation from the
model prediction and are in the order of 10 % of the measured value. TBB denotes
Thread Building Blocks 4.1 and MPI denotes open MPI 1.4.5. Speedstep was disabled
on all systems during measurement to avoid large fluctuations due to the processors
power management. The minimum task size required to realize 98 % of the possible
speedup for the these platforms reaches from 105 to 106 [clocks]. For larger tasks, the
overhead may be neglected.

26 A. Herz and C. Pinkau

In addition, the benchmarks from Sect. 5 will show that Eq. 11 gives a realistic
execution time prediction for fork/join graphs with more than two tasks.

In the next section, a preconditioning algorithm is presented that uses the
model to merge tasks in a task graph that cannot be efficiently executed in
parallel.

4 Algorithm

Some previous scheduling algorithms attempt to give guarantees that the pro-
duced schedule length is no longer than the fully sequentialized version of the
task graph [8] or that the schedule length is within a factor of two from the
optimal schedule for task graphs where the computation to communication ratio
is high [11]. As will be shown in Sect. 5, scheduling small-grain (w.r.t. task size)
task graphs with scheduling algorithms that ignore scheduling overhead (even
with perfect scheduling) can lead to surprisingly bad results where the real exe-
cution time of the task graph is orders of magnitude worse than the sequential
execution.

This shows that the guarantee of the traditional scheduling algorithms is of
theoretical nature. The actual execution times and speedups predicted by the
traditional algorithms hold only in the limiting case when all tasks sizes are
much larger than the BEP. Still, our algorithm improves the speedup even for
such large tasks on average by 16 % as shown in Sect. 5. Figure 5 shows that
close to linear speedup can be expected only for task sizes in the order of tens to
hundreds of thousands of clocks or more. This means that the data ready times
used to schedule tasks in many traditional algorithms [8] will be underestimated
for many tasks and may shift tasks that appear to be parallel by different time
offsets so that they will not run in parallel in practice.

In this section we present our clustering and execution time prediction algo-
rithm which preconditions the task graph by collapsing parallel tasks that do
not yield a minimum real-world speedup of ρ per core. The algorithm guarantees
that the real-world execution time of the preconditioned task graph (on suffi-
ciently many cores and if it actually contains any parallelism) is strictly smaller
than the sequential execution time.

In principle, the algorithm decomposes input task graphs into instances of
our modeled fork/join task graph from Fig. 3, applies our model via Eq. 11 and
composes the results. This is achieved by the following steps. Due to the Hasse
property enforced on the graph, all predecessors of join nodes are parallel nodes.
For parallel nodes, the algorithm finds the lowest common ancestor and the
highest common descendant, which form a fork/join graph. The model is applied
to these fork/join graphs to predict the speedup and merges parallel nodes if the
speedup is insufficient. After merging the nodes, the Hasse property is restored.
This last step is intuitively done in O(n4), but we present a more elaborate
approach to get an upper bound of O(n3).

In the following, the algorithm is presented in several parts. The first part,
as seen in Algorithm 1, is the preprocessing part. Here we build several data

Real-World Clustering for Task Graphs on Shared Memory Systems 27

structures to make sure that the overall upper bound of O(n3) is met. In the
second part, see Algorithm 2, the real work is done by calculating the estimated
processing times of all tasks and merging appropriate tasks together.

The preprocessing shown in Algorithm 1 computes for all predecessor pairs
of join nodes the lowest common ancestor (LCA) with the minimal speedup,
as well as the shortest paths from the LCA to the respective pair nodes in the
unmerged graph. Later on, the corresponding paths inside the merged graph
will be constructed from the paths from the LCA. Transitive edges are removed
from the input graph by applying the Hasse reduction, as the algorithm assumes
that tasks preceding a join node may execute in parallel which is not true for
transitive edges. In addition, all linear task chains are removed from the graph.
Both operations reduce the signaling overhead of the graph, as every edge in the
graph can be interpreted as a signaling operation for the run-time scheduler.

Algorithm 1. preprocessing
Require: graph G

H ← HasseReduction(G)
H ′ ← H
calculate APSP
preprocessing for common ancestors
create hashmap um from unmerged to merged nodes um : {nodes} → P({nodes})
initialize um: node �→ {node}
create hashmap ppA from pairs of nodes to (lca, path1, path2) ppA : (node, node) →
(LCA, path, path)
initialize ppA:
for all join nodes j′ do

for all predecessor pairs (i′, k′) of j′ do
get the LCA with minimal speedup: lca′ ← getLCA(i′, k′)
pi′ ← shortestPath(lca′, i′)
pk′ ← shortestPath(lca′, k′)
ppA ← ppA +

{
(i′, k′) �→ (lca′, pi′ , pk′)

}

end for
end for

Next, the outer loop of the actual algorithm is shown in Algorithm 2. The
nodes are visited in a topological order and data ready times are computed from
the predecessors unless the current node is a join node which needs the special
treatment shown in the merge procedure in Algorithm 5.

In the following, the merge operation ik ← i∪k means that a new node ik is
created in the merged graph Ĥ that inherits all edges from i and k before these
nodes are deleted from the graph.

mergeLinear is used in order to remove the overhead generated by the
communication between consecutive tasks.

mergeParallel is used to merge the parallel predecessors of join nodes. If
the indegree of the merged node is greater than one then the merge procedure
is recursively applied to the merged node as it may be a newly created join node.

28 A. Herz and C. Pinkau

Algorithm 2. outer loop
while traverse nodes j in topological order do

mergeLinear (predecessor of j, j)
if node j is a join node then

merge j
mergeLinear (predecessor of j, j)

end if
store estimated starting time est and estimated finishing time drt for current node

end while

Algorithm 3. mergeLinear
Require: task sets i, k to be merged and k has exactly 1 predecessor

ik ← i ∪ k
for all tasks t in ik do

um ← um +
{
t �→ ik

}

end for
remove Hasse violating edges
update nsp distances and paths and drt

Algorithm 4. mergeParallel
Require: task sets i and k to be merged

ik ← i ∪ k
for all tasks t in ik do

um ← um +
{
t �→ ik

}

end for
remove Hasse violating edges
update nsp distances and paths and drt transitively
if indegree ik > 1 then

merge ik
end if

The generalmergeprocedure applied to the join nodes is shown inAlgorithm5.
Here, variables with hat, like Ĥ, denote information from the merged graph

in its current state, whereas variables with prime, like i′, denote unmerged infor-
mation. Variables without hat or prime refer to information from the unmerged
graph available from preprocessing. The information from the unmerged graph
is translated into the domain of the merged graph using the um mapping.

In order to obtain realistic task execution times, the available parallel work
(fork/join tasks preceding the join node) must be calculated. The algorithm
performs this by considering the paths from the lowest common ancestor [3]
for each pair of nodes preceding a join node. These paths may be considerably
larger than the pair nodes alone. So, for each predecessor of a join node, the
longest path from common ancestor to the predecessor node along with the
path’s start time is stored in the tasklist. The tasklist is passed to the multifit
algorithm from Coffman, Garey and Johnson [5] to find a schedule for the parallel
tasks preceding the current join node. The multifit algorithm uses a k-step binary

Real-World Clustering for Task Graphs on Shared Memory Systems 29

Algorithm 5. merge
Require: join node j

create list tasklist
drtmin = Infinity
for all predecessors i of j in Ĥ do

for all predecessors k �= i of j in Ĥ do
unmerged nodes inside merged nodes
for all i′ ∈ i, k′ ∈ k and um(i′) �= um(k′) and ppA(i′, k′) exists do

get the LCA and the corresponding paths from the unmerged graph H ′ :
(lca′, pi′ , pk′) ← ppA(i′, k′)
get the corresponding merged nodes and paths : (estpi , est

p
k, p̂i, p̂k) ←

um(lca′, pi′ , pk′)
ˆlca ← update(lca′, estpi , est

p
k, p̂i, p̂k): ˆlca is last common node in p̂i, p̂k and all

arguments of update are modified accordingly
if work(p̂i) > maxworki then

get path’s run time (includes delays from nodes the path depends on) :
maxworki ← work(p̂i)
esti ← estpi

end if
calculate drtmin for common ancestors :
drtmin ← min{drtmin, drt ˆlca}

end for
end for
tasklist ← tasklist + (i, maxworki, esti)

end for
start with maximal parallelism : cores = size of tasklist
C ← multifit(tasklist, cores)
while cores > 1 and

(
∑

i maxworki)/(cores > 1 ? petcores(C) : C) <
max(1, ρ · cores) do

decrement cores
C ← multifit(tasklist, cores)

end while
put the unmerged tasks into bins according to multifit
update hashmap with all pairs of nodes that are in different bins
for all bins b do

mergeParallel (tasks in b)
end for
recalc drtmin for merged predecessors
handle overhead : est ← drtmin + cores > 1 ? petcores(C) : C
finish time of join node : drt = est + work(j)

search to find a schedule for n independent tasks in k·O(n·log(n)) with w.c. error
bound 1.22 · opt+ 1

2k
. Experimental results for multifit indicate that the average

error is in the order of 1.01 for k = 7, so slightly above optimal execution times
are expected. If better heuristics than multifit are found to solve this specific
scheduling problem then these can be plugged in instead. The schedule length

30 A. Herz and C. Pinkau

returned by multifit must be corrected using the model from Eq. 11 if more than
one core is used to obtain realistic data ready times.

Multifit is modified to not merge pairs of nodes where it has been already
established that merging them is not effective. This information is stored in a
hashmap.

The final while loop searches for the biggest number of cores which yields a
speedup of at least ρ per core rather than minimizing the (parallel) execution
time of the tasks in question. This avoids that a large number of cores is uti-
lized to achieve small speedups (e.g. 100 cores for speedup 1.01). Obviously, the
algorithm could be modified here to minimize the execution times. This might
be desirable if the given task graph describes the complete program. Often, hier-
archical task graphs are used [10] to represent complex programs so that one
individual subgraph describes only part of a larger program that may run in
parallel to the subgraph under consideration. In this situation or when energy
efficiency is considered, optimizing for speedup per core yields better results as
cores are used only if a minimum speedup can be achieved.

Eventually, all tasks scheduled to the same core by multifit are merged using
mergeParallel while maintaining that the graph is a Hasse diagram.

Both merge operations update the mapping um from unmerged to merged
nodes and the DRTs of the merged node (and all nodes reachable from it) by
adding the work from all nodes that were merged to the previous DRT. Moreover,
both operations update the distances of the nearly shortest paths (NSP), as well
as the paths themselves, which represent approximations of the shortest paths
inside the merged graph after merging the nodes. They do so by iterating over
all ancestors of the merged node, calculating their distances to it, and checking
whether there is now a shorter path to a descendant of the merged node over
a path that traverses the merged node. In order to retain the Hasse property,
transitive edges are removed inside mergeParallel. Therefore, the NSPs are
correct paths, but might not be the actual shortest paths in general.

As a side effect, the algorithm calculates an execution time prediction for the
complete task graph in O(n3). If only this prediction is desired the last while
loop of merge in Algorithm 5 and everything beyond that can be omitted.

Our algorithm correctly predicts that the task graph from Fig. 1 will be exe-
cuted about 1.5 times faster on the specific target platform if all nodes are
collapsed into a sequential program compared to the fully parallel program.
Of course, the quality of the prediction is highly dependent on the quality of
the (target specific) task size estimates. So far, the preconditioning algorithm
assumes infinitely many cores. If the maximum parallelism in the result graph
does not exceed the available cores of the target hardware then the result graph
can be executed without further modifications. This may often be the case, as
the preconditioning algorithm removes all inefficient parallelism and the num-
ber of available cores in modern hardware increases. If the graph contains too
much parallelism after preconditioning, any traditional algorithm may be used
to produce a schedule. If this algorithm uses data ready times then it must
be modified to incorporate the realistic execution time prediction from Eq. 5 in
order to produce realistic schedules.

Real-World Clustering for Task Graphs on Shared Memory Systems 31

Running a scheduling overhead corrected version of a traditional scheduling
algorithm without the preconditioning algorithm is not sufficient to avoid bad
schedules as these algorithms are not aware of the overhead and would treat it
like useful computation.

As an alternative, when dealing with finitely many cores, the preconditioning
algorithm may be turned into a complete scheduling algorithm. The algorithm
is executed k times in order to find the ρ-speedup value which produces a task
graph with as many or less tasks as the hardware supports. ρ is obtained by
performing a k-step binary search with ρ ∈ [0 ≤ ρmin .. 1]. This increases the
execution time of the algorithm to k · O(n3) and finds the optimal ρ value with
an error of 1−ρmin

2k
.

5 Experimental Results

We have generated 1000 random task graphs of varying complexity and a wide
range of task sizes using the TGFF library from Dick, Rhodes and Wolf [7] to
evaluate the preconditioning algorithm. All task graphs are preconditioned and
their execution times averaged 250000 times on the Intel(R) Core(TM) i7 CPU
860 @ 2.80GHz SMP x86 64 GNU/Linux 3.5.0-37-generic (hyper-threading and
speedstep disabled) system. Eight task graphs were removed from the data set
because they contained more than 4 parallel tasks after preconditioning and a
precise measurement of their execution times was not possible on the 4 core
system. The results are presented in Fig. 6.

The relative uncorrected error depicted in Fig. 6(a) shows how much the mea-
sured run time of a given task graph deviated from the prediction generated using
perfect scheduling (which neglects scheduling overhead). This error is relatively
large with an average of 16 % ± 14 % for average task sizes bigger 5000 clocks
(logarithmic scale). For smaller tasks the execution times are mispredicted by
up to 107% showing that it is essential to take the overhead into account.

The relative corrected error depicted in Fig. 6(b) shows how much the mea-
sured run time of a given task graph deviated from the prediction generated using
our algorithm (which incorporates scheduling overhead). The average deviation
is 4.6 % with a standard deviation of 3.1 % (for average task sizes bigger 1000
clocks). For extremely small tasks with an average task size near zero the error
increases up to 40 % (but is still many orders of magnitude smaller compared
to perfect scheduling) for some graphs because the timer resolution on the test
system is not good enough to create such small tasks more precisely.

Figure 6(c) shows that the speedup per core achieved by our algorithm rela-
tive to perfect scheduling is ≥ one, so that our algorithm never creates a sched-
ule with a speedup per core that is worse than the original schedule. For bigger
tasks, the speedup per core is improved on average by 117 %. For smaller tasks
the improvement is much stronger because the dynamic scheduling overhead
dominates the execution time.

Our algorithms optimizes for speedup per core rather than overall speedup.
Nevertheless, Fig. 6(d) shows that on average the overall speedup of the task

32 A. Herz and C. Pinkau

Fig. 6. Experimental results comparing our clustering algorithm to naive scheduling
algorithms that neglect run-time scheduling overhead (perfect scheduling). Averages
were calculated for average task sizes bigger 1000 clocks so that they are not biased
from the values for on average small task sizes where our algorithm outperforms the
classical algorithm by several orders of magnitude.

graphs is improved by 16 % by our algorithm compared to perfect scheduling.
Again, for smaller tasks the effect is much more pronounced. Therefore, it can
be seen that speedup per core is a measure that does not generally lead to
decreased overall speedup. In some specific instances, optimizing for speedup
may yield slightly shorter execution times at the expense of utilizing many more
cores (and highly reducing energy efficiency).

Our algorithm merges all parallel tasks of local fork/join sub-graphs until the
desired speedup per core (and a local speedup > 1) is achieved. Globally, a task
graph’s critical path consists of sequences of fork/join sub-graphs. Inductively
it follows that the task graph’s sink node finishes before or at the same time as
in the fully sequentialized version of the task graph so that the global speedup
≥ 1. Also, the speedup per core ≥ ρ as all parallelism that would violate this
invariant is removed. This holds if α, β and γ from Eq. 11 are chosen so that all
task execution times prediction ≤ real execution times. Otherwise, since there is
an average error of 4.6 % ± 3.1 % associated with the predicted task execution
times, slight violations of these constraints are possible.

Real-World Clustering for Task Graphs on Shared Memory Systems 33

6 Related Work

Adve and Vernon [2] predict task graph execution times for a given scheduler
model and complete program input data in O(n + m). They present a system
model where the scheduler and most other parts are modeled using queuing
theory. For large task sizes their predictions are fairly good, results for small
task sizes are not shown but would suffer from the lack of detailed scheduling
overhead modeling. Their results are not applied to scheduling.

McCreary, Khan and Thompson [19] and Kwok [14] compare the makespan
and Liu [17] compares worst case bounds of various scheduling heuristics but
neglect the real-world execution times and overheads.

Most of the known scheduling heuristics have a complexity of O(n2) to O(n3)
while operating on local information inside the task graph like edge weights
and data ready times. Our algorithm is within the usual complexity of O(n3)
while preprocessing allows us to examine a wider view of the parallelism inside
the graph by considering the paths leading from lowest common ancestors via
parallel nodes to the next join node (local fork/join sub-graphs).

Liou [16] suggests that clustering before scheduling is beneficial for the final
result and McCreary and Gill [18] present a grain packing algorithm. This algo-
rithm is limited to linear and pure fork/join parallelism, more complex graphs
are not accounted for in detail and scheduling overhead is neglected. Many other
clustering algorithms that do not take scheduling overhead into account have
been proposed [15,22].

Power efficient scheduling has been investigated by [20] and others, taking
into account special hardware features to run specific tasks slower and with
lower power consumption or better thermal footprint with minimal impact on
the makespan. Our algorithm guarantees a minimum core utilization efficiency,
so that additional cores are used only if a user defined speedup per core can
be achieved. This allows otherwise inefficiently used cores to be turned off com-
pletely and can be combined with other power saving techniques.

To the best of our knowledge, none of the previous scheduling algorithms
consider scheduling overhead, so in contrast to our algorithm no guarantees on
real-world speedup and core utilization efficiency can be given.

7 Conclusion and Outlook

We have shown that task graphs which contain tasks with sizes in the order of
105 clocks and higher are not realistically scheduled by traditional scheduling
algorithms as the scheduling overhead is neglected. We derived a sound model
for the scheduling overhead of symmetric schedulers and presented a task graph
clustering algorithm which unlike previous scheduling algorithms guarantees a
real-world speedup and core utilization efficiency. Generally, our algorithm pro-
vides a vastly more accurate execution time model compared to existing algo-
rithms and improves the speedup per core in most cases while never making it
worse. The effect is viable for large task sizes with improved speedup by 16 %

34 A. Herz and C. Pinkau

and improved speedup per core by 117 %. For smaller tasks we improve exist-
ing methods by several orders of magnitude. Furthermore, we have shown that
the scheduling overhead predictions should be incorporated into the existing
scheduling algorithms to obtain realistic data ready times.

By extending the scheduler model and preconditioning algorithm to incorpo-
rate communication overhead, fully automatic and efficient schedules for cloud
and HPC systems may become possible.

References

1. Adve, V.S., Vernon, M.K.: The influence of random delays on parallel execution
times. SIGMETRICS Perfom. Eval. Rev. 21(1), 61–73 (1993)

2. Adve, V.S., Vernon, M.K.: Parallel program performance prediction using deter-
ministic task graph analysis. ACM Trans. Comput. Syst. 22(1), 94–136 (2004)

3. Bender, M.A., Farach-Colton, M., Pemmasani, G., Skiena, S., Sumazin, P.: Lowest
common ancestors in trees and directed acyclic graphs. J. Algorithms 57(2), 75–94
(2005)

4. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work
stealing. J. ACM 46(5), 720–748 (1999)

5. Coffman Jr., E.G., Garey, M.R., Johnson, D.S.: An application of bin-packing to
multiprocessor scheduling. SIAM J. Comput. 7(1), 1–17 (1978)

6. Darte, A., Robert, Y.P., Vivien, F.: Scheduling and Automatic Parallelization.
Birkhäuser Boston (2000)

7. Dick, R.P., Rhodes, D.L., Wolf, W.: Tgff: Task graphs for free. In Proceedings
of the 6th International Workshop on Hardware/Software Codesign, pp. 97–101.
IEEE Computer Society (1998)

8. Gerasoulis, A., Yang, T.: On the granularity and clustering of directed acyclic task
graphs. IEEE Trans. Parallel Distrib. Syst. 4(6), 686–701 (1993)

9. Girkar, M., Polychronopoulos, C.D.: Automatic extraction of functional parallelism
from ordinary programs. IEEE Trans. Parallel Distrib. Syst. 3(2), 166–178 (1992)

10. Girkar, M., Polychronopoulos, C.D.: The hierarchical task graph as a universal
intermediate representation. Int. J. Parallel Prog. 22(5), 519–551 (1994)

11. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math.
17(2), 416–429 (1969)

12. Intel. Thread building blocks 4.1 (2013). http://www.threadingbuildingblocks.org/
13. Khan, A.A., McCreary, C.L., Gong, Y.: A Numerical Comparative Analysis of

Partitioning Heuristics for Scheduling Tak Graphs on Multiprocessors. Auburn
University, Auburn (1993)

14. Kwok, Y.-K., Ahmad, I.: Benchmarking the Task Graph Scheduling Algorithms,
pp. 531–537 (1998)

15. Liou, J.-C., Palis, M.A.: An efficient task clustering heuristic for scheduling dags on
multiprocessors. In: Workshop on Resource Management, Symposium on Parallel
and Distributed Processing, pp. 152–156. Citeseer (1996)

16. Liou, J.-C., Palis, M.A.: A Comparison of General Approaches to Multiprocessor
Scheduling, pp. 152–156. IEEE Computer Society, Washington, DC (1997)

17. Liu, Z.: Worst-case analysis of scheduling heuristics of parallel systems. Parallel
Comput. 24(5–6), 863–891 (1998)

18. McCreary, C., Gill, H.: Automatic determination of grain size for efficient parallel
processing. Commun. ACM 32(9), 1073–1078 (1989)

http://www.threadingbuildingblocks.org/

Real-World Clustering for Task Graphs on Shared Memory Systems 35

19. McCreary, C.L., Khan, A., Thompson, J., McArdle, M.: A comparison of heuristics
for scheduling dags on multiprocessors. In: Proceedings on the Eighth International
Parallel Processing Symposium, pp. 446–451. IEEE Computer Society (1994)

20. Shin, D., Kim, J.: Power-aware Scheduling of Conditional Task Graphs in Real-
time Multiprocessor Systems, pp. 408–413. ACM, New York (2003)

21. Indiana University. Open mpi 1(4), 5 (2013). http://www.open-mpi.org/
22. Yang, T., Gerasoulis, A.: Dsc: Scheduling parallel tasks on an unbounded number

of processors. IEEE Trans. Parallel Distrib. Syst. 5(9), 951–967 (1994)

http://www.open-mpi.org/

http://www.springer.com/978-3-319-15788-7

	Real-World Clustering for Task Graphs on Shared Memory Systems
	1 Example
	2 Model
	2.1 Two Node Fork/Join Graphs
	2.2 Many Node Fork/Join Graphs

	3 Verification of the Two Task Model
	4 Algorithm
	5 Experimental Results
	6 Related Work
	7 Conclusion and Outlook
	References

