
On the Security of Distributed Multiprime RSA

Ivan Damg̊ard1, Gert Læssøe Mikkelsen2(B), and Tue Skeltved3

1 Department of Computer Science, Aarhus University, Aarhus, Denmark
2 The Alexandra Institute, Aarhus, Denmark

gert.l.mikkelsen@alexandra.dk
3 Signaturgruppen A/S, Aarhus, Denmark

Abstract. Threshold RSA encryption and signing is a very useful tool
to increase the security of the secret keys used. Key generation is, how-
ever, either done in a non-threshold way, or computationally inefficient
protocols are used. This is not a big problem in a setup where one
organization has a few high profile keys to secure, however, this does
not scale well to systems with a lot of secret keys, like eID schemes
where there exist one key pair per user, especially not if the we want the
users’ personal devices like smart phones to participate in the threshold
setup. In this paper we present novel approaches to distributed RSA key
generation which are efficient enough to let smart phones participate.
This is done by generating keys consisting of more than two primes
instead of generating standard RSA keys.

We present a 2-party protocol based on the ideas of [BH98] which
produces a 3-prime modulo. We demonstrate that the protocol is effi-
cient enough to be used in practical scenarios even from a mobile device
which has not been demonstrated before. Then we show the first 2-party
distributed multiprime RSA key generation protocol that are as efficient
as standard centralized key generation, even if security against malicious
adversaries is desired. Further, we show that RSA keys based on moduli
with more than two prime factors and where part of the factorization
is leaked to the adversary are useful in practice by showing that com-
monly used schemes such as PSS-RSA and OAEP-RSA is secure even
if the adversary knows a partial factorization of the multiprime moduli.
From all other parties the generated keys cannot be distinguished from
standard RSA keys, which is very important as this make these protocols
compatible with existing infrastructure and standards.

1 Introduction

Despite the introduction of elliptic curve cryptography and more recently lattice
based cryptography, RSA remains one of the the most used public-key schemes.
A very large number of e-commerce and net-banking transactions are protected
using RSA. In many applications, a user’s secret key resides on his own machine,

Gert Læssøe Mikkelsen—Supported by the Danish Council of technology and Inno-
vation.

c© Springer International Publishing Switzerland 2015
J. Lee and J. Kim (Eds.): ICISC 2014, LNCS 8949, pp. 18–33, 2015.
DOI: 10.1007/978-3-319-15943-0 2

On the Security of Distributed Multiprime RSA 19

and due to the fact that the security on private PC’s is often very poor, keys
as well as passwords can be stolen. It is well known that in net-banking, for
instance, this has lead to a significant loss of of money.

Countermeasures proposed against this include using extra, special-purpose
hardware which is often expensive, or storing secret keys on a central server
while implementing some form of conventional access control to the secret keys.
While a central server may certainly have better security, this also creates
a single point of attack.

One approach that can lead to better solutions is to do threshold RSA, i.e.,
we split the secret key in two or more shares stored in different entities such that
signing or decryption requires participation of at least some number of share-
holders. The adversary now must break into more than one entity to steal the
key. Whether this actually improves security in a real application depends, of
course, on the implementation, but the threshold approach certainly creates new
possibilities for designing a secure system. For instance, if the design involves
a handheld mobile device, it may not be necessary to use a special-purpose
high-security device if it will not be storing the entire key. A mobile phone, for
instance, may be sufficient.

Threshold RSA is a well studied problem from a theoretical perspective, see
for instance [GRJK07,DK01]. In this paper, we focus on the case of two share-
holders. For concreteness the reader may think of a mobile device holding one
share while the other is held by a server, run by the user himself, or by some
organization. This case was studied in [DM09] where a formal model was given for
a more realistic scenario where the human user is explicitly modeled as a player.
This allows us to take passwords and login credentials into account when proving
security. In [DM09] a protocol was given that is secure if the adversary can, at
any one time, only corrupt the mobile or the server, but not both. However, this
work, like most work on threshold RSA, does not directly consider the problem
of generating keys in a distributed fashion, but assumes that shares of the key
have been distributed by a trusted party.

To avoid a single point of failure, it is of course desirable to implement the
trusted party using a secure protocol executed by the share-holders. Design of
such a distributed key generation protocol has been studied in a long line of
research. The first reasonably efficient solution to this problem is due to Boneh
and Franklin [BF97,BF01]. Except for the work by Algesheimer et al. [ACS02]
(which has prohibitively large round complexity), all other works (e.g. [BH98,
FMY98,Gil99,DM10,HMRT12]) in this area are more or less variations of the
original ideas from [BF97]. In short the idea is to generate a candidate RSA
modulus N = pq, where p and q are random numbers that are additively shared
among the players. They then execute a distributed biprimality test to check
whether N is the product of two primes. This can be done efficiently because
the players have shares of p and q. If N is indeed the product of two primes,
then it is output, otherwise the protocol is restarted.

The main problem with this approach is that a candidate N can only be
used if both p and q happen to be prime at the same time. This means that
the expected number of attempts needed is quadratic in k, were k is the desired

20 I. Damg̊ard et al.

length of the modulus, whereas standard centralized key generation is linear
in k. This makes the distributed protocol several orders of magnitude slower
than standard key generation for realistic values of k.

It was noted already in [BF97] that one can avoid this quadratic slowdown
if one is willing to have RSA moduli with several prime factors and leak part
of the factorization to the adversary. In particular, [BH98] presents a 3-party
protocol secure against one corrupted player that generates a modulus with
3 prime factors. This protocol only requires that the parties have to find and
generate a single additive shared prime, but on the other hand the adversary
may learn one of the primes of the final modulus.

It is not clear that using such a key in practice is secure. For instance, if the
adversary sees public key (N, e) and ciphertext c = xe mod N , he can compute
a large amount of partial information about x. Say he knows one prime fac-
tor p, then he can compute ce−1 mod (p−1) mod p = x mod p. To the best of our
knowledge there has been no previous study of security of RSA based schemes
in this scenario, which is perhaps the reason why this idea for key generation
has received very little attention so far. In this article we demonstrate that such
keys are in fact secure when used with appropriate padding schemes such as
PSS-RSA and OAEP-RSA, which are the most widely used padding schemes,
and which are an essential part of a secure scheme based on RSA.

1.1 Our Contributions

In this paper, we study the use of multiprime RSA moduli in distributed key
generation and for encryption and signatures where the adversary may know
part of the factorization. More precisely he may learn (or even get to choose) all
but 2 of the prime factors. We concentrate on the 2-party case as this in many
cases are a more realistic setup e.g., consiting of a user using a mobile device and
a larger organization operating the server side. The 2-party case means that for
a malicious adversary, we can only get security with abort: if one player stops
prematurely, we cannot complete the protocol.

Our contributions are two-fold; We present two new 2-party distributed RSA
key generation protocols and show that multiprime RSA keys used in combina-
tion with PSS-RSA or OAEP-RSA is secure even if the adversary knows part of
the factorization. It is important to note, that this generalizes to all such keys,
not just the ones produced by the protocols presented in this article.

The Protocols. We introduce two 2-party protocols. One is based on ideas from
[BH98] which is a 3-party protocol secure against one corrupted player, where two
parties generate a prime each locally (say p and q), whereas a random candidate
number t is generated in secret-shared form. The players then compute N = pqt
securely and do a distributed test to check if N is the product of 3 primes. Since
[BH98] assume honest majority, the secure computation needed could be done
efficiently based on secret sharing. Here, we adapt the protocol to the two-party
case using a homomorphic cryptosystem for two-party distributed computations

On the Security of Distributed Multiprime RSA 21

and we also adapt the primality tests from [BH98] to the 2-party scenario. In
our particular implementation the Paillier cryptosystem [Pai99] is used and we
demonstrate that this 2-party protocol is efficient enough to be useful even from
mobile devices - a result that has not been demonstrated before. As in [BH98],
we obtain passive security.

We then introduce a new approach where on the one hand we generate a
larger modulus than before, namely with 4 prime factors, but on the other hand
the protocol is much more efficient and can easily be made actively secure.
The idea is to simply let each party do a normal RSA key generation locally
where the only condition is that they agree on the public exponent e. They then
exchange the public keys (N1, e), (N2, e) and the final public key is (N1N2, e).
It follows from the Chinese remainder theorem that the parties can use their
locally generated secret exponents to do distributed signing or decryption. This
can be made actively secure with very little overhead as long as we enforce
that each player must know the factorization of his number, see more details
within. It takes only seconds to generate a secure 2048-bit modulus, and thus
only seconds to complete the protocol. Note that this system is very easy to
build from existing RSA soft- or hardware, since standard key generation and
encryption/decryption operations is essentially all that is required. Note also that
any two (or even more) users who have the same public exponent can combine
their keys in this way, even if they did not anticipate this at key generation
time. This is the first 2-party protocol for multiprime RSA key generation that
achieves active security while being as efficient as standard RSA key generation.

It is important to understand that this idea is very different from the trivial
approach to “threshold” RSA signatures where we just let each shareholder sign
with his own key. This would force parties who use or certify the public key to
be aware that a certain person is actually “composed” of several entities, thus
making practical implementation much more cumbersome. In our approach, we
maintain that the public key is simply a standard RSA key (albeit with a longer
modulus) and the fact that the key is shared is transparent to other users.

Security of PSS-RSA and OAEP-RSA in the Multiprime Setup. In
practice RSA is never used without a secure padding scheme, such as PSS-RSA
for signatures or OAEP-RSA for encryption. As show by Bleichenbacher’s attack
[Ble98] on the PCKS#1 v1.5 standard, provable security of RSA in combination
with the padding scheme is very important. We show that both the PSS-RSA and
OAEP-RSA padding schemes used with a multi-prime RSA key remain secure
even if the adversary knows all but two of the prime factors, and therefore
cannot completely factor the modulus but can extract some partial information
of the preimage. The security level then corresponds to the security of the RSA
modulus formed by the two unknown primes. We can therefore conclude that
the keys output by the two key generation protocols presented in this article and
similar protocols are indeed useful in application scenarios used today.

22 I. Damg̊ard et al.

2 Preliminaries

Below in Assumption 1 we follow the standard definition of the security of “plain”
RSA, by assuming that no efficient algorithm can invert the RSA function with-
out knowledge of the private key.

Definition 1. Let the algorithm ARSA be specified as: Given {N, e, y} s.t. N
is the product of two k-bit primes, gcd(ϕ(N), e) = 1, and y ∈ ZN , then ARSA

outputs x s.t. y ≡ xe (mod N).

Assumption 1 (Hardness of RSA). We assume that no probabilistic poly-
nomial Turing machine (PPT) exists that implements ARSA for random input,
with nonnegligible success rate.

We now specify an adversary for breaking multiprime RSA (M-RSA), the RSA
problem with a modulus consisting of more than two primes, where
the adversary have chosen all but two of the prime factors of the modulus. This
adversary actually consists of two algorithms, one for generating α the part of
the M-RSA modulus known to the adversary and one inverting the RSA function
using this modulus. We will see in Lemma 1 that the hardness of RSA implies
hardness of M-RSA.

Definition 2. Let algorithm AM-RSA-Gen be specified as: Given N s.t. N is the
product of two k-bit primes, then AM-RSA-Gen outputs {α,M,ϕ(α), state}, where
α is an arbitrary k-bit positive integer, M = Nα, and state is an arbitrary string.

Let AM-RSA be an algorithm taking as input {M, e, y, state} s.t. M and state
is the output of AM-RSA-Gen, gcd(ϕ(M), e) = 1 and y ∈ ZM . The output of
AM-RSA is x s.t. y ≡ xe (mod M).

3 Protocol for Two Players with a Three-Prime Modulus

In this section we present a two-party protocol generating a three-prime RSA
modulus. To enable distributed computations between two players the Paillier
Cryptosystem [Pai99] is used. The protocol is designed and optimized to run
between a mobile device and a server and in particular only the server has to
generate a Paillier key pair. The protocol is based on the ideas from [BH98].

To test whether a modulus N is well formed, the parties need an additive
sharing of the following two numbers: Φ(N) = (p − 1)(q − 1)(r − 1) and Ψ(N) =
(p + 1)(q + 1)(r + 1), where N = pqr, p and q are primes chosen by the two
parties respectively and r is a number that is additively shared between them as
r = r1 + r2. The tests ensure that if a N is output, then r is prime except with
negligible probability.

In the following, Ek,Dk denotes the Paillier encryption/decryption function
with modulus k. Recall that the Paillier scheme uses computation modulo k2 for
the ciphertexts, and is additively homomorphic modulo k. This modulus must be
large enough to accommodate without overflow the product of two primes plus
room for some added randomness. In the following we denote the two parties S
and M for server and mobile device. The Paillier keys are generated by S. We
first give a short overview of the main steps in the protocol:

On the Security of Distributed Multiprime RSA 23

3.1 Protocol Steps

1. Generate possible candidate N. The parties jointly generates the public
RSA moduli N = p · q · (r1 + r2), using primes p, q and random integers r1, r2
as input.

2. Fermat test. By utilizing Fermat’s little theorem, the two parties test if
gφa+φb = 1 (mod N), for a random element g ∈R Z∗

N . Here Φ(N) = φa + φb

denotes the additive shares of Φ(N) generated by the two parties during the
previous step.

3. Twisted group Fermat test. The parties perform a Fermat test in the
Twisted group TN , picking a random element g ∈R TN , and testing if
gψa+ψb = 1 (mod N). Here Ψ(N) = ψa + ψb denotes the additive shares
of Ψ(N) generated by the two parties during the first protocol step. For more
details on the Twisted Group, see [DMS14].

4. Check that N = paqbrc, for three distinct primes p, q and r.
5. Zero knowledge test that gcd(N, p + q) = 1.
6. Generate the private key distributed as additive shares.

3.2 The Protocol

We now give a more detailed account of the first part of the protocol:

i. S generates a random (n−1)-bit integer r2 and sends the encryption Ek(r2)
to M .

ii. M generates a random n-bit prime p, where p ≡ 3 (mod 4) and a random
(n − 1)-bit integer r1 and sends Ek(r · p) = (Ek(r2) · Ek(r1))p mod k2 to S.
Note that the randomness in Ek(r2) will ensure that Ek(r · p) is a random
encryption containing r · p.

iii. S decrypts r ·p, optionally runs a trial division test on r ·p using small primes
and generates a random n-bit prime q, where q ≡ 3 (mod 4). If the division
test fails then S aborts.

iv. N = r · p · q is sent back to M .

The two parties now have a candidate N . To test if N can be used, they need
additive shares of Φ(N) and Ψ(N). As Φ(N) = (p − 1)(q − 1)(r1 + r2 − 1) they
can exploit the fact that:

Φ(N) = N − pr − qr − pq + p + q + r − 1

Here we note that N = p ·q · (r1 +r2), so M has qr = N/p and S has pr = N/q.
They just need an additive share of pq in order to have all the additive compo-
nents which they share as follows:

i. S sends Ek(q) to M
ii. M then creates a blinded encryption of p · q by: Ek(pq + t) = Ek(q)p · Ek(t)

(mod k2), where t is a random integer with a maximum bit-length such that
p · q + t cannot overflow modulo k

iii. Ek(pq + t) is sent to S

24 I. Damg̊ard et al.

iv. M calculates qr = N/p and then φa = t − 1 − qr + p + r1
v. S calculates pr = N/q and then φb = N + (−1) · (pq + t) − pr + q + r2

Now, Φ(N) = φa + φb. And similar for the sharing of Ψ(N)
Due to space limitations, further details of the protocol for doing steps 2–6

above can be found in the full version of this work [DMS14], these steps follow
the flow of [BH98], transfered to the two-party setting.

3.3 Passive Security of the Protocol

In the full version of this paper [DMS14], we show that the error probability of
our primality tests are as good as the similar tests from [BH98] which implies
that the desired probability of N being the product of three large primes can
be achieved by repeating the primality tests a certain number of times. Thus
correctness is ensured s.t. when the protocol is completed, the two parties have
produced a modulus of three large primes except with negligible probability. In
[DMS14] we prove that the protocol achieves passive security when the under-
lying homomorphic cryptosystem is secure.

4 Four-Prime Distributed RSA

This section introduces a new approach for generating a distributed RSA key
between two parties constructing a public modulus with four prime factors
formed as a product of standard RSA moduli. We use as subprotocol a protocol
for proving knowledge of discrete logarithm modulo a composite, this protocol
is due to Girault [Gir91] and is essentially the Schnorr protocol [Sch91] done
modulo a composite. We note that this protocol can be made non-interactive
and zero-knowledge in the random oracle model We denote this protocol the
PK-CDL protocol (Proof of Knowledge of Composite DL) in the following.

Key Generation

1. The two parties S and M agree on a public exponent e. They then gen-
erate a standard RSA key pair each, denoted by ((NS , e), (NS , dS)) and
((NM , e), (NM , dM)), respectively.

2. They exchange the public keys, set N = NSNM and the joint public key is
defined to be (N, e). S and M store dS and dM as their shares of the secret
key. NS , NM are stored for practical reasons, but are not considered secret.

3. S convinces M that (NS , e) is well formed as follows:
(a) M chooses a random x ∈ Z∗

NS
and sends x and y = xe to S.

(b) Using the PK-CDL protocol S proofs knowledge of d s.t., x ≡ yd mod NS .
4. The above step is repeated with the roles of M and S interchanged. If any

proof fails, the parties abort, otherwise they output the key material defined
above.

On the Security of Distributed Multiprime RSA 25

This idea clearly extends to more than two parties, of course at the expense of
having a larger modulus. If only passive security is desired, the last two steps can
be omitted. One applies the public key as usual by raising to power e modulo N .
In a standard threshold RSA set-up, one would usually secret-share the private
exponent additively, we present a protocol for this in [DMS14]. However, in our
case it is easier to use the local private exponents that are available anyway.
Therefore applying the secret key is done using Chinese remaindering as follows:

Distributed Decryption/Signing

1. On input y ∈ ZN to which the secret key should be applied, S and M com-
pute xS = ydS mod NS respectively xM = ydM mod NM and exchange these
values.

2. Both players use the Chinese Remainder Theorem to compute x ∈ ZN such
that x mod NS = xS , x mod NM = xM . They check that xe mod N = y
and output x if this is the case. Otherwise, they abort.

4.1 Security of Four-Prime Distributed RSA

These protocols are secure for sequential composition, even if one parties are
malicious. This is proven via a simulation proof and below we outline the
functionality that we prove is implemented by the key generation protocol.
We emphasize that we only claim security for sequential composition so that
the simulator is allowed to rewind, however, using standard techniques the pro-
tocol can be made secure for general composition.

Key Generation Functionality

1. Receive public exponent e as input from the honest party (or parties).
2. If both parties are honest, generate all key material honestly and send it to

the parties.
3. If S is corrupt, generate NM honestly and send NM , e to the adversary.

Receive from the adversary either NS and the prime factors p1, ..., pt in NS ,
where e is relatively prime to φ(N); or “abort”. In the first case, output
NS , NM , dM to M . In the second case output “abort”. If M is corrupt, do
the same with S and M interchanged.

Theorem 1. The Key Generation Protocol for Four-prime Distributed RSA
securely realizes the Key Generation Functionality presented above, for sequential
composition (allowing rewinding).

Proof. We assume that S is corrupt. A simulator for the above key generation
protocol would then receive NM , e from the functionality and then
execute the protocol with the corrupted S (the adversary). It can simulate M ’s
part of the protocol using NM , e by simulating the PK-CDL protocol, which
is zero-knowledge. When the corrupt S executes the PK-CDL protocol to prove

26 I. Damg̊ard et al.

knowledge of dS , the simulator extracts the witness dS . If NS , e was well formed,
then the simulator with the knowledge of both e and dS can easily factor NS

and input these factors to the functionality. In case NS , e is malformed i.e.,
gcd(e, φ(NS)) = α �= 1, then no inverse dS of e exists modulo φ(NS). Therefore
PK-CDL would fail, as the corrupt S cannot know dS . In this case the simulator
input “abort” to the functionality.

As for the protocol for distributed decryption/signing, we can think of it as
being executed in a model where the key material has been generated by the
functionality we just described. Therefore we know that e is relatively prime
to φ(N) and hence there is a well defined decryption exponent d. First note
that if both parties are honest, the result x always equals yd mod N . This is
because x mod NS = xS = ydS mod NS and hence xe mod NS = y mod NS .
Similarly we also see that xe mod NM = y mod NM and hence by the Chinese
remainder theorem we have xe mod N = y. If one party is corrupt the protocol
trivially outputs the correct result or abort, and furthermore, if S is corrupt, it
can simulate M ’s contribution when given the output x = yd mod N , simply by
computing x mod NM .

4.2 Efficiency of Four-Prime Distributed RSA

We now consider the efficiency of this set-up compared to standard RSA with
a 2-prime modulus. The Key Generation takes time equivalent to a local key
generation plus the time needed for the PK-CDL protocols. The PK-CDL pro-
tocol takes time essentially equivalent to 1 exponentiation for both parties. In
practice it will actually be less because we can choose e significantly smaller
than nS , and S can optimize her computations using Chinese Remaindering.
Note also that the last two steps of the protocol (where S, resp. M plays the
role of the prover) can be done in parallel. The local key generation requires a
few exponentiations due to the primality tests needed. Therefore we can expect
that the full key generation takes time about twice that of standard local key
generation.

The time for applying the secret key is clearly equivalent to applying a secret
key for a standard modulus, since this is exactly what both parties are doing.
The time to apply the public key is larger than in the standard case because the
public modulus is twice as long. However, this makes little difference in practice
since first, we can use a value of e that is much smaller than the modulus
(e = 216 + 1 is a standard choice); and second if NS and NM are known (which
would not hurt security) exponentiation modulo N can be done modulo NS and
NM using Chinese Remaindering.

5 Implementation Results

In the three-prime protocol one prime has to be found by random trial-and-error
computation and a distributed primality test. By the Prime Number Theorem

On the Security of Distributed Multiprime RSA 27

(see [DMS14]) the number of rounds needed on average as well as execution time
grow with the target modulus size. In this section we show implementational
results from the three-prime protocol presented in this article demonstrating
that the protocol is efficient enough to be useful even from a mobile device.
Further it demonstrates that computing the needed number of random primes
for this and similar protocols is a dominant factor in the overall processing time
and thus provides a natural lower bound for this type of protocol.

The following two setups have been used to run the three-prime protocol
between a smartphone and a laptop (server):

1. i-7 Q 820 4 x 1.73 GHz, 8 GB RAM and Samsung Galaxy s-II, 2 x 1.2 GHz
2. i7-4712HQ @ 2.3 GHz, 16 GB RAM and HTC ONE Quad-core 1.7 GHz

We present the average running time measured for the protocol to complete
between the mobile device and the laptop to illustrate that the protocol is indeed
efficient enough to be used in practical scenarios. Then we present results of the
protocol being run entirely on the laptop to illustrate that the protocol will finish
in just seconds if run between two desktop computers for a 2000 bit key. Further
we present the running time of a single thread computing the expected number
of random primes needed to complete the protocol. Note that the implementa-
tion utilizes all cores available on the devices, so the time needed to generate all
the primes for a protocol round on a single thread takes about a quarter when
running on a quad core device. Little data is sent between the parties (expected

Table 1. Results from the implementation of the three-prime protocol

Three-prime protocol between phone (no precomputation) and laptop

Modulus size Roundsα First setupβ Second setupβ

1000 bit 117 17 s 7.85 s

2000 bit 234 150 s 75 s

Laptop running both parties without precomputation

Modulus size Roundsα Intel i-7 Q 820 Intel i7-4712HQ

1000 bit 117 3.7 s 1.57 s

2000 bit 234 34.4 s 13.84 s

Laptop running both parties with precomputation

Modulus size Roundsα Intel i-7 Q 820 Intel i7-4712HQ

1000 bit 117 2.26 s 1 s

2000 bit 234 14.32 s 7.6 s

Single thread computational times for all primes, one protocol execution

Modulus size Intel i-7 Q 820 Samsung Galaxy SII 1,2Ghz Intel i7-4712HQ

1000 bit 2.9 s 27 s 1.45 s

2000 bit 30.9 s 222 s 16.5 s
αExpected number of rounds.
βAvg. time used on setup.

28 I. Damg̊ard et al.

1 MB for the entire protocol for a 2000 bit key), and the protocol is thus very
prone to optimizations using precomputation (computing a set of random primes
before execution begins), crypto-hardware etc. We also present results demon-
strating the effect of precomputing a large set of the random primes needed in
each protocol round (Table 1).

Note that the Samsung smartphone uses 222 s to generate all the expected
number of primes needed to complete the protocol for a 2000 bit key on a single
thread. Running this on the two cores available on the Samsung device takes
an expected 111 s to complete the prime number generation, which accounts of
74 % of the total average time for the protocol to complete. Also note that the
time needed on the i7-4712HQ for the generation of a shared key will reduce
the expected running time by a factor 2 if two similar computers are running as
one of the parties each. The amount of data exchanged in each direction during
execution of the three-prime protocol is on average less than 0,5 MB for the
1000 bit modulus and 1 MB for the 2000 bit modulus.

The four-prime protocol. In comparison to the three-prime protocol, the
four-prime protocol presented in this article just needs all parties to agree on
the public exponent and have each party generate a standard RSA key, which
can be done in seconds (or less) - even on mobile devices.

6 Security of the M-RSA Trapdoor Permutation

In this section we will start taking a closer look at the security implications of
utilizing multiprime RSA (M-RSA) moduli, generated by our protocols. First, in
the lemma below, we look at the security of the general plain M-RSA function
in the subsequent sections we analyze the security when M-RSA moduli are used
in different specific protocols. It is important to note that the security of these
protocols does not follow directly from the lemma below.

Lemma 1 (Security of Plain M-RSA). Under Assumption 1 (Security of
RSA) there does not exist a couple of PPT algorithms implementing AM-RSA-Gen

and AM-RSA with nonnegligible probability of success.

Proof. Assuming there exist two PPT’s implementing AM-RSA-Gen and AM-RSA,
we can use these to implement ARSA in the following way: Given a two-prime
RSA public key 〈e,N〉 and y, run AM-RSA-Gen to obtain α and ϕ(α). We assume
(α,N) = 1, otherwise factoring N is trivial, then we run AM-RSA(N ′ = αN,
e, y, state). If AM-RSA returns x′ such that y = (x′)e mod N ′, then our reduc-
tion returns x = x′ mod N . Since y = (x′)e mod N ′ = (x′)e mod αN and
y mod N ′ = y mod N , then y = xe mod N = (x′ mod N)e mod N Therefore
the existence of AM-RSA-Gen and AM-RSA violates Assumption 1.

It is easy to see that the above reduction is tight, meaning if an adversary can
break M-RSA in time t, then we can use this adversary to break RSA in time t
plus a little overhead. We will formulate more exact security in the following way:
If an algorithm A in time t(k) and with probability ε(k) can break a scheme, for

On the Security of Distributed Multiprime RSA 29

example RSA, we say that A (t, ε)-breaks the scheme. If for given functions t and
ε no algorithm that (t, ε)-breaks a scheme exists we call the scheme (t, ε)-secure.
Regarding to M-RSA the time t describes the running time of both AM-RSA-Gen

and AM-RSA. We let k denote the bit-length of the primes in the modulus.

Corollary 1 (Tightness of Plain M-RSA). If RSA is (t′, ε′)-secure then
M-RSA is (t, ε)-secure with:

t(k) ≥ t′(k) − O(k2)
ε(k) ≤ ε′(k)

Proof. It is easy to see that if AM-RSA-Gen and AM-RSA break M-RSA then the
reduction of Lemma 1 breaks RSA, and therefore ε(k) ≤ ε′(k).

The overhead of the reduction of Lemma1 is the modulo reduction x =
x′ mod N , which gives the overhead of O(k2).

7 Security of Multiprime PSS-RSA Signatures

For various reasons hashing is normally applied to a message before it is signed
with the RSA function, this makes RSA signatures semantic secure and in addi-
tion it enables signing of messages of arbitrary length. Hashing alone, however,
does not give a tight bound on the security of the digital signature scheme,
because it cannot be reduced to inverting the RSA function. The same holds
for full domain hashing, where hashing is done such that it hits the complete
preimage of the RSA function. To get a tighter bound Bellare and Rogaway
[BR96] describes a randomized hashing and padding scheme known as PSS-
RSA. [BR96] also gave a proof of a tight bound for PSS-RSA in the Random
Oracle (RO) model.

The PSS-RSA scheme of Bellare and Rogaway has later been augmented
and standardized as part of PKCS #1 v2 [RSA02]. This scheme is also known as
PSS-RSA. Although the two PSS-RSA schemes have differences, reductions from
forging both schemes to inverting plain RSA are analogues. From hereinafter we
will concentrate on the PSS-RSA scheme by Bellare and Rogaway, whereas the
results will also be valid for the PKCS version.

7.1 Signing with PSS

When signing with PSS-RSA two cryptographic hash functions h : {0, 1}∗ 	→
{0, 1}k1 and g : {0, 1}k1 	→ {0, 1}k−k1−1 are used for hashing and padding the
message m. In addition a uniform random value r∈R{0, 1}k0 is used. The uniform
randomness of r is crucial for the security proof, even though it is sometimes
omitted in real world applications, see [RSA02]. After hashing and padding m,
the (private) RSA function f−1 is applied to the result, and the output is the
signature. Let || denote bit-wise concatenation.

30 I. Damg̊ard et al.

SignPSS(m)

r
r←− {0, 1}k0

w ← h(m||r)
y ← 0||w||(g(w) ⊕ (r||0 . . . 0))
x ← f−1(y)

To verify m and signature x, the RSA function with the public key is applied
s.t. y ← f(x) is first calculated, afterward r can be reconstructed from y and the
hashing and padding of m can be verified. The following theorem, due to [BR96],
states the tightness of the PSS-RSA construction, qhash specifies the number of
times the adversary is allowed to invoke the hash algorithm (the random oracle)
and qsig the number of signed messages he can see before the forgery.

Theorem 2 (From [BR96], Security of PSS-RSA). In the random ora-
cle (RO) model: If RSA is (t′, ε′)-secure, then for any qsig, qhash the signature
scheme PSS-RSA[k0, k1]is (t, qsig, qhash, ε)-secure, where

t(k) = t′(k) − [qsig(k) + qhash(k) + 1] · k0 · Θ(k3), and (1)
ε(k) = ε′(k) + [2(qsig(k) + qhash(k))2 + 1] · (2−k0 + 2−k1). (2)

Proof (short sketch). We assume to have a forger FPSS-RSA that has access to an
oracle O that will sign up to qsig messages m1, . . . ,mqsig and answer up to qhash

queries for h or g. Furthermore we assume that FPSS-RSA in time less than t and
with probability ε can output a message m which has not been signed by O.

We will construct an attacker ARSA capable of inverting RSA, say given N ,
e and y can output x s.t. y = f(x) = xe mod N . To construct ARSA, FPSS-RSA

is instantiated, however, instead of access to O, ARSA will answer all queries.
A signing request on mi is answered by randomly selecting xi∈RZN , calculating
yi = f(xi) and due to the RO model ARSA can specify h and g in a way
that makes yi consistent with mi. On h or g requests ARSA returns a value
consistent with f(xi)y for a random xi. If FPSS-RSA later on makes a forgery s.t.
x̃ = f−1(f(xi)y), then due to the multiplicative homomorphic property of RSA
x̃ = xif

−1(y). Therefore ARSA can return x = x̃x−1
i = f−1(y).

We refer to [BR96] for a full and formal proof.

It is important to note that the proof of Theorem2 uses the RSA permutation in
a blackbox way except for its multiplicative homomorphic property. Therefore
the proof will work for PSS used with any multiplicative homomorphic oneway
permutation including M-RSA. We can now formulate the security of using
M-RSA in connection with PSS-RSA.

Corollary 2 (Security of PSS-M-RSA). In the RO model: If RSA is (t′, ε′)-
secure. Then for any qsig, qhash the signature scheme PSS-M-RSA[k0, k1] is
(t, qsig, qhash, ε)-secure, where

t(k) = t′(k) − [qsig(k) + qhash(k) + 1] · k0 · Θ(k3), and (3)
ε(k) = ε′(k) + [2(qsig(k) + qhash(k))2 + 1] · (2−k0 + 2−k1). (4)

On the Security of Distributed Multiprime RSA 31

Proof. A reduction from PSS-M-RSA to M-RSA follows analogously the reduc-
tion from Theorem 2 with the exact same overhead. The overhead of the
reduction from M-RSA to RSA (Corollary 1) is dominated by the overhead from
PSS-M-RSA to M-RSA.

8 Security of Multi-Prime OAEP-RSA Encryption

In this section we will see how some of the techniques from the previous section
also applies to cryptosystems. Lemma 1 and Corollary 1 states the security of
plain RSA and therefore also the plain RSA cryptosystem, however, as in the
case of digital signatures, and due to some of the same problems plain RSA
encryptions are very seldom used in practice. We therefore investigate the secu-
rity of what is known as OAEP-RSA, a cryptosystem widely used in practice.

Bellare and Rogaway [BR94] introduces Optimal Asynchronous Encryption
Padding (OAEP) as a way to achieve CCA2 security1 for RSA in the random ora-
cle model. They proved that OAEP-RSA is plaintext aware 1 (PA1) secure based
only on the one wayness of RSA. However, as pointed out and formally proved
by Shoup [Sho02] PA1 security does not imply CCA2 security, contrary to this
Shoup [Sho02] also proved that if 3 is used as the public exponent then RSA-
OAEP is actually CCA2 secure. This result was further extended by Fujisaki
et al. [FOPS04] to RSA-OAEP being CCA2 secure regardless of the public expo-
nent. This result is based on additional properties than one wayness, namely that
RSA is Set Partial Domain One Way.

A permutation is Partial Domain One Way, if no adversary is able to extract
a certain number of the most significant bits of the preimage, and Set Partial
Domain One Way, if no adversary is able to compute a set where one of the
elements is equal to a certain number of the most significant bits of the preimage.

Definition 3 (Set-Partial-Domain-One-Way). We define a permutation f
as being (
, t, ε)-set-partial-domain-one-way if no adversary A outputting a set
with
 elements and running in time t exists s.t. Pr(s ∈ A(f(s||t)) > ε, where
the length of s is k − k0, with k0 being defined by the size of the hashing used in
OAEP padding.

To prove the exact security of OAEP-M-RSA we first need to show that
M-RSA is Set Partial Domain One Way. This is done by taking a lemma which
originates from [FOPS04], and states that RSA is Set Partial Domain One Way,
and see that it also covers M-RSA.

Lemma 2 (Modified [FOPS04, Lemma 4]). Let A be an algorithm, which in
time t and with probability ε, is capable of computing a q-set containing k − k0
(k > 2k0) of the most significant bits of the e’th root of its input. Then there
exists an algorithms B capable of inverting M-RSA.

1 Security against adaptively chosen ciphertext attacks.

32 I. Damg̊ard et al.

Proof (short sketch). This proof is analogous to the proof of [FOPS04, Lemma 4].
This proof is based on the self-reducibility of RSA, which is the same for M-RSA.
The algorithm B runs A twice to compute two sets containing the a partial
preimage of x and rex, for a random value r. Then B utilizes a special designed
lattice version of Gaussian reduction to solve a set of linear modular equations
defined by these partially preimages. We refer to [FOPS04] for a full and formal
proof.

The theorem bellow, due to [FOPS04], states the tightness of the OAEP-RSA
construction. The value qD specifies the number of times the adversary is allowed
to invoke a decryption oracle, and qH and qG is the number of allowed invocations
to the random oracle simulating the two hash algorithms H and G used in OAEP.

Theorem 3 (Modified [FOPS04, Theorem 2]). In the RO model, for any
qD,qG and qH if there exists an adversary A (t, qD, qG, qH , ε)-breaking OAEP-M-
RSA (with k > 2k0) then there exists and algorithmB (t′, ε′)-inverting RSA, with:

ε′ >
ε2

4
− ε ·

(
qDqG + qD + qG

2k0
+

qD

2k1
+

32
2k−2k0

)

t′ ≤ 2t + qH · (qH + 2qG) · O(k3)

Proof. From Fujisaki et al. [FOPS04] we have a Theorem (Theorem 1) stating
the security of OAEP used in connection with a set-partial-one-way permutation,
this in connection with Lemma 2 gives us the above result.

Since the bounds of [FOPS04] (Theorem 1) are less tight compared with the
reduction from M-RSA to RSA (Corollary 1), the bound for breaking OAEP-
RSA and OAEP-M-RSA is the same. So we achieve the same level of security
(bit-length of the individual primes) using M-RSA as using standard RSA.

We note that in addition to the (above) bound equal to Theorem 2 in [FOPS04,
FOPS04] also presents a slightly tighter bound in their Theorem 3. This result is
also based on the partial domain one-wayness of RSA and therefore proving this
bound for OAEP-M-RSA follows analogously from their proof.

References

[ACS02] Algesheimer, J., Camenisch, J.L., Shoup, V.: Efficient computation modulo
a shared secret with application to the generation of shared safe-prime
products. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 417–
432. Springer, Heidelberg (2002)

[BF97] Boneh, D., Franklin, M.K.: Efficient generation of shared RSA keys. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 425–439.
Springer, Heidelberg (1997)

[BF01] Boneh, D., Franklin, M.K.: Efficient generation of shared RSA keys. J.
ACM 48(4), 702–722 (2001)

[BH98] Boneh, D., Horwitz, J.: Generating a product of three primes with an
unknown factorization. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423,
pp. 237–251. Springer, Heidelberg (1998)

On the Security of Distributed Multiprime RSA 33

[Ble98] Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on
the RSA encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, p. 1. Springer, Heidelberg (1998)

[BR94] Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A.
(ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg
(1995)

[BR96] Bellare, M., Rogaway, P.: The exact security of digital signatures - how
to sign with RSA and rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996.
LNCS, vol. 1070, pp. 399–416. Springer, Heidelberg (1996)

[DK01] Damg̊ard, I.B., Koprowski, M.: Practical threshold RSA signatures without
a trusted dealer. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, p. 152. Springer, Heidelberg (2001)

[DM09] Damg̊ard, I., Mikkelsen, G.L.: On the theory and practice of personal digital
signatures. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443,
pp. 277–296. Springer, Heidelberg (2009)

[DM10] Damg̊ard, I., Mikkelsen, G.L.: Efficient, robust and constant-round distrib-
uted rsa key generation. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol.
5978, pp. 183–200. Springer, Heidelberg (2010)

[DMS14] Damg̊ard, I., Mikkelsen, G.L., Skeltved, T.: On the security of distributed
multiprime RSA. IACR ePrint Archive (2014)

[FMY98] Frankel, Y., MacKenzie, P.D., Yung, M.: Robust efficient distributed RSA-
key generation. In: Vitter, J.S. (ed.) STOC, pp. 663–672. ACM (1998)

[FOPS04] Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is secure
under the RSA assumption. J. Cryptol. 17(2), 81–104 (2004)

[Gil99] Gilboa, N.: Two party RSA key generation. In: Wiener, M. (ed.) CRYPTO
1999. LNCS, vol. 1666, p. 116. Springer, Heidelberg (1999)

[Gir91] Girault, M.: Self-certified public keys. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 490–497. Springer, Heidelberg (1991)

[GRJK07] Gennaro, R., Rabin, T., Jarecki, S., Krawczyk, H.: Robust and efficient
sharing of RSA functions. J. Cryptol. 20(3), 393 (2007)

[HMRT12] Hazay, C., Mikkelsen, G.L., Rabin, T., Toft, T.: Efficient RSA key gener-
ation and threshold paillier in the two-party setting. In: Dunkelman, O.
(ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 313–331. Springer, Heidelberg
(2012)

[Pai99] Paillier, P.: Public-key cryptosystems based on composite degree residuos-
ity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, p. 223.
Springer, Heidelberg (1999)

[RSA02] RSA Laboratories. PKCS #1 v2.1: RSA cryptography standard. Technical
report (2002)

[Sch91] Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptol.
4(3), 161–174 (1991)

[Sho02] Shoup, V.: OAEP reconsidered. J. Cryptol. 15(4), 223–249 (2002)

http://www.springer.com/978-3-319-15942-3

	On the Security of Distributed Multiprime RSA
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	3 Protocol for Two Players with a Three-Prime Modulus
	3.1 Protocol Steps
	3.2 The Protocol
	3.3 Passive Security of the Protocol

	4 Four-Prime Distributed RSA
	4.1 Security of Four-Prime Distributed RSA
	4.2 Efficiency of Four-Prime Distributed RSA

	5 Implementation Results
	6 Security of the M-RSA Trapdoor Permutation
	7 Security of Multiprime PSS-RSA Signatures
	7.1 Signing with PSS

	8 Security of Multi-Prime OAEP-RSA Encryption
	References

