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Introduction

Fracture is the result of driving a solid beyond itsmechanical limit. It is immensely
important to know the limit or how materials behave as they approach the limit
and the factors that influence them. The failure properties of materials are very
distinct from the other properties, such as elasticity, in the sense that their predic-
tions are not always straightforward. For example, typically, fracture strength of a
solid has a very wide distribution, and a larger object has lower failure strength
than a smaller one of same composition. In brittle materials, fracture is catas-
trophic, that is, the solid fails without a precursor. It is this intriguing nature of
failure phenomena that has led scientists to think about this problem over the cen-
turies. It was Leonardo da Vinci (see Figure 1.1) who apparently first noticed that
a longer wire has lower strength. Galileo also recognized the importance of this
problem and commented about the limitation of sizes of an object for improve-
ment in its strength (see Figure 1.2).
The understanding of fracture of materials has progressed enormously since

those days. However, it is still far from being complete. Present-day understanding
of fracture in homogeneous materials is based primarily on linear elastic fracture
mechanics which deals with the stress concentration around notches and cracks
in a model of linear elastic material. It starts with Griffith’s theory (Griffith, 1921)
of energy balance. The basic idea here is that when a solid gets strained, and if
the elastic energy stored is sufficient to create new surfaces, then a crack becomes
unstable and a fracture takes place. The theory was made more accurate by intro-
ducing a small plastic zone in front of the crack tip by Irwin and Dugdale (see e.g.,
Anderson, 1995).This picture, however, cannot handle fracture with plastic defor-
mation and dissipation as it happens in ductile fracture, besides it cannot handle
the effect of disorder. Disorder plays a vital role in the behavior of solids, especially
before fracture. The strength of a material is determined by the weakest part of it,
which leads to the extreme value statistics in failure properties.
After summarizing the basic characterizations of fracture, namely brittle and

ductile fracture, the linearity of the stress–strain relationship in the elastic region
and subsequent departure to nonlinearity in the plastic region, we go over to the
properties of defects in solids in Chapter 3. The lattice defects are quantified in
the form of the percolation theory, which gives the limit of high disorder in solids.
These characterizations help us understand the nature of extreme statistics led by
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Figure 1.1 Leonardo di ser Piero da Vinci
(1452–1519): da Vinci was a diversely tal-
ented person and a leader of the Italian
Renaissance movement. He displayed his tal-
ent in many areas of arts and science. Best
known as a painter (for his famous Mona
Lisa, The Last Supper, Virgin of the rocks
to name a few), he was also a great engi-
neering designer. However, apart from his
well-known inventions and sketches, com-
paratively less known is his contribution to
fracture mechanics. In his experiment titled
“Testing the strengths of iron wires of vari-
ous lengths,” he suspended a basket by an
iron wire and slowly added sand to it from a
pot hanging adjacent to the basket. The fail-
ure point of the wire was noted for its differ-
ent lengths. In his own words (translated by
Parsons, 1939): “The object of this test is to
find the load an iron wire can carry. Attach
an iron wire 2 braccia long to something

which will firmly support it, then attach a
basket or similar container to the wire and
feed into the basket some fine sand through
a small hole placed at the end of the hop-
per. A spring is fixed so that it will close the
hole as soon as the wire breaks. The bas-
ket is not upset while falling, since it falls
through a very short distance. The weight of
sand and the location of the fracture of the
wire are to be recorded. The test is repeated
several times to check the results. Then a
wire of 1/2 the previous length is tested and
the additional weight it carries is recorded;
then a wire of 1/4 length is tested and so
forth, noting the ultimate strength and the
location of the fracture.” As we will see in
Section 4.2, because of the extreme nature
of the breaking statistics, the strength of
solids decrease with their volume typically
as 1∕ ln V .

the stress nucleation around defects, which is the topic of discussion in Chapter 4.
In addition to the continuum approach, we introduce a discrete element model,
called the fiber bundle model, which is a simple one depicting many essential fea-
tures of failure statistics, including the stress nucleation, and extreme statistics as
discussed there.
While disorder in solids governs the failure strength, it also steers the path of the

crack. A defect can deflect a propagating crack. Since it is the impression of this
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Figure 1.2 Galileo Galilei (1564–1642):
Galileo was an Italian physicist and
astronomer who is called the “Father of Mod-
ern Science” to honor his many contributions
to our present-day understanding of science.
Particularly, he produced telescopic evidence
of phases of Venus, the four largest satellite
of Jupiter, sun spots, and also confirmed the
earlier ideas of Copernicus and Kepler that
the earth and other planets move around
the sun. Because of his conflicting views
with the church, he was put under house
arrest for the last part of his life. There he
wrote his famous book “Two new sciences,”
where he described his works on the two
sciences “kinematics” and “strength of mat-
ter.” There he had observed (see discussions
in Section 4.2) the size effects of fracture
and described how the natural sizes are
limited by their own strengths. In his own
words: “From what has already been demon-
strated, you can plainly see the impossibil-

ity of increasing the size of structures to
vast dimensions either in art or in nature;
likewise the impossibility of building ships,
palaces, or temples of enormous size in such
a way that their oars, yards, beams, iron-
bolts, and, in short, all their other parts will
hold together; nor can nature produce trees
of extraordinary size because the branches
would break down under their own weight;
so also it would be impossible to build up
the bony structures of men, horses, or other
animals so as to hold together and perform
their normal functions if these animals were
to be increased enormously in height; for
this increase in height can be accomplished
only by employing a material which is harder
and stronger than usual, or by enlarging
the size of the bones, thus changing their
shape until the form and appearance of
the animals suggest a monstrosity.” [From:
http://ebooks.adelaide.edu.au/g/galileo/
dialogues/chapter2.html]

crack front that creates the roughness of the fracture surfaces, in a way presence
of disorder is responsible for the roughness. It is our everyday observation that
fractured surfaces are not smooth but are rough. However, it is not until the pio-
neering work of Mandelbrot et al. (1984) that a universal feature was found in the
roughness in fracture surfaces. It was found that the fracture surfaces of various
materials were self-affine, meaning they looked similar, no matter to what part of
it—small or large—one focuses. Roughness can be quantified by a number called
the “roughness exponent”. A surprising observation was that the value was almost
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same for various materials. This idea of scale invariance and universality led to
substantial activities in this field using the tools of statistical physics and critical
phenomena. Many subsequent studies revealed facts both supporting and oppos-
ing this universality, also noting a crossover behavior in the exponent value, sig-
nifying that the fractured surfaces are not self-affine in all scales after all! Further-
more, an anisotropic feature has also been observed in the roughness properties,
distinguishing the direction of crack propagation from the direction perpendicu-
lar to it. The experimental observations and theoretical modeling of roughness of
fracture surfaces are discussed in Chapter 5.
Another familiar experience with fracture is the accompanying noise. One can

experience that in day-to-day activities such as tearing a paper or eating potato
chips to failure in geological scale, that is, earthquakes, where the precursor can
be lifesaving.The so-called “crackling noise” or emission of acoustic noise is a com-
mon fact of fracture, where a portion of energy is released in the form of sound.
The intriguing feature, however, once again is the scale-invariant response of the
solids in terms of size distributions of acoustic emissions (bursts). When force
is applied on a material, some portions (probably weaker) will fail but not the
entire solid, since the solid is disordered.When further strained, some weak parts
will break again and increase the stress on the remaining part initiating a chain
reaction, called an “avalanche.” Since a proportional fraction will be emitted as
sound, it can be detected to measure the size of the avalanche. One avalanche
may not be sufficient to break the entire solid as the remaining stronger parts
may not break. But understandably that part will be highly stressed and a small
increase of force may cause an avalanche of much larger size than one usually
expects with a small perturbation.Those who are familiar with self-organized crit-
icality, the process may indeed sound like one—there is external forcing and dis-
sipation in terms of acoustic emissions of any size. Under general circumstances,
the scale-free distribution of avalanche sizes is a common manifestation of dis-
ordered solids. In Chapter 6 we discuss these issues related to the dynamics of
fracture.
All structures around us carry finite load for a long time. Even though they

may support the load initially, there is no guarantee that they will not fail to do
so later. Indeed, imagining fracture as an energy barrier problem, it is easy to
see that under the influence of any finite noise, supplied from the environment
in the form of, say, temperature, the solid may overcome the barrier and break
after a long time. It is therefore vital that one understands the precursors to the
so-called “creep rupture”. Similarly, a solid being exposed to cyclic loading may
suffer permanent deformation in its structure (fatigue) and can eventually fail
below its critical limit.The properties of these subcritical failures are the topics of
discussions in Chapter 7. Subcritical failures also show avalanche dynamics and
are often quite similar (with same exponent values in case of scale-free size distri-
bution) with those under continuous loading. The chapter also contains relevant
discussions of avalanche properties of subcritical failures. In addition to the exper-
imental observations, attempts to model these phenomena theoretically by fiber
bundle model are also discussed.
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Asmentioned earlier, the roughness properties of a fractured surface are due to
the trace left behind by the fluctuating fracture front. When a crack is opened by
pulling a solid (say, rectangular) from one side (much like opening a book), which
is called themode-I fracture, the fracture front propagates through the disordered
solid facing obstacles of different magnitudes. The dynamics of this fracture front
is also intermittent and gives the avalanche properties when averaged over time,
as well as the roughness properties at one instant of time. The crack opened in
this way can be made to remain confined approximately in one plane. This helps
inmodeling the crack front as an elastic line, which is driven through a disordered
medium. Nevertheless, the elastic string model predicts a roughness exponent
which does not match with the experiments in smaller length scales. There have
been considerable efforts in explaining that theoretically, including the interfa-
cial self-organized crack front propagation model from fiber bundles, the local,
long-range dynamics, as well as by considering the loading plate as a semi-infinite
elastic plane. Chapter 8 deals with the studies of fracture front propagation.
The dynamics of fracture mentioned so far is mainly the brittle fracture dynam-

ics. However, for many solids the linear stress–strain region is not immediately
followed by fracture point. The linearity may be lost for the ductile material
beyond a certain stress. In this nonlinear regime, a large strain develops in the
system, in response to a much smaller stress. This is due to the appearance
and motion of the dislocations. We discuss the dynamics of the ductile fracture
starting from the conditions of motion of the dislocation in Chapter 9.
Themechanical fracture is a tensor problem, which can be reduced to an analo-

gous scalar field problem by considering the corresponding electrical breakdown
problem. Indeed the two problems are similar in terms of stress concentration
around defects. In fact, a mapping between the two problems exists. Like the fiber
bundle model for mechanical fracture, the random fuse model has been studied
extensively for electrical breakdown.The statistics of avalanche sizes as well as the
roughness properties of the fractured surfaces are also studied in terms of this dis-
crete element model. Although the existence of the avalanche dynamics has been
claimed to be a finite size effect except for the limit of strong disorder.These issues
are discussed in Chapter 10.
Finally, fractures in the largest scale (geological) that we experience are the

earthquakes. Study of earthquakes has grown as an independent field of research
over the years. It mainly follows the empirical observations about the size and
duration distributions of earthquakes, which people have keenly studied over
the last past years because of its catastrophic influence. The size distribution
of energy emissions and the rate of aftershocks are known to follow scale-free
distributions, and the observations go by the same of Gutenberg–Richter law
and Omori law, respectively. This is also what is generally seen in much smaller
scale of the laboratory in fracturing of rocks. The scale invariance has prompted
researchers to think in the line of self-organized criticality for earthquake
modeling. The simplest is the spring-block type model, where a train of blocks,
connected by linear springs, is slowly pulled over a rough surface.The steady state
dynamics of the model shows the intermittent nature that matches with many
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observations in earthquakes that are “critical.” One wonders if the universality
between earthquake dynamics and laboratory scale fracture propagations is
also reflected in the respective models. We take up the earthquake dynamics
and its different modeling approaches of fracture and their equivalence in
Chapter 11.


