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Abstract. Checking for subsumption relation is the main reasoning
service readily available in classical DL reasoners. With their binary
response stating whether two given concepts are in the subsumption rela-
tion, it is adequate for many applications relied on the service. However,
in several specific applications, there often exists the case that requires an
investigation for concepts that are not directly in a subclass-superclass
relation but shared some commonality. In this case, providing merely
a crisp response is apparently insufficient. To achieve this, the similar-
ity measure for DL ELH, which is inspired by the homomorphism-based
structural subsumption characterization, has been introduced. To ensure
that the proposed method reaches the performance, in this work, desir-
able properties for concept similarity measure are checked and compared
with those previously reported in other classical works.

Keywords: Concept similarity · Non-standard reasoner · Description
logic · Structural subsumption

1 Introduction

Knowledge representation is one such major research area that has a long range
of development and mainly focuses on an investigation for well-founded ways
to model, share, and interpret the knowledge. One modeling formalism is an
exploitation of the family of Description Logics (DLs) which allows various
types of reasoning services. Among those readily available in classical DL rea-
soners, concept subsumption (i.e. identification of subclass-superclass relation-
ships) is one of the most prominent services. Despite its usefulness, classical
subsumption reasoners merely response with a binary result (i.e. whether two
given concepts are in a subclass-superclass relation). This capability seems ade-
quate for many applications. However, in some situations, there may be the case
that the two concepts do not align that way but share some commonality. This
special case, on the other hand, turns into account in many specific applications.
For example, in hospitals, once a doctor has diagnosed medical conditions of a
patient and identified what the illness is, he/she may need to investigate further
for other possible illnesses of similar but not exactly the same conditions.
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Table 1. Syntax and semantics of the Description Logic ELH

Name Syntax Semantics

top � ΔI

concept name A AI ⊆ ΔI

conjunction C � D CI ∩ DI

existential restriction ∃r.C {x ∈ ΔI | ∃y ∈ ΔI : (x, y) ∈ rI ∧ y ∈ CI}

concept inclusion A 	 D AI ⊆ DI

concept equivalence A ≡ C AI = CI

role inclusion r 	 s rI ⊆ sI

Our first introduction to EL concept similarity measure [13] and its sample
application [8] have shown its usability specifically in but not limited to one of
the most popular medical-domain ontologies, Snomed ct [12]. In this work, we
extend the algorithm to a more expressive DL ELH. Therefore, role names of the
same hierarchy are taken into account. Moreover, to ensure that the proposed
method reaches the performance and holds satisfactory features, in this work,
desirable properties for concept similarity measure are proofed and compared
with those previously reported in other works.

In the next section, notions of the DL and necessary backgrounds are intro-
duced. Section 3 and Section 4 provide details on the proposed method and its
properties, respectively. Concluding remarks are given in the last section.

2 Preliminaries

Let CN and RN be a set of concept names and a set of role names. In Description
Logics (DLs), complex ELH concept descriptions can be built using a set of
constructors shown in the upper part of Table 1. The background knowledge
about the domain called terminology box or TBox can then be devised using
a set of ontological axioms shown in the second part of Table 1. A TBox is
unfoldable if, for each concept name, there is only one concept definition and
there is neither direct nor indirect concept definition that refers to the concept
itself. Figure 1 shows an example of the unfoldable Tbox Omed.

An interpretation I = (ΔI , ·I) comprises of interpretation domain ΔI and
interpretation function ·I . The interpretation function maps every concept name
A ∈ CN to a subset AI ⊆ ΔI , every role name r ∈ RN to a binary relation
rI ⊆ ΔI × ΔI , and every individual x ∈ Ind to an element xI ∈ ΔI . The last
column of Table 1 depicts the semantics for ELH constructors and terminological
axioms. An interpretation I is a model of a TBox O if it satisfies every axiom
defined in O. Let C, D and E be concept descriptions, C is subsumed by D
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(written C � D) iff CI ⊆ DI in every model I and if C � D � E, then C � E.
Moreover, C,D are equivalent (written C ≡ D) iff C � D and D � C, i.e.
CI = DI for all interpretations I.

By introducing a set of fresh concept names [13], a concept inclusion can be
transformed to an equivalent form. Without losing of generality, we assume that
all concept names can be expanded (i.e. they can be replaced by the definition)
and has the following form:

�

i≤m

Pi �
�

j≤n

∃.rjCj

where 1 ≤ i ≤ m and 1 ≤ j ≤ n. This is true both for defined concepts
(i.e. concepts that appear on the left-hand side of a definition) and primitive
concepts (i.e. concepts that appear only on the right-hand side of a definition).
For any primitive concept P , P � � therefore P ≡ X � � ≡ X where X is
a fresh concept name. For convenience, we denote by PC = {P1, . . . , Pm} and
EC = {∃r1C1, . . . ,∃rnCn} the set of top-level primitive concepts and the set of
top-level existential restrictions. Also, we denote by Rr = {s|r �∗ s} the set
of all super roles where r and s are role names, ∗ is the transitive closure, and
r �∗ s if r = s or ri � ri+1 ∈ O where r1 = r and rn = s. The following
demonstrates the expanded form of the concept AspirationOfMucus defined in
Omed (see Figure 1).

X � RespiratoryDisorder � ∃agent.Mucus

where X is a fresh concept name.
Let T = (V,E, rt, �, ρ) be the ELH description tree [13] w.r.t. an unfoldable

TBox, where V is a set of nodes, E ⊆ V × V is a set of edges, rt is the root,
� : V → 2CN

pri

is a node labeling function, and ρ : E → 2RN is an edge labeling
function. Definition 1 defines a homomorphism mapping. Let TC and TD be ELH
description trees w.r.t. the concept C and D, Theorem 1 depicts a characteriza-
tion of C � D based on a homomorphism that maps the root of TD to the root
of TC .

Definition 1 (Homomorphism). Let T and T ′ be two ELH description trees
as previously defined. There exists a homomorphism h from T to T ′ written
h : T → T ′ iff the following conditions are satisfied:

(i) �(v) ⊆ �′(h(v))
(ii) For each successor w of v in T , h(w) is a successor of h(v) with ρ(v, w) ⊆

ρ′(h(v), h(w))

Theorem 1 ([9]). Let C,D be ELH concept descriptions and TC , TD be ELH
concept description trees w.r.t. C and D. Then, C � D iff there exists a homo-
morphism h : TD → TC which maps the root of TD to the root of TC .

By using Theorem 1 together with properties of homomorphism mapping
defined in Definition 1, Corollary 1 and Corollary 2 hold due to an associativity
and commutativity of concept conjunction.
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Corollary 1. Let C and D be concept names. Then C � D iff PD ⊆ PC and
for each ∃r.D′ ∈ ED there exists ∃s.C ′ such that s �∗ r and C ′ � D′.

Corollary 2. Let C and D be concept names, then ED
∼= EC iff for each ∃r.D′ ∈

ED there exists ∃s.C ′ such that s �∗ r, r �∗ s, C ′ � D′, and D′ � C ′. Moreover,
C ≡ D iff PD = PC (i.e. PD ⊆ PC and PC ⊆ PD) and ED

∼= EC .

AspirationOfMucus ≡ AspirationSyndromes � ∃agent.Mucus

AspirationOfMilk ≡ AspirationSyndromes � InhalationOfLiquid
� ∃agent.Milk � ∃assocWith.Milk

Hypoxia ≡ RespiratoryDisorder � BloodGasDisorder
� ∃interprets.OxygenDelivery

Hypoxemia ≡ RespiratoryDisorder � BloodGasDisorder
� ∃interprets.OxygenDelivery
� ∃site.ArterialSystem

AspirationSyndromes 	 RespiratoryDisorder

agent 	 assocWith

Fig. 1. Examples of ELH concept descriptions defined in Omed

Based on the property of concept subsumption and homomorphism mapping,
in the next section, we introduce the notion of homomorphism degree hd and
concept similarity sim.

3 Homomorphism Degree

Let T = (V,E, rt, �, ρ) be the ELH description tree as previously defined. Then,
the degree of having a homomorphism from TD to TC is defined by Definition 2.

Definition 2 (Homomorphism degree)
Let TELH be the set of all ELH description trees. The homomorphism degree
function hd : TELH × TELH → [0, 1] is inductively defined as follows:

hd(TD, TC) := μ · p-hd(PD,PC) + (1 − μ) · e-set-hd(ED, EC), (1)

where | · | represents the set cardinality, μ = |PD|
|PD ∪ ED|and 0 ≤ μ ≤ 1;

p-hd(PD,PC) :=

{
1 if PD = ∅

|PD ∩ PC |
|PD| otherwise, (2)

e-set-hd(ED, EC) :=

{
1 if ED = ∅∑

εi∈ED

max{e-hd(εi,εj):εj∈EC}
|ED| otherwise, (3)

where εi, εj are existential restrictions; and
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e-hd(∃r.X,∃s.Y ) := γ(ν + (1 − ν) · hd(TX , TY )) (4)

where γ = |Rr ∩ Rs|
|Rr| and 0 ≤ ν < 1.

The meaning of μ and ν are similar to those defined in our previous work [13]
and are set to |PC |

|PC ∪ EC | and 0.4, respectively. However, in this work, we introduce
the notion of γ which is the proportion of common roles between r and s against
all those respect to r. For a special case where γ = 0, this means that there
is no role commonality, therefore, further computation for all successors should
be omitted. For the case that 0 < γ < 1, this reveals that there exists some
commonality. Moreover, if γ = 1, both r and s are totally similar and thus
considered logically equivalent.

Proposition 1. Let C,D be ELH concept descriptions, and O an ELH unfold-
able TBox. Then, the following are equivalent:

1. C �O D
2. hd(TD, TC) = 1,

where X is the equivalent expanded concept description w.r.t. O, and TX is its
corresponding ELH description tree, with X ∈ {C,D}.

Proof. (1 =⇒ 2) To prove this, we need to show that for each v ∈ VD, there
exists h(v) ∈ VC such that p-hd(·, ·) = 1 and e-set-hd(·, ·) = 1 (only for those
non-leaf nodes). Let d be the depth of TD. Since C �O D, by Theorem 1 there
exists a homomorphism from TD to TC . For the induction base case where d = 0
and C = P1 � . . . � Pm, there exists a mapping from rtD to rtC such that
�D(v) ⊆ �C(h(v)) (i.e. hd = p-hd = 1). For the induction step where C =
P1 � . . . � Pm � ∃r1C1 � . . . � ∃rnCn there exists a mapping from each v to h(v)
such that �D(v) ⊆ �C(h(v)) (i.e. p-hd(·, ·) = 1) and ρD(v, w) ⊆ ρC(h(v), h(w))
(i.e. e-set-hd(·, ·) = 1) where w and h(w) are successors of v and h(v), respectively.
For the case where v is a leaf, this is similar to the base case (i.e. p-hd(·, ·) = 1).

(2 =⇒ 1) By Definition 2, hd(TD, TC) = 1 means p-hd(PD,PC) = 1 and
e-set-hd(ED, EC) = 1 (in case that the tree has child nodes), therefore for each
P ∈ PD there exists P ∈ PC (i.e. PD ⊆ PC) and for each ∃r.D′ ∈ ED there
exists ∃s.C ′ ∈ EC such that s �∗ r and C ′ � D′. By Corollary 1, this implies
that C � D.

The homomorphism degree function provides a numerical value that repre-
sents structural similarity of one concept description when compared to another
concept description. Since both directions constitute the degree of the two con-
cepts being equivalent, our similarity measure for ELH concept descriptions
is defined by means of these values. Definition 3 defines a similarity between
concepts.
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Definition 3. Let C,D be ELH concept descriptions, and O an ELH unfoldable
TBox. The degree of similarity between C and D, in symbols sim(C,D), is
defined as:

sim(C,D) :=
hd(TC , TD) + hd(TD, TC)

2
, (5)

where X is the equivalent expanded concept description w.r.t. O, and TX is its
corresponding ELH description tree, with X ∈ {C,D}.

Example 1. To be more illustrative, consider concepts defined in Omed (see
Figure 1). From a classical DL reasoner’s point of view, it is clear that the concept
AspirationOfMilk (AMK) and AspirationOfMucus (AMC) are not in the subsump-
tion relation, i.e. there is no relationship between the two concepts, despite the
fact that they are both disorders in a group of AspirationSymdromes. Moreover, it
is intuitive to argue that AspirationOfMilk is more similar to AspirationOfMucus
than to Hypoxemia or to Hypoxia. Consider the expanded form of AMK and AMC.

AMK ≡ X � RespiratoryDisorder � InhalationOfLiquid
� ∃agent.Milk � ∃assocWith.Milk

AMC ≡ X � RespiratoryDisorder � ∃agent.Mucus

where X is a fresh concept. The following shows sample computation steps for
hd(TAMK, TAMC):

hd(TAMK, TAMC) := 3
5p-hd(PAMK,PAMC) + 2

5e-set-hd(EAMK, EAMC)

:= 3
5 ( 23 ) + 2

5

∑
εi∈EAMK

max{e-hd(εi,εj):εj∈EAMC}
|EAMK|

:= 3
5 ( 23 ) + 2

5 ( 12 )
∑

εi∈EAMK

max{e-hd(εi, εj) : εj ∈ EAMC}

:= 3
5 ( 23 ) + 2

5 ( 12 )(25 + 2
5 )

//Where
∑

εi∈EAMK

max{e-hd(εi, εj) : εj ∈ EAMC} = 2
5 + 2

5 ; see belows

:= 0.56

The computation for the sub-description corresponding to εi = ∃agent.Milk and
εj = ∃agent.Mucus is as follows:

e-hd(εi, εj) := γ(ν + (1 − ν) · hd(TMilk, TMucus))

:= 2
2 ( 25 + 0) := 2

5

With the sub-description εi = ∃assocWith.Milk and εj = ∃agent.Mucus, we have

e-hd(εi, εj) := γ(ν + (1 − ν) · hd(TMilk, TMucus))

:= 1
1 ( 25 + 0) := 2

5 .
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Table 2. Homomorphism degrees among concepts defined in Omed where HPX, HPM
and ASD stand for Hypoxia, Hypoxemia and AspirationSyndromes, respectively

hd(↓,→) AMC AMK HPX HPM ASD

AspirationOfMucus 1.0 0.56 0.333 0.25 1.0

AspirationOfMilk 0.8 1.0 0.333 0.25 1.0

Hypoxia 0.333 0.2 1.0 0.75 0.5

Hypoxemia 0.333 0.2 1.0 1.0 0.5

AspirationSyndromes 0.667 0.4 0.333 0.25 1.0

The reverse direction can be computed by:

hd(TAMC, TAMK) := 2
3p-hd(PAMC,PAMK) + 1

3e-set-hd(EAMC, EAMK)

:= 2
3 ( 22 ) + 1

3

∑
εi∈EAMC

max{e-hd(εi,εj):εj∈EAMK}
|EAMC|

:= 2
3 ( 22 ) + 1

3 ( 11 )
∑

εi∈EAMC

max{e-hd(εi, εj) : εj ∈ EAMK}

:= 2
3 ( 22 ) + 1

3 ( 11 )(25 )

//Where max{e-hd(εi, εj) : εj ∈ EAMC} = 2
5 ; see belows

:= 0.8

The computation for the sub-description corresponding to εi = ∃agent.Mucus
and εj = ∃agent.Milk is as follows:

e-hd(εi, εj) := γ(ν + (1 − ν) · hd(TMucus, TMilk))

:= 2
2 ( 25 + 0) := 2

5 .

With εi = ∃agent.Mucus and εj = ∃assocWith.Milk, the computation for the
sub-description is as follows;

e-hd(εi, εj) := γ(ν + (1 − ν) · hd(TMucus, TMilk))

:= 1
2 ( 25 + 0) := 1

5 .

Table 2 and Table 3 show homomorphism degrees and similarity degrees among
all concepts defined in Omed. It is obvious that the results we obtained are as
expected.

It is to be mentioned that the similarity measure sim first introduced in
[13] is quite similar to simi proposed by [10] since they are both recursive-
based method. In fact, the meaning of the weighting parameter ν used in sim
and ω in simi are identical and similarly defined. Likewise, the operators that
represent the t-conorm, and fuzzy connector are relatively used but differently
defined. However, unlike the work proposed by [10], the use of μ and the way
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Table 3. Similarity degrees among concepts defined in Omed

sim(↓,→) AMC AMK HPX HPM ASD

AspirationOfMucus 1.0 0.68 0.333 0.292 0.833

AspirationOfMilk - 1.0 0.267 0.225 0.7

Hypoxia - - 1.0 0.875 0.417

Hypoxemia - - - 1.0 0.375

AspirationSyndromes - - - - 1.0

it is weighted, which determines how important the primitive concepts are to
be considered, is defined. The other is obviously the distinction of their inspi-
rations. While simi is inspired by the Jaccard Index [5], sim is, on the other
hand, motivated by the homomorphism-based structural subsumption charac-
terization. In sim, as a pre-process, concept names are to be transformed into
an ELH concept description tree. Taking this as an advantage, a bottom-up
approach, which allows rejection of unnecessary recursive calls and reuses of
solutions to subproblems, can be alternatively devised.

4 Desirable Properties for Concept Similarity Measure

This section describes desirable properties for concept similarity measure and
provides corresponding mathematical proofs. At the end of the section, a com-
parison of satisfactory properties between sim and those significantly reported
in other classical works is made available.

Definition 4 determines important properties for concept similarity measure
introduced by [10]. These are believed to be desirable features and thus checked
for satisfaction. Theorem 2 states the characteristics of sim.

Definition 4. Let C, D and E be ELH concept, the similarity measure is

i. symmetric iff sim(C,D) = sim(D,C),
ii. equivalence closed iff sim(C,D) = 1 ⇐⇒ C ≡ D,
iii. equivalence invariant if C ≡ D then sim(C,E) = sim(D,E),
iv. subsumption preserving if C � D � E then sim(C,D) ≥ sim(C,E),
v. reverse subsumption preserving if C � D � E then sim(C,E) ≤ sim(D,E),
vi. structurally dependent Let Ci and Cj be atoms in C where Ci �� Cj,

the concept D′ :=
�
i≤n

Ci �D and E′ :=
�
i≤n

Ci � E satisfies the condition

lim
n→∞

sim(D′, E′) = 1,

vii. satisfying triangle inequality iff 1 + sim(D,E) ≥ sim(D,C) + sim(C,E).

Theorem 2. The similarity-measure sim is:

i. symmetric,
ii. equivalence closed,
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iii. equivalence invariant,
iv. subsumption preserving,
v. structurally dependent,
vi. not reverse subsumption preserving, and
vii. not satisfying triangle inequality.

Proof. i. By Definition 3, it is obvious that sim(C,D) = sim(D,C).

ii. (=⇒) By Definition 2, sim(C,D) = 1 iff hd(TC , TD) = 1 and hd(TD, TC) = 1.
By Proposition 1, these imply that C � D and D � C. Therefore, C ≡ D.
(⇐=) Assume C ≡ D, then C � D and D � C. Using the same proposi-
tion, this ensures that hd(TC , TD) = 1, and hd(TD, TC) = 1, which means
sim(C,D) = 1.

iii. C ≡ D iff C � D and D � C. By using Corollary 2, we have PC = PD and
EC

∼= ED. Therefore, TC = TD and this implies hd(TC , TE) = hd(TD, TE)
and hd(TE , TC) = hd(TE , TD). Such that sim(C,E) = sim(D,E).

iv. We need to show that

hd(TC ,TD)+hd(TD,TC)
2 ≥ hd(TC ,TE)+hd(TE ,TC)

2

Since C � D and D � E, then C � E. By Proposition 1, hd(TE , TC) = 1
and hd(TD, TC) = 1. Therefore, it suffices to show that

hd(TC , TD) ≥ hd(TC , TE)

If expanded, on both sizes of the upper equation, we have μ = |PC |
|PC ∪ EC | .

Hence, it is adequate to show that p-hd(PC ,PD) ≥ p-hd(PC ,PE) and
e-set-hd(EC , ED) ≥ e-set-hd(EC , EE). For the first part, we show that

|PC ∩ PD|
|PC | ≥ |PC ∩ PE |

|PC | (6)

| PC ∩ PD | ≥ | PC ∩ PE |

By Corollary 1, C � D � E ensures that PE ⊆ PD ⊆ PC . Therefore

| PD | ≥ | PE |

and Equation 6 is true. For the second part, we show that

∑
εi∈EC

max{e-hd(εi,εj):εj∈ED}
|EC | ≥

∑
εi∈EC

max{e-hd(εi,εj):εj∈EE}
|EC | (7)

∑
εi∈EC

max{e-hd(εi, εj) : εj ∈ ED} ≥
∑

εi∈EC

max{e-hd(εi, εj) : εj ∈ EE}.
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Let ε̂i ∈ EE such that e-hd(εi, ε̂i) = max{e-hd(εi, εj) : εj ∈ EE}, but since
ε̂i ∈ EE ⊆ ED, then max{e-hd(εi, εj) : εj ∈ ED} ≥ e-hd(εi, ε̂i). Therefore,
Equation 7 is true.

v. Let D′ :=
�
i≤n

Ci �D, E′ :=
�
i≤n

Ci � E , and n = nP + nE be the number

of all atom sequences in C where nP and nE be the number of primitive
concepts and the number existential restrictions, respectively. To prove this,
we consider the following case distinction.
(a) if nP → ∞ and nE is finite, it suffices to show that lim

nP→∞
μ = 1 and

lim
nP→∞

p-hd(PD′ ,PE′) = 1. Therefore, hd(D′, E′) = hd(E′,D′) = 1 and

these imply that sim(D′, E′) = 1. From Equation 2, we have

μ = |PD′ |
|PD′ ∪ ED′ |

= |PD′ |
|PD′ | + |ED′ |

= |PC | + |PD|
|PC | + |PD| + |ED′ |

= nP + |PD|
nP + |PD| + |ED′ |

(8)

Since | PD | and | ED′ | are constant, lim
nP→∞

μ= lim
nP→∞

nP + |PD|
nP + |PD| + |ED′ | =

1. For the second part, we have

p-hd(PD′ ,PE′) = |PD′ ∩ PE′ |
|PD′ |

= |PC | + |PD ∩ PE |
|PC | + |PD|

= nP + |PD ∩ PE |
nP + |PD|

where | PD ∩ PE | and | PD | are constant. Thus,

lim
nP→∞

p-hd(PD′ ,PE′) = lim
nP→∞

nP + | PD ∩ PE |
nP + | PD | = 1. (9)

(b) if nE → ∞ and nP is finite, it suffices to show that lim
nE→∞

μ = 0 and

lim
nE→∞

e-set-hd(ED′ , EE′) = 1 which implies hd(D′, E′) = hd(E′,D′) = 1,

and sim(D′, E′) = 1. From Equation 8, the value of μ is as follows:

μ = |PC | + |PD|
|PC | + |PD| + |ED′ |

= |PC | + |PD|
|PC | + |PD| + nE + |ED|
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Since | PC |, | PD | and | ED | are constant, by taking limit, we have

lim
nE→∞

μ = lim
nE→∞

|PC | + |PD|
|PC | + |PD| + nE + |ED| = 0.

To show that lim
nE→∞

e-set-hd(ED′ , EE′) = 1, we have

e-set-hd(ED′ , EE′) =
∑

ei∈ED′

max{e-hd(ei,ej):ej∈EE′ }
|ED′ |

=

∑

ei∈E
D′

max{e-hd(ei,ej):ej∈EE′ }

|ED′ |

=

∑

ei∈EC

max{e-hd(ei,ej):ej∈EE′ } +
∑

ei∈ED

max{e-hd(ei,ej):ej∈EE′ }

|EC ∪ ED|

Since EC ⊆ EE′ , for each εi ∈ EC there exists εj ∈ EE′ such that εi = εj .
Thus,

e-set-hd(ED′ , EE′) = nE + p
|EC | + |ED|

= nE + p
nE + |ED|

where p =
∑

ei∈ED

max{e-hd(ei, ej) : ej ∈ EE′}, and p ≤ | ED |. Therefore,

the following is true.

lim
nE→∞

e-set-hd(ED′ , EE′) = lim
nE→∞

nE + p

nE + | ED | = 1. (10)

(c) if nP →∞ and nE → ∞, it suffices to show that lim
nP→∞

p-hd(PD′ ,PE′)=1

and lim
nE→∞

e-set-hd(ED′ , EE′) = 1. But these follow from Equation 9 and

Equation 10.

vi. Consider a counter example defined in Figure 2. It is obvious that C � D �
E. By definition,

sim(C,E) := hd(TC ,TE)+hd(TE ,TC)
2

:= 0.4250+1
2

:= 0.7125

and
sim(D,E) := hd(TD,TE)+hd(TE ,TD)

2

:= 0.3333+1
2

:= 0.6667.

Apparently, there exists the case sim(C,E) �≤ sim(D,E).
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E ≡ ∃r.(F � G)
D ≡ ∃r.(F � G) � ∃s.F � ∃s.G
C ≡ ∃r.(F � G) � ∃s.F � ∃s.G � ∃r.(F � H)

Fig. 2. Examples of ELH concept descriptions

vii. Providing the concept description C, D, and E defined in Figure 2, the
following demonstrates the case 1 + sim(D,E) �≥ sim(D,C) + sim(C,E).
Here, we have

sim(D,E) := hd(TD,TE)+hd(TE ,TD)
2 := 0.3333+1

2

:= 0.6667

and
sim(D,C) := hd(TD,TC)+hd(TC ,TD)

2 := 1+0.9250
2

:= 0.9625

and
sim(C,E) := hd(TC ,TE)+hd(TE ,TC)

2 := 0.4250+1
2

:= 0.7125.

By applying a summation, it is obvious that 1.6667 �≥ 1.675 .

Table 4. A comparison on concept-similarity properties

Similarity Measure DL sy
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eq
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eq
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t

su
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p
re
se
rv
in
g

st
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d
ep

en
d
en
t

re
v
.
su
b
.
p
re
se
rv
in
g

tr
ia
n
g
le

in
eq

u
a
li
ty

sim ELH � � � � �

Lehmann and Turhan [10] ELH � � � � �

Jaccard [5] L0 � � � � � � �

Janowicz and Wilkes [7] SHI � �

Janowicz [6] ALCHQ � �

d’Amato et al. [2] ALC
Fanizzi and d’Amato [4] ALN � � � �

d’Amato et al. [1] ALC � � � �

d’Amato et al. [3] ALE � � � �
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To ensure that our proposed method reaches the performance, Table 4 com-
pares desirable properties of sim and those previously reported in other classical
works. Except than the work proposed by [5], which allows only concept con-
junction, our approach and that proposed by [10] apparently hold significant
features.

5 Conclusion

To this end, we have expanded a concept similarity measure for EL to take into
account also role hierarchy. Comparing to other related works, the measure has
been proved that it is outperforming and indeed identical to simi in terms of
satisfaction of desirable properties.

Particularly, the proposed algorithm is inspired by the homomorphism-based
structural subsumption characterization. With the top-down approach, a sim-
ilarity degree is recursively computed, and as a nature of recursion, there is a
chance that the number of unnecessary recursive calls will be greatly increase.
Fortunately, as being computed based on description trees, an optimized version
of the algorithm that allows rejection of needless computation can be alterna-
tively devised in a reversed direction and this is regarded as one target in our
future works. The other directions of possible future works are an extension of
the algorithm to a general TBox (i.e. a handling to concepts with cyclic defini-
tion) and to a more expressive DL. Lastly, we also aim at setting up experiments
on comprehensive terminologies (e.g. Snomed ct [12] and Gene Ontology [11])
and making a comparison among results obtained from different methods.
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