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Abstract. We consider the initial boundary value problem for the homo-
geneous heat equation, with homogeneous Dirichlet boundary conditions.
By the maximum principle the solution is nonnegative for positive time
if the initial data are nonnegative. We study to what extent this prop-
erty carries over to some piecewise linear finite element discretizations,
namely the Standard Galerkin method, the Lumped Mass method, and
the Finite Volume Element method. We address both spatially semidis-
crete and fully discrete methods.
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1 Introduction

We consider the following model problem for the homogeneous heat equation, to
find u = u(x, t) for x ∈ Ω, t ≥ 0, satisfying

ut = Δu in Ω, u = 0 on ∂Ω, for t ≥ 0, with u(·, 0) = v in Ω, (1)

where Ω is a polygonal domain in R
2. The initial values v are thus the only data

of the problem, and the solution of (1) may be written u(t) = E(t)v for t ≥ 0,
where E(t) = eΔt is the solution operator. By the maximum principle, E(t) is a
nonnegative operator, so that

v ≥ 0 in Ω implies E(t)v ≥ 0 in Ω, for t ≥ 0. (2)

Our purpose here is to discuss analogues of this property for some finite
element methods, based on piecewise linear finite elements, including, in particu-
lar, the Standard Galerkin (SG), the Lumped Mass (LM), and the Finite
Volume Element (FVE) method. For general information about these methods,
and especially error estimates, see Thomée [7], Chou and Li [3], and Chatzipan-
telidis, Lazarov and Thomée [1,2]. We consider both spatially semidiscrete and
fully discrete approximations.
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The basis for the methods studied is the variational formulation of the model
problem, to find u = u(·, t) ∈ H1

0 = H1
0 (Ω) for t ≥ 0, such that

(ut, ϕ) + A(u, ϕ) = 0, ∀ϕ ∈ H1
0 , for t ≥ 0, with u(0) = v, (3)

where (v, w) = (v, w)L2(Ω) and A(v, w) = (∇v,∇w). The finite element methods
are based on regular triangulations Th = {K} of Ω, with h = maxTh

diam(K),
using the finite element spaces

Sh = {χ ∈ C(Ω) : χ linear on each K ∈ Th; χ = 0 on ∂Ω}.

The spatially semidiscrete SG method consists in using (3) restricted to Sh,
and the corresponding LM and FVE methods on variational formulations in which
the first term (ut, ϕ) has been modified, or to find uh(t) ∈ Sh for t ≥ 0, such that

[uh,t, χ] + A(uh, χ) = 0, ∀χ ∈ Sh, for t ≥ 0, with u(0) = vh, (4)

where [·, ·] is an inner product in Sh, approximating (·, ·). The specific choices of
[·, ·] in the LM and FVE cases will be given in Sect. 2 below.

We now formulate (4) in matrix form. Let Zh = {Pj}N
j=1 be the interior nodes

of Th, and {Φj}N
j=1 ⊂ Sh the corresponding nodal basis, with Φj(Pi) = δij . Writing

uh(t) =
N∑

j=1

αj(t)Φj , with vh =
N∑

j=1

ṽjΦj ,

the semidiscrete problem (4) may then be formulated, with α = (α1, . . . , αN )T ,

Mα′ + Sα = 0, for t ≥ 0, with α(0) = ṽ, (5)

where M = (mij), mij = [Φi, Φj ], S = (sij), sij = A(Φi, Φj), and ṽ = (ṽ1, . . . ,
ṽN )T . The mass matrix M and the stiffness matrix S are both symmetric, positive
definite. The solution of (5) can be written, with E(t) the solution matrix,

α(t) = E(t) ṽ, where E(t) = e−Ht, H = M−1S. (6)

We note that the semidiscrete solution uh(t) ∈ Sh is ≥ 0 (> 0) if and only if,
elementwise, α(t) ≥ 0 (> 0).

It was shown in Thomée and Wahlbin [8] that, for the semidiscrete SG method,
the discrete analogue of (2) does not hold for small t > 0. However, in the case
of the LM method, it is valid if and only if the triangulation is of Delaunay type;
it had been shown already in Fujii [5] that nonnegativity holds for triangulations
with all angles ≤ 1

2π. For the FVE method we will show here that the situation is
the same as for the SG method, i.e., that E(t) ≥ 0 does not hold for small t > 0.

In cases where the solution operator is not nonnegative for all positive times,
we shall also discuss if it becomes nonnegative for larger time, or if E(t) ≥ 0 for
t ≥ t0 > 0; the smallest such t0, if it exists, will be referred to as the threshold of
positivity. Clearly, this is particularly interesting if t0 is relatively small.
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We also study fully discrete schemes based on time stepping in the spatially
semidiscrete methods. With k a time step, we consider approximations of the solu-
tion matrix E(t) = e−tH in (6) at tn = nk of the form En

k , where Ek = r(kH),
with r(ξ) a rational function satisfying certain conditions. We will be particularly
concerned here with the Backward Euler and (0, 2) Padé time stepping methods,
corresponding to r(ξ) = 1/(1 + ξ) and r(ξ) = 1/(1 + ξ + 1

2ξ2), respectively.
In Schatz, Thomée and Wahlbin [6] some positivity results were obtained for

fully discrete schemes related to those for the spatially semidiscrete SG and LM
methods, and some of these are extended here to include also the FVE method.

After the introductory Sects. 1 and 2, the positivity properties of the spatially
semidiscrete methods are analyzed in Sect. 3, and then, in Sect. 4, of the fully dis-
crete methods. In Sect. 5 we give a concrete example, with Ω the unit square, using
the most basic uniform triangulation Th, with the stiffness matrix corresponding
to the 5-point finite difference Laplacian. Computations in MATLAB are used to
elucidate our theoretical results, and to determine actual positivity thresholds.

The author gratefully acknowledges the help of Panagiotis Chatzipantelidis
with the computer experiments and the figures.

2 The Spatially Semidiscrete Methods

We begin our discussion of the semidiscrete problem (4), or (5), by observing that
for the stiffness matrix S = (sij), which is common to all cases of (4), simple
calculations show, see, e.g., [4],

sij = (∇Φi,∇Φj) =

⎧
⎪⎨

⎪⎩

∑
K⊂supp(Φi)

h−2
i |K|, if i = j,

− 1
2 sin(α + β)/(sin α sin β), if Pi, Pj neighbors,

0, otherwise.
(7)

Here hi is the height of K with respect to the edge opposite the vertex Pi, and α
and β are the angles opposite the edge PiPj , see Fig. 1. We assume throughout that
the triangulations Th are such that the corresponding S are irreducible matrices.

Wenow turn to the three different semidiscrete versions of (4)mentioned above,
and specify the corresponding discrete inner products [·, ·] on Sh.

β

e

Pi

Pj

α

Fig. 1. An interior edge e = PiPj .
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The Standard Galerkin (SG) method is defined by (4) with [·, ·] = (·, ·) =
(·, ·)L2(Ω), and we find for the mass matrix, with |V | = area(V ),

mij = mSG
ij = (Φi, Φj) =

⎧
⎪⎨

⎪⎩

1
6 |supp(Φi)|, if i = j,
1
12 |supp(ΦiΦj)|, if Pi, Pj neighbors,
0, otherwise.

(8)

The Lumped Mass (LM) method uses (4) with [·, ·] = (·, ·)h, where the latter
is defined by quadrature: with {PK,j}3j=1 the vertices of the triangle K, we set

(ψ, χ)h =
∑

K∈Th

QK,h(ψ χ), with QK,h(f) = 1
3 |K|

3∑

j=1

f(PK,j) ≈
∫

K

f dx.

In the matrix formulation (5), this means that M = D = (dij), with dij =
(Φi, Φj)h = 0 for j 	= i, so that D is a diagonal matrix.

To define the spatially semidiscrete Finite Volume Element (FVE) method,
following [2], we note that a solution of the differential equation ut = Δu in (1)
satisfies the local conservation law

∫

V

ut dx −
∫

∂V

∂u

∂n
ds = 0, for t ≥ 0, (9)

for any V ⊂ Ω, with n the unit exterior normal to ∂V . The semidiscrete FVE
method is then to find uh(t) ∈ Sh, for t ≥ 0, satisfying

∫

Vj

uh,t dx−
∫

∂Vj

∂uh

∂n
ds = 0, for j = 1, . . . , N, t ≥ 0, with uh(0) = vh, (10)

where the Vj are the so called control volumes, defined as follows, see Fig. 2. For
K ∈ Th, let bK be its barycenter, and connect bK with the midpoints of the edges of
K, thus partitioning K into three quadrilaterals Kl, l = j,m, n, where Pj , Pm, Pn

are the vertices of K. The control volume Vj is then the union of the quadrilaterals
Kj , sharing the vertex Pj . The equations (10) thus preserves (9) for any union of
control volumes.

To write (10) in weak form, we introduce the finite dimensional space

Yh = {η ∈ L2 : η|Vj
= constant, j = 1, . . . , N ; η = 0 outside ∪N

j=1 Vj}.

For η ∈ Yh, we multiply (10) by η(Pj), and sum over j, to obtain the Petrov–
Galerkin formulation

(uh,t, η) + ah(uh, η) = 0, ∀η ∈ Yh, t ≥ 0, with uh(0) = vh, (11)

where

ah(χ, η) = −
N∑

j=1

η(Pj)
∫

∂Vj

∂χ

∂n
ds, ∀χ ∈ Sh, η ∈ Yh. (12)

In order to rephrase this as a pure Galerkin method, we shall introduce a
new inner product on Sh. Let Jh : C(Ω) → Yh be the interpolant defined by
(Jhv)(Pj) = v(Pj), j = 1, . . . , N. The following lemma then holds, see [3].
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bK

Pj

Kj

Pj

Vj

Fig. 2. A triangle K ∈ Th and a patch Πj around a vertex Pj

Lemma 1. The bilinear form (χ, Jhψ) is symmetric, positive definite on Sh, and

ah(χ, Jhψ) = (∇χ,∇ψ) = A(χ, ψ), ∀χ, ψ ∈ Sh. (13)

We now define the inner product 〈χ, ψ〉 = (χ, Jhψ), for χ, ψ ∈ Sh. By (13),
the Petrov-Galerkin equation (11), (12) may then be written in the Galerkin for-
mulation (4), with [·, ·] = 〈·, ·〉, and the mass matrix M = (mij) in (5) is

mij = mFV E
ij = 〈Φi, Φj〉 =

⎧
⎪⎨

⎪⎩

11
54 |supp(Φi)|, if i = j,
7

108 |supp(ΦiΦj)|, if Pi, Pj neighbors,
0, otherwise.

(14)

We note that the FVE mass matrix is more concentrated on the diagonal than
that of SG. In fact, with D the diagonal mass matrix of LM, we have

MFV E = 2
9D + 7

9MSG. (15)

3 Positivity Preservation in the Spatially Semidiscrete
Methods

In this section we shall consider the general spatially semidiscrete problem (4), in
matrix form (5), where S is the stiffness matrix, and M = (mij), mij = [Φi, Φj ],
is the mass matrix. We assume that [·, ·] is such that either mij > 0 for all neigh-
bors Pi, Pj , or such that mij = 0 for all neighbors Pi, Pj . In the former case M
is a nondiagonal matrix, and in the latter diagonal. We shall make the technical
assumption that Th has a strictly interior node, Pj say, such that any neighbor of
Pj has a neighbor which is not a neighbor of Pj ; we shall refer to such a triangula-
tion as normal. Note that Th is normal if it has a strictly interior node Pj , with all
its neighbors strictly interior, such that the associated patch Πj is convex. In the
case of a nondiagonal mass matrix we have the following negative result, which
was shown in [8] for the SG method.
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Theorem 1. Assume that Th is normal and that M is nondiagonal. Then the
solution matrix E(t) = e−Ht for (5) cannot be nonnegative for small t > 0.

Proof. Assume that E(t) ≥ 0 for small t > 0. Then hij ≤ 0 for i 	= j since

E(t) = e−Ht = I − H t + O(t2) ≥ 0, as t → 0.

Let Pj be the strictly interior node in the definition of a normal Th. We shall show
that hij = 0 for i 	= j. If this has been proven, then

sij =
N∑

l=1

milhlj = hjjmij , i = 1, . . . , N, (16)

with hjj 	= 0, and hence the jth columns of S and M are proportional. Since
Pj is strictly interior, we have

∑N
i=1 Φi = 1 on supp (Φj) and hence

∑N
i=1 sij =∑N

i=1(∇Φi,∇Φj) = (∇1,∇Φj) = 0. Together with
∑N

i=1 mij > 0, this contra-
dicts (16) and thus shows our claim.

It remains to show that hij = 0 for i 	= j. Consider first the case that Pi

is not a neighbor of Pj , so that mij = sij = 0. Since S = MH, we find sij =∑
l �=j milhlj = 0, and since hlj ≤ 0 for l 	= j, we have milhlj ≤ 0 and hence

milhlj = 0 for l 	= j. In particular, hij = 0. When Pi is a neighbor of Pj , it has a
neighbor Pq which is not a neighbor of Pj and hence sqj =

∑
l �=j mqlhlj = 0, now

implying hij = 0 since mqi > 0 (where we have used that M is nondiagonal).
This completes the proof.

This result thus covers the SG and FVE methods, but not the LM method, which
has a diagonal mass matrix. We recall that an edge e of Th is a Delaunay edge if the
sum of the angles α and β opposite e is ≤ π (see Fig. 1), and that Th is a Delaunay
triangulation if all interior edges are Delaunay. Using (7) this shows that Th is
Delaunay if and only if sij ≤ 0 for all i 	= j. But this is equivalent to S being a
Stieltjes matrix, i.e., a symmetric, positive definite matrix with nonpositive off-
diagonal entries. The following result was shown in [8].

Theorem 2. The LM solution matrix E(t) = eHt, H = D−1S, is nonnegative
for all t ≥ 0 if and only if Th is Delaunay.

Proof. As in the proof of Theorem 1 we find that E(t) ≥ 0 for t ≥ 0 implies
hij ≤ 0 for i 	= j, and hence, since S = DH, that sij ≤ 0 for i 	= j, so that Th

Delaunay.
On the other hand, if Th is Delaunay, then S, and hence also D+kS, is Stieltjes,

which implies (I + kH)−1 = (D + kS)−1D ≥ 0 for all k ≥ 0, where we have used
the fact that if A is a Stieltjes matrix, then A−1 ≥ 0. Hence

E(t) = lim
n→∞

(I +
t

n
H)−n ≥ 0, for all t > 0.

We recall that if A is a Stieltjes matrix which is also irreducible, then A−1 > 0.
In particular, if Th is Delaunay, we have S−1 > 0. Returning to the general case,
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we then also have H−1 = S−1M > 0. Since G = H−1 = S−1M is symmetric and
positive definite with respect to the inner product Mv ·w =

∑N
i=1(Mv)iwi, it has

eigenvalues {κj}N
j=1, with 0 < κj+1 ≤ κj , and orthonormal eigenvectors {ϕj}N

j=1,
with respect to this inner product. Recall that by the Perron-Frobenius theorem,
if G > 0, then ϕ1 > 0 and κj < κ1 for j ≥ 2. Note that {ϕj}N

j=1 are then also the
eigenvectors of H, with corresponding eigenvalues λj = 1/κj , j = 1, . . . , N , and
thus λj > λ1 for j ≥ 2. We may write

E(t)ṽ =
N∑

l=1

e−λlt(Mṽ · ϕl) ϕl. (17)

We now return to the general semidiscrete problem (4), or (5), and show that,
if G = H−1 > 0, then there exists t0 ≥ 0 such that E(t) > 0 for t > t0. This result
was incorrectly stated in [6], without the positivity assumption.

Theorem 3. If G = H−1 > 0, then there is a t0 ≥ 0 such that the solution matrix
E(t) = e−Ht for (5) is positive for t > t0.

Proof. It suffices to show that E(t)ej > 0 for large t, for the finitely many unit
vectors {ej}N

j=1. But, since ϕ1 > 0 and Mej · ϕ1 > 0, we find by (17), for t large,

E(t)ej =
N∑

l=1

e−λlt(Mej · ϕl) ϕl = e−λ1t
(
(Mej · ϕ1) ϕ1 + O(e−(λ2−λ1)t)

)
> 0.

4 Fully Discrete Methods

In this section we study time discretizations of the semidiscrete problem (4), or
(5). We thus consider approximations of the solution matrix E(t) = e−tH in (6)
at tn = nk, with k a time step, of the form En

k , where Ek = r(kH), with r(ξ) a
rational function satisfying certain conditions.

We begin with the Backward Euler (BE) method, to find Un ∈ Sh, Un ≈
uh(tn), for n ≥ 0, such that

[Un − Un−1

k
, χ

]
+ A(Un, χ) = 0, ∀χ ∈ Sh, for n ≥ 1, with U0 = vh. (18)

In matrix formulation, with Un =
∑N

j=1 αn
j Φj , this takes the form

(M + kS)αn = Mαn−1 or αn = Ekαn−1, for n ≥ 1, with α0 = ṽ,

where Ek the time stepping matrix

Ek = (M + kS)−1M = (I + kH)−1 = r01(kH), H = M−1S, (19)

using r(ξ) = r01(ξ) = 1/(1 + ξ). The fully discrete solution is thus αn = En
k ṽ.

We first have the following time discrete analogue of Theorem 1, see [6].
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Theorem 4. Assume that Th is normal and M nondiagonal. Then the BE time
stepping matrix Ek = (I + kH)−1 cannot be nonnegative for small k > 0.

Proof. If we assume Ek ≥ 0 for k > 0 small, we would have, for any t > 0,

E(t) = e−Ht = lim
n→∞

(I +
t

n
H)−n = lim

n→∞
En

t/n ≥ 0, (20)

in contradiction to Theorem 1.

For the Backward Euler Lumped Mass method the mass matrix is diagonal, and
the following analogue of Theorem 2 was shown in [6].

Theorem 5. For the BE LM method, Ek ≥ 0 for all k > 0 if and only if Th

Delaunay.

For the nonnegativity of Ek for larger k, the following holds, where, as in the semi-
discrete case, positivity properties of H−1 enter.

Theorem 6. For Ek = (I + kH)−1 to be nonnegative for k large, it is necessary
that H−1 ≥ 0. If H−1 > 0, then there exists k0 ≥ 0 such that Ek > 0 for k > k0.

If Ek0 ≥ 0, then Ek ≥ 0 for k ≥ k0. Thus {k : Ek ≥ 0} is an interval [k0,∞).

Proof. We write Ek = ε(εI + H)−1, with ε = 1/k, and note that thus Ek ≥ 0 for
k large implies (εI +H)−1 ≥ 0 for ε > 0 small. But (εI +H)−1 → H−1 as ε → 0,
and hence H−1 ≥ 0. On the other hand, if H−1 > 0, then (εI + H)−1 > 0 for ε
small, and hence Ek > 0 for k large.

For the last statement in the theorem we show that if (ε0I + H)−1 ≥ 0, with
ε0 > 0, then (εI + H)−1 ≥ 0 for ε ∈ [0, ε0]. With δ = ε0 − ε > 0, we may write

(εI +H)−1 = (ε0I +H − δI)−1 = (ε0I +H)−1(I − K)−1, where K = δ(ε0I +H)−1.

Here K ≥ 0, by assumption, and, if δ is so small that, for some matrix norm
| · |, |K| = δ|(ε0I + H)−1| < 1, then (I − K)−1 =

∑∞
j=0 Kj ≥ 0, and therefore

(εI + H)−1 ≥ 0. But if (εI + H)−1 ≥ 0 for ε ∈ (ε1, ε0], with ε1 ≥ 0, then
(ε1I +H)−1 ≥ 0. Hence, by the above, (εI +H)−1 ≥ 0 for some ε < ε1, and thus
the smallest such ε1 has to be ε1 = 0.

When Ek ≥ 0 for large k, we refer to the smallest k0 such that Ek ≥ 0 for k ≥ k0
as the threshold of positivity for Ek. Thus, by the last statement of Theorem 6, in
the BE case the positivity threshold is the smallest k for which Ek ≥ 0.

The following result from [6] gives precise values of k for Ek to be guaranteed
to be nonnegative, under a sharper conditions than H−1 > 0, namely if sij < 0
for Pi, Pj neighbors, or α + β < π for each edge e = PiPj of Th (see Fig. 1).

Theorem 7. If sij < 0 for all neighbors PiPj, then Ek ≥ 0 if

k|sij | ≥ mij , ∀j 	= i. (21)

Proof. (21) implies that mij +ksij ≤ 0 for all j 	= i, so that M+kS is a Stieltjes
matrix. Hence (M + kS)−1 ≥ 0, and thus Ek ≥ 0 by (19).
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Thus Ek ≥ 0 if k ≥ max(mij/|sij |), with max taken over all neighbors Pi, Pj .
If {Th} is a quasiuniform family, and α + β ≤ γ < π for all PiPj , then Ek ≥ 0 if
k ≥ ch2 with c = c({Th}). Note that since mSG

ij = 7
9mFV E

ij for Pi, Pj neighbors,
by (15), the above lower bound is smaller for FVE than for SG, by a factor 7/9.

Now consider, more generally, a fully discrete solution αn = En
k ṽh, n ≥ 0,

of (5) defined by a time stepping matrix Ek = r(kH), where r(ξ) is a bounded
rational function for ξ ≥ 0 approximating e−ξ for small ξ, so that

r(ξ) = 1 − ξ + O(ξ2), as ξ → 0. (22)

We may write

Ekṽ = r(kH)ṽ =
N∑

l=1

r(kλl)(Mṽ · ϕl) ϕl.

As in Theorem 4, Ek cannot be nonnegative for small k and M nondiagonal [6].

Theorem 8. Assume that Th is normal and M nondiagonal. Let Ek = r(kH),
with r(ξ) satisfying (22). Then Ek cannot be nonnegative for small k.

Proof. Using (22), the result follow as in Theorem 4 from

lim
n→∞

En
t/n = lim

n→∞

(
I − t

n
H + O(

t2

n2
)
)n

= e−tH = E(t), for any t > 0.

For nonnegativity of Ek = r(kH) for larger k we first show that if H−1 > 0, this
requires that r(ξ) ≥ 0 for large ξ.

Theorem 9. Let H−1 > 0 and let Ek = r(kH). Then a necessary condition for
Ek to be nonnegative for large k is that r(ξ) ≥ 0 for large ξ.

Proof. With λ1, ϕ1 the first eigenvalue and the corresponding eigenvector of H,
we have Ekϕ1 = r(kλ1)ϕ1, and thus, since λ1 > 0, ϕ1 > 0, for Ekϕ1 to be nonneg-
ative for large k it is necessary that r(kλ1) be nonnegative for large k, showing
our claim.

A typical and interesting example is the (0, 2) Padé approximation r02(ξ) =
1/(1 + ξ + 1

2ξ2). However, the Padé approximations r11(ξ) = (1 − 1
2ξ)/(1 + 1

2ξ)
and r12(ξ) = (1 − 1

3ξ)/(1 + 2
3ξ + 1

6ξ2) are negative for large ξ, and hence the
corresponding Ek cannot be nonnegative for large k when H−1 > 0.

We now assume that r(∞) = 0. If r(ξ) ≥ 0 for large ξ, we may then write

r(ξ) = cξ−q + O(ξ−q−1), as ξ → ∞, with q ≥ 1, c > 0. (23)

We show the following result, generalizing the first part of Theorem 6.

Theorem 10. Assume that (23) holds. Then H−q ≥ 0 is a necessary condition
for Ek = r(kH) ≥ 0 for large k. If H−q > 0, then Ek = r(kH) > 0 for large k.

Proof. Both statements of the theorem follow since, by (23),

Ek = ck−q(H−q + O(k−1)), as k → ∞. (24)
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The result shows, in particular, that Ek = r02(kH) > 0 for large k if H−2 > 0.
We complete this section by showing that for this method, the negative conclusion
of Theorem 8 holds also for the LM method, even though M is then diagonal,
under the not very restrictive assumption that Th is 4-connected in the following
sense: There exists a path P in Zh consisting of four connected edges PmPn, with
smn 	= 0, and such that the endpoints Pi, Pj of the path cannot be connected by
a path with fewer than four edges.

Theorem 11. Assume that Th is Delaunay and 4-connected. Then, for the LM
method, Ek = r02(kH) cannot be nonnegative for small k.

Proof. We have, by Taylor expansion of r02(ξ),

Ek = r02(kH) = I − kH + 1
2k2H2 − 1

4k4H4 + O(k5), as k → 0.

We shall show that if PiPpPqPrPj is a path P as above, then (Ek)ij < 0 for
small k. For this we write H = D−1S = V − W, where V is a positive diagonal
matrix and W has elements wmn = −smn/dmm > 0 when Pm, Pn are neighbors
with smn 	= 0, with the remaining elements 0. (Recall that since S is Stieltjes,
W ≥ 0.) It follows that (H4)ij =

∑
l1,l2,l3

hil1hl1l2hl2l3hl3j and, by our assump-
tion on the path P connecting Pi and Pj , none of the nonzero terms have factors
from V. Hence (H4)ij ≥ wipwpqwqrwrj > 0. In the same way, since Pj cannot
be reached from Pi in less than four steps, (Hl)ij = 0 for l = 0, 1, 2, 3. Hence
(Ek)ij = − 1

4k4(H4)ij + O(k5) < 0 for k small.

5 A Numerical Example

In this final section we present a numerical example to illustrate our theoretical
results. For a family of uniform triangulations of the unit square Ω = (0, 1) ×
(0, 1), we study the positivity properties of the spatially semidiscrete, the Back-
ward Euler, and the (0, 2) Padé methods, using the SG, FVE and LM spatial
discretizations. The triangulations Th of Ω are defined as follows: Let M be a
positive integer, h = 1/(M +1), and set xj = yj = jh, for j = 0, . . . , M +1. This
partitions Ω into squares (xj , xj+1)× (ym, ym+1), and we may define a triangula-
tion Th, by connecting the nodes (xj , ym), (xj+1, ym−1). The number of interior
vertices is N = M2, and maxTh

diam(K) =
√

2h. We note that Th is normal,
Delaunay, and 4-connected (if M ≥ 3).

To determine the stiffness and mass matrices, let ζ0 = (xj , ym) be an interior
vertex of Th and let {ζj}6j=1 be the surrounding (including possibly boundary)
vertices, numbered counterclockwise, with ζ1 = (xj+1, ym), and {Ψj}6j=0 the cor-
responding basis functions, see Fig. 3. The contributions corresponding to ζ0 to
S are then given by (cf. (7))

(∇Ψ0,∇Ψj) =

⎧
⎪⎨

⎪⎩

4, j = 0,

−1, j = 1, 2, 4, 5,

0, j = 3, 6,
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ym

h

h

h

1

h xjhh h 1h0

h

h

xj

ζ1

ζ6
h

τ1h

ym

h

τ2

τ3
ζ4

τ4

τ5
ζ5

τ6

ζ0

ζ3 ζ2

h

Fig. 3. Left: The unit square Ω with the symmetric triangulation Th.Right: The patch
at ζ0.

and to the mass matrices M for the SG and FVE methods by

(Ψ0, Ψj) = 1
2h2

{
1, j = 0,
1
6 , j = 1, . . . , 6,

and 〈Ψ0, Ψj〉 = 1
2h2

{
11
9 , j = 0,
7
54 , j = 1, . . . , 6.

Note that since the sum of the angles opposite a diagonal edge is π, the corre-
sponding elements sij of the stiffness matrix vanish. We observe that S is an irre-
ducible Stieltjes matrix, so that S−1 > 0, and hence the matrices H−1 = S−1M
for the SG, FVE and LM methods are all positive. Thus the results of Theorems
3, 6, 9, and 10 concerning positivity for large t and k all apply. However, since
some sij = 0 for Pi, Pj neighbors, this does not hold for Theorem 7.

Table 1. Positivity thresholds for the numerical example in Sect. 5.

Semidiscrete Backward Euler (0,2) Padé

h SG FVE SG FVE SG FVE LM

0.10 0.046 0.043 0.0053 0.0045 0.025 0.024 0.020

0.05 0.035 0.031 0.0013 0.0011 0.023 0.023 0.021

0.025 0.021 0.019 0.0003 0.0003 0.022 0.022 0.022

In Table 1 we show some computed positivity thresholds t0 for E(t), and k0
for Ek = r01(kH) and Ek = r02(kH), for the SG, FVE, and in the case of r02(kH)
also the LM method. The numbers indicate that for the spatially semidiscrete
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problem, the positivity thresholds diminish with h, and are smaller for the FVE
than for the SG method. For the BE method the thresholds are small, with the
ratio k0/h2 approximately 0.54 for SG and 0.45 for FVE, even though Theorem 7
does not apply. For the (0, 2) Padé method the thresholds do not appear to dimin-
ish with h, and also to be independent of the choice of the spatial discretization
method.
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4. Drǎgǎnescu, A., Dupont, T.F., Scott, L.R.: Failure of the discrete maximum princi-
ple for an elliptic finite element problem. Math. Comp. 74, 1–23 (2004)

5. Fujii, H.: Some remarks on finite element analysis of time-dependent field problems.
In: Theory and Practice in Finite Element Structural Analysis, pp. 91–106. Univer-
sity of Tokyo Press, Tokyo (1973)

6. Schatz, A.H., Thomée, V., Wahlbin, L.B.: On positivity and maximum-norm con-
tractivity in time stepping methods for parabolic equations. Comput. Methods Appl.
Math. 10, 421–443 (2010)

7. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, 2nd edn.
Springer, Heidelberg (2006)

8. Thomée, V., Wahlbin, L.B.: On the existence of maximum principles in parabolic
finite element equations. Math. Comp. 77, 11–19 (2008)



http://www.springer.com/978-3-319-15584-5


	On Positivity Preservation in Some Finite Element Methods for the Heat Equation
	1 Introduction
	2 The Spatially Semidiscrete Methods
	3 Positivity Preservation in the Spatially Semidiscrete Methods
	4 Fully Discrete Methods
	5 A Numerical Example
	References


