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Abstract. A new approach to program verification is based on
automata. The notion of automaton depends on the verification prob-
lem at hand (nested word automata for recursion, Büchi automata for
termination, a form of data automata for parametrized programs, etc.).
The approach is to first construct an automaton for the candidate proof
and then check its validity via automata inclusion. The originality of the
approach lies in the construction of an automaton from a correctness
proof of a given sequence of statements. A sequence of statements is at
the same time a word over a finite alphabet and it is (a very simple case
of) a program. Just as we ask whether a word has an accepting run, we
can ask whether a sequence of statements has a correctness proof (of a
certain form). The automaton accepts exactly the sequences that do.

1 Introduction

The verification of a program can often be divided into two steps: 1) the construc-
tion of a candidate proof and 2) the check of the validity of the candidate proof
for the given program. An example is the construction of a Floyd-Hoare style
annotation and the check of its inductiveness. In a new approach to program ver-
ification, the candidate proof in Step 1 comes in the form of an automaton and
Step 2 is reduced to an automata inclusion test. If the inclusion test succeeds,
the program is proven correct. The approach lends itself to a verification algo-
rithm in the form of a loop: the automaton for the candidate proof is constructed
incrementally until the inclusion holds (see also Figure 1 in Section 2).

The approach introduces a novel separation between

− the symbolic reasoning about data and
− the automata-theoretic reasoning about control.

By data we mean the values of program variables (e.g., integers) which are
read and written by program statements. Examples of statements are tests of
conditions and updates. We apply symbolic reasoning to mechanize the analysis
of the data and produce a correctness proof for the sequence of statements.
For example, we can first translate the sequence of statements into a logical
formula (in the logical theory corresponding to the data domain) and then apply
a dedicated decision procedure (as implemented by an SMT solver).
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The originality of the approach lies in the construction of the automaton
from a correctness proof of a given sequence of statements. The construction
relies on the following observation: one can first decompose the correctness proof
into its base components and then rearrange the base components to obtain a
correctness proof for a new sequence built up from the same set of statements. In
the automaton that we construct, the non-determinism reflects the combinatorial
choice of ways to rearrange the base components. A sequence of statements is
at the same time a word over a finite alphabet and it is (a very simple case
of) a program. Just as we ask whether a word has an accepting run, we can
ask whether a sequence of statements has a correctness proof (one which can be
obtained by rearranging the base components). The automaton accepts exactly
the sequences that do.

The control of the program can be expressed through a graph, the so-called
control flow graph of the program. The paths in the graph define the set of
sequences of statements that are possible according to the control flow alone
(i.e., ignoring the data and ignoring in particular the outcome of tests of condi-
tions). It is this set of sequences which is the language recognized by the program
automaton (we here use the finite set of the statements in the program as the
alphabet and sequences of statements as words).

The control of the program comes in only in Step 2. We test the inclusion
between the program automaton and the automaton for the candidate proof.
The inclusion means that each sequence of statements that is possible according
to the control flow of the program has a correctness proof.

Roadmap. In the remainder of this paper, we will instantiate the approach for
six different verification problems. Each verification problem requires a specific
class of automata. In the table below, unbounded parallelism refers to programs
with an unbounded number of threads, and predicate automata are a new ver-
sion of data automata that we introduce. The term proofs that count refers to
programs whose verification involves the task to synthesize ghost variables that
count. Each verification problem poses a new challenge in finding an appropri-
ate notion of automata for the program and for the candidate proof, a way of
representing and constructing the automata, and finally an algorithm for check-
ing automata inclusion. We will explain each challenge and our approach to the
solution informally, by way of examples. For technical details, we refer to the
corresponding paper.

verification problem inclusion problem reference

Section 2 sequential programs nondeterministic finite automata [10,12]
Section 3 termination Büchi automata [13]
Section 4 recursion nested word automata [11]
Section 5 concurrency alternating finite automata [4]
Section 6 unbounded parallelism predicate automata [6]
Section 7 proofs that count Petri net ⊆ counting automaton [5]
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program P

P is correct P is incorrect

P ⊆ A1 ∪ · · · ∪ An ? τ ∈ INFEASIBLE ?

no

trace τ
such that

τ ∈ L(P \ (A1 ∪ · · · ∪ An))

yes

automaton An+1

such that
τ ∈ L(An+1) ⊆ INFEASIBLE

n := n + 1

yes no

n := 0

Fig. 1. Automated program verification

2 Sequential Programs: Nondeterministic Finite Automata

In this section we instantiate the approach for verifying sequential programs.
We present two ways to construct an automaton from the correctness proof of a
sequence of statements. We often refer to a sequence of statements as a trace.

Automata from unsatisfiable cores. The program Pex1 in Figure 2 is the adap-
tation of an example in [14]. The original program in [14] allocates a pointer p
and then enters a while loop which uses p and conditionally frees p. The original
correctness property in [14] is “the pointer p is not used after it has been freed.”

In our setting we use assert statements to define the correctness of the
program executions. In the example of Pex1, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

Informally, we can argue the correctness of Pex1 rather directly if we split the
executions into two cases, namely according to whether the then branch of the
conditional gets executed at least once during the execution or it does not. If
not, then the value of p is never changed and remains non-zero (and the assert
statement cannot fail). If the then branch of the conditional is executed, then
the value of n is 0, the statement n-- decrements the value of n from 0 to −1,
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�0: assume p != 0;

�1: while(n >= 0)
{

�2: assert p != 0;

if(n == 0)
{

�3: p := 0;
}

�4: n--;
}

�0

�1

�2

�3

�4

�5

�err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 2. Example program Pex1

and the while loop will exit directly, without executing the assert statement. It
turns out that our verification algorithm will automatically reproduce this case
split.

The algorithm starts with the sequence of statements on some path from �0
to �err in the control flow graph of Pex1 (see Figure 2). We take the shortest path
which goes from �0 to �err via �1 and �2. The sequence of statements on this path
is infeasible because it is not possible to execute the assume statements p!=0
and p==0 without an update of p in between. Formally, the formula obtained by
translating the sequence of statements is unsatisfiable, and the conjuncts p �= 0
and p = 0 form an unsatisfiable core of the formula.

We construct the automaton A1 in Figure 3 by first constructing an automa-
ton that accepts only the sequence of the assume statements p!=0 and p==0 and
then adding a number of self-loops. The idea behind the construction is that
the sequence of statements remains infeasible if we add any statement before or
after and any statement other than an update of p in-between.

The automaton A1 does not accept a sequence of statements with an update
of p in between the statements p!=0 and p==0. The shortest path from �0 to �err
with such a sequence of statements goes from �2 to �err after it has gone from �2
to �3 once before. The sequence of statements on this path is again infeasible:
it is not possible to execute the assume statement n==0, the update statement
n--, and then the assume statement n>=0 (without an update of n between n==0
and n-- and between n-- and n>=0).

We construct the automaton A2 depicted in Figure 3 in the analogous way.
Now, the unsatisfiable core corresponds to the sequence of the statements n==0,
n--, and n>=0. Thus, we first construct an automaton that accepts only this



Automated Program Verification 29

q0

q1

q2

Σ

Σ

p != 0

p == 0

Σ\{ p := 0 }

p0

p1

p2

p3

n == 0

n--

n >= 0

Σ

Σ\{ n-- }

Σ\{ n-- }

Σ

Fig. 3. Automata A1 and A2 whose union forms a proof of correctness for Pex1 (an
edge labeled with Σ means a transition reading any letter, an edge labeled with
Σ\{ p := 0 }) means a transition reading any letter except for p := 0 )

sequence and then add a number of self-loops. Now we are careful to not add a
self-loop with an update of n.

To summarize, we have twice taken a path from �0 to �err and constructed
an automaton from the unsatisfiable core of the proof of the infeasibility of the
sequence of statements on the path.

The control flow graph Pex1 defines an automaton that recognizes the set of
all sequences of statements on paths from �0 to �err. We can thus check that all
such sequences are accepted by one of the two automata by testing the inclusion

Pex1 ⊆ A1 ∪ A2.

Automata from sets of Hoare triples. It is “easy” to justify the construction of
the automata A1 and A2 in the example above: the infeasibility of a sequence of
statements (such as the sequence p!=0 p==0) is preserved if one adds statements
that do not modify any of the variables of the statements in the sequence (here,
the variable p).

The example of the program Pex2 in Figure 4 shows that sometimes a more
involved justification is required. The sequence of the two statements x:=0 and
x==-1 (which labels a path from �0 to �err) is infeasible. However, the statement
x++ does modify the variable that appears in the two statements. So how can we
account for the paths that loop in �2 taking the edge labeled x++ one or more
times? We need to construct an automaton that covers the case of those paths,
but we can no longer base the construction solely on unsatisfiable cores.
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�0: x := 0;

�1: y := 0;

�2: while(nondet) {x++;}
assert(x != -1);

assert(y != -1);

�0 �1 �2 �err
x:=0 y:=0

x++

x==-1

y==-1

Fig. 4. Example program Pex2

We must base the construction of the automaton on a more powerful form of
correctness argument: Hoare triples. The four Hoare triples below are sufficient
to prove the infeasibility of all those paths. They express that the assertion x ≥ 0
holds after the update x:=0, that it is invariant under the updates y:=0 and
x++, and that is blocks the execution of the assume statement x==-1.

{ true } x:=0 {x ≥ 0}
{x ≥ 0} y:=0 {x ≥ 0}
{x ≥ 0} x++ {x ≥ 0}
{x ≥ 0} x==-1 { false }

The automaton A1 in Figure 5 has four transitions, one for each Hoare triple.
It has three states, one for each assertion: the initial state q0 for true, the state
q1 for x ≥ 0, the (only) final state q2 for false. The construction of such a
Floyd-Hoare automaton generalizes to any set of Hoare triples. The resulting
automaton can have arbitrary loops. In contrast, an automaton constructed as
in the preceding example can only have self-loops.

In our implementation [8], the set of Hoare triples comes from an interpo-
lating SMT solver such as [2] which generates the assertion x ≥ 0 from the
infeasibility proof.

The four Hoare triples below are sufficient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y ≥ 0}
{y ≥ 0} x++ {y ≥ 0}
{y ≥ 0} y==-1 { false }

We use them in the same way as above in order to construct the automaton
A2 in Figure 5. The two automata are sufficient to prove the correctness of the
program; i.e., Pex2 ⊆ A1 ∪ A2.

We could have based the construction of the automaton A2 in Figure 5 on the
unsatisfiable core of the infeasibility proof, as in the example of Pex2. Intuitively,
we do not need to know the precise form of the assertion y ≥ 0 in order to know
that it is invariant under x++. It is sufficient to know that the variabe x does
not occur in the assertion (which we can assume because x does not appear in
the unsatisfiable core).
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q0 q1 q2
x:=0

y:=0

x++

x==-1
q0 q1 q2

x:=0

y:=0

x++

y==-1

Fig. 5. Automata A1 and A2 for Pex2

To summarize, we have presented two ways to construct an automaton from
the correctness proof of a sequence of statements. The first gets away without the
synthesis of assertions, but the second is more general and leads to a complete
verification method [10].

In the verification algorithm depicted in Figure 1, the union of the automata
constructed from the correctness proofs for sequences of statements is con-
structed incrementally until the inclusion holds. In our implementation [8], we
need not construct the union explicitly. Instead, we can incrementally construct
the difference automaton P \ (A1 ∪ · · · ∪ An).

3 Termination: Büchi Automata

In this section we present how we use Büchi automata to construct a termination
proof of a program.

In the presence of loops with branching or nesting, the termination proof has
to account for all possible interleavings between the different paths through the
loop. If the program is lasso-shaped (a stem followed by a single loop without
branching), the control flow is trivial: there is only one path. Consequently,
the termination proof can be very simple. Many procedures are specialized
to lasso-shaped programs and derive a simple termination proof rather effi-
ciently [9,16,18]. The relevance of lasso-shaped programs stems from their use
as the representation of an ultimately periodic infinite trace through the control
flow graph of a program with arbitrary nesting (the period, i.e., the cycle of the
lasso, may itself go through a sequence of loops in the program).

We can explain our algorithm informally using the program Psort depicted
in Figure 6 which is an implementation of bubblesort. We begin by picking some
ω-trace of Psort. We take the trace that first enters the outer while loop and
then takes the inner while loop infinitely often. We denote this trace using the
ω-regular expression Outer.Innerω. We see that this trace is terminating: its
termination can be shown using the linear ranking function f(i, j) = i − j.
Moreover, we see that this ranking function is applicable not only to this trace,
but to all traces that eventually always take the inner loop. Such traces can be
represented by the ω-regular expression

(Inner + Outer)∗.Innerω . (1)
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program sort(int i)

�1: while (i>0)

�2: int j:=1

�3: while(j<i)

// if (a[j]>a[i])

// swap(a[j],a[i])

�4: j++

�5: i--

�1

�2

�3

�4

�5

i>0

j:=1

j<ij++

j>=i

i--

Fig. 6. Program Psort which is an implementation of bubblesort

Now, let us pick another ω-trace from Psort. This time we take the trace
that always takes the outer while loop. We see that this trace is terminating.
Its termination can be shown using the linear ranking function f(i, j) = i.
Moreover, we see that this ranking function is applicable not only to this trace,
but to all traces that take the outer while loop infinitely often, as represented
by the ω-regular expression

(Inner∗.Outer)ω . (2)

Finally, we consider the set of all ω-trace of the program Psort

(Outer + Inner)ω,

check that each trace has the form (1) or has the form (2), and conclude that
Psort is terminating.

The approach is based on the notion of an ω-trace, which is an infinite
sequence of program statements π = st1st2 . . .. Like in the section before,
we assume that the statements are taken from a given finite set of pro-
gram statements Σ. If we consider Σ as an alphabet and each statement as
a letter, then an ω-trace is an infinite word over this alphabet. For exam-
ple, we can write the alphabet of our running example Psort as Σsort =
{ i>0 , j:=1 , j<i , j++ , j>=i , i-- } and π = j<i j:=1 .( j:=1 j++ j:=1 )ω is an ω-trace.

We call an ω-trace terminating if it does not correspond to any possible
execution (i.e., if there is no starting state such that all statements in the trace
can be executed). The ω-traces ( x<0 x:=1 )ω and ( x>=0 x-- )ω are terminating. In
the first one, already the finite prefix x<0 x:=1 x<0 does not correspond to any
possible execution. In the second, every finite prefix has a possible execution (for
a prefix of length 2n, take a starting state where x is greater than n − 1).

As before, a program is represented as a control flow graph whose edges
are labeled with statements (one node is singled out as the initial nodes; here,
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there are no error nodes). We may view a program P = 〈Loc, δ, �init〉 as a Büchi
automaton where every state is a final state. We call the program P terminating
if each of its ω-traces is terminating.

We define a module to be a restricted form of Büchi automaton which has
exactly one final state. A Büchi automaton of this form recognizes an ω-regular
language of the form U.V ω, where U and V are regular languages over the
alphabet of statements U, V ⊆ Σ∗.

A fair ω-trace of a module P is an ω-trace that labels a fair path in the graph
of P, i.e., a path that visits the distinguished location �fin infinitely often. We call
the module P terminating if each of its fair ω-traces is terminating. A non-fair
ω-trace of a terminating module (i.e., an ω-trace that labels a path in its control
flow graph without satisfying the fairness constraint) can be non-terminating.

We define a certified module to be a module that is equipped with a ter-
mination argument. The termination argument consists of two parts: a ranking
function and an annotation of the module’s location with assertions that certify
that the ranking function decreases every time the final location �fin is visited.
The certificate ensures that the module is terminating (every fair ω-trace of the
module terminates).

�1{oldrnk = ∞}

�2

{oldrnk = ∞}

�3{oldrnk = ∞}

�4{oldrnk = ∞}

�5{oldrnk = ∞}

�′
3

{i − j < oldrnk

∧ oldrnk ≥ 0}

�′
4

{i − j = oldrnk

∧ i − j > 0}

i>0

j:=1

j<ij++

j>=i

i--

j:=1

j<ij++

The figure on the
right depicts a certi-
fied module (Psort

1 ,
f, I) where f is the
ranking function
f(i, j) = i − j and
I is the mapping of
locations to predicates
indicated by writing
the predicate beneath
the location.

The variables oldrnk
is an auxiliary variable whose value is the value of the ranking function at the
previous visit of the final location. We note that for each transition (�, st, �′)
the corresponding triple {I(�)} st {I(�′)} is a valid Hoare triple (with
the understanding that outgoing transitions of final states implicitly assign
oldrnk := f(i, j)).

4 Recursion: Nested Word Automata

A new verification method for recursive programs is based on the theory of nested
words [1]. The verification method constructs a nested word automaton from an
inductive sequence of “nested interpolants”, i.e., an inductive annotation for the
“nested trace” of the recursive program with assertions. Such an annotation may
come from an interpolating SMT solver such as [2].

The theory of nested word automata offers an interesting potential as an
alternative to the low-level view of a recursive program as a stack-based device
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that defines a set of traces. A nested word expresses not only the linear order
of a trace but also the nesting of calls and returns. Regular languages of nested
words enjoy the standard properties of regular language theory, of which we
will use the closure under intersection and complement, and the decidability of
emptiness [1].

procedure m(x)

�0: if x>100

�1: res:=x-10

else

�2: xm := x+11

�3: call m

�4: xm := resm

�5: call m

�6: res := resm

�7: assert (x<=101 -> res=91)

return res

�0

�1

�2

�3

�4

�5

�6

�7

�err

call m

x>100

res:=x-10

x<=100

xm:=x+11
call m

xm:=resm

res:=resm

return ↑�3

return ↑�5

x≤101∧res �=91

Fig. 7. McCarthy’s 91 function with correctness specification given as pseudocode and
recursive control flow graph P91. The program is correct if the assert statement never
fails resp. if there is no feasible trace from the initial location �0 to the error location
�err. In a different reading, the graph presents a nested word automaton, the control
automaton P91.

Figure 7 shows an implementation of McCarthy’s 91 function,

m(x) =

{
x − 10 if x > 100
m(m(x + 11)) if x ≤ 100

together with the correctness specification (if the argument x is not greater than
101, the function returns 91).

Following [19], we present a recursive program formally as a recursive control
flow graph; see Figure 7 for an example. Each node is a program location �.
Each edge is labeled with a statement st, which is either an assignment y:=t ,
an assume ϕ , a call call p , or a return return p . We note that transitions
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labeled with return p have two predecessors. First the exit location of the called
procedure, second the location of the corresponding procedure call. In Figure 7
we label edges additionally with ↑� (reminiscent to pop transitions in a pushdown
automaton) to denote the location of the corresponding call transition.

Following [1], a nested word over an alphabet Σ is a pair (w,�) consisting
of a word w = a0 . . . an−1 over the alphabet Σ and the nesting relation � (a
binary relation between the n positions of w). We can use the nesting relation
i� j to express that i is the position of a call and j the position of the matching
return.

I0 : �

I1 : x≤100

I2 : xm ≤111 I3 : �

I4 : �

I5 : res≤x − 10I6 : resm ≤101

I7 : xm ≤101 I8 : �

I9 : x≥101

I10 : x≥101 ∧ res=x − 10I11 : resm =91

I12 : res=91

I13 : ⊥

x<=100

xm:=x+11

call m

x>100

res:=x-10

return

xm:=resm

call m

x>100

res:=x-10

return

res:=resm

x≤101∧res �=91)

Fig. 8. Error trace of P91 in Figure 7 annotated with an inductive sequence of state
assertions that prove infeasibility of this trace

In Figure 8, we present an error trace (a nested word accepted by P91) that is
infeasible. The trace is interleaved with an inductive sequence of state assertions
that proves infeasibility of this trace. The sequence of state assertions is modular
in the sense that each state assertion describes only local states of the current
calling context.
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The global state of the program can be obtained using the nesting relation of
the nested word. We call such a sequence of state assertions a sequence of nested
interpolants. A method that uses Craig interpolation to compute a sequence
of nested interpolants is presented in [11]. We note that we cannot apply Craig
interpolation directly to a nested trace, because then variables of parent contexts
may occur in the current context. Using nested interpolants and nested word
automata we can use the scheme presented in Section 2 to analyze programs
with procedures in a modular way.

5 Concurrent Programs: Alternating Finite Automata

In principle, one could apply the method developed in Section 2 to verify concur-
rent programs with shared memory. If each thread of a program is represented
as an NFA, then their Cartesian product gives an NFA which recognizes the set
of interleaved traces of the program. The challenge posed by concurrency is that
the size of this Cartesian product is exponential in the number of threads, and
the number of interleaved traces is greater still.

In [4], we propose a method for overcoming the exponential explosion prob-
lem using a novel proof system which is based on the notion of an inductive data
flow graph (iDFG). An iDFG is a data flow graph with incorporated inductive
assertions. It accounts for a set of dependencies between data operations in inter-
leaved traces. It stands as a representation for the set of traces which give rise to
these dependencies, and acts as certificate that each of these traces is infeasible.
This set of traces can be recognized by an alternating finite automaton (AFA),
enabling the reduction of the iDFG proof checking problem to a language inclu-
sion problem for AFA. This problem suffers from high worst-case complexity
(PSpace-complete), but this is vastly superior to the exponential space com-
plexity (not just in the worst case) of constructing the Cartesian product.

mi := t++

[mi ≤ s]
// critical section
s := s + 1�i,3 :

�i,2 :
�i,1 :

Thread iWe will use the Ticket mutual exclusion protocol as
an example to illustrate iDFGs. The program has two
global variables, t and s, representing a ticket counter
and service counter, respectively. We suppose that the
protocol is executed by three threads (Threads 1, 2, and
3), where each Thread i is executing the sequence of three instructions shown
to the right. The program begins in a state where s and t are both zero. To
execute the protocol, a thread first acquires its (unique ticket) and stores it in
the local variable mi (�i,1), then waits until the service counter reaches its ticket
to enter its critical section (�i,2), and then finally leaves its critical section by
incrementing the service counter (�i,3). The property we wish to prove is mutual
exclusion: no two threads may be in the critical section at the same time. We
accomplish this by proving that every trace which violates mutual exclusion is
infeasible.

One trace of the program which violates mutual exclusion (Thread 2 and
Thread 3 both end in their critical sections) is pictured (on the left hand side)
in Figure 9, along with a Hoare-style proof of its infeasibility. To its right is an
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iDFG, which represents the essence of this proof: the trace is infeasible because
Thread 3 enters its critical section when it is Thread 2’s turn to do so. The
iDFG abstracts away the details of the Hoare-style proof which are irrelevant
to this essential argument, such as the relative order between the events s++
and m3 := t++, or whether the events [m1 ≤ s] or [m2 ≤ s] occur at all. The
graph is labeled with program assertions on each edge, where each incoming
edge represents a pre-condition, and each outgoing edge a post-condition. Bifur-
cation in the graph represents pre-conditions which can potentially be achieved
in parallel. For example, consider the two incoming edges to [m3 ≤ s]: it does
not matter in which order the pre-conditions {s = 1} and {m3 > 1} are achieved;
as long as both hold when [m3 ≤ s] is executed, then the resulting state will
satisfy the post-condition {false}. The assertions are inductive in the sense that
each node corresponds to a valid Hoare triple, where the pre-condition is the
conjunction of the labels of all incoming edges, and the post-condition is the
conjunction of the labels of all outgoing edges.

Each edge in the iDFG represents a constraint on the traces which are rec-

ognized by the iDFG. For example, the edge s++
{s=1}−−−−→ [m3 ≤ s] indicates

that s++ must appear before [m3 ≤ s] in the trace, and every instruction which
appears in between must leave the assertion {s = 1} invariant. A trace is recog-
nized by the iDFG when it satisfies all of these constraints. The inductiveness
condition for the assertion labels ensures that every trace which is recognized by
the iDFG is infeasible.

A more operational view of the language of traces recognized by an iDFG can
be given by translation into an AFA. AFAs may be understood as a generalization
of nondeterministic finite automata. We may think of NFAs as having a transition
function which maps each state and letter to a disjunction of states, with the
interpretation that at least one of them must lead to an accepting state for the
input word to be accepted. AFAs generalize this by also allowing conjunctions of
states, with the interpretation that all states must lead to an accepting state for
the input word to be accepted (i.e., the transition function maps each state and
letter to a (positive) propositional formula where the propositions are states).

For any iDFG we may construct an AFA that recognizes the set of all traces
τ such that the reversal of τ is recognized by the iDFG. Each assertion in the
iDFG corresponds to a state of the AFA and each iDFG node corresponds to an
AFA transition. Since the AFA accepts the reversed language, each node in the
iDFG should be read as a backwards transition. This allows the bifurcation in
the iDFG to be interpreted using conjunction. For example, iDFG node labeled
[m3 ≤ s] indicates that starting in the state {false}, we may read the letter
[m3 ≤ s] and transition to both {s = 1} and {m3 > 1}, and must accept along
each path. More explicitly, the transition rule corresponding to this vertex is as
follows:

δ({false}, [m3 ≤ s]) = {s = 1} ∧ {m3 > 1} .

A complete iDFG proof for the 3-thread Ticket protocol is given in Figure 10.
This iDFG illustrates the need for disjunction as well as conjunction. Consider
that there are two nodes of the iDFG which are labeled [m3 ≤ s] and which
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{s = 0 ∧ t = 0}
m1 := t++

{s = 0 ∧ t = 1}
m2 := t++

{s = 0 ∧ t = 2}
m3 := t++

{s = 0 ∧ m3 > 1}
[m1 ≤ s]

{s = 0 ∧ m3 > 1}
s++

{s = 1 ∧ m3 > 1}
[m2 ≤ s]

{s = 1 ∧ m3 > 1}
[m3 ≤ s]

{false}

m1 := t++

m2 := t++

m3 := t++

[m3 ≤ s]

s++

{t = 0}

{t = 1}

{t = 2}

{m3 > 1}

{s = 0}

{s = 1}

{false}

Fig. 9. Example trace with a Hoare-style proof and iDFG proof

have {false} as a post-condition. This means that there are two transition rules
corresponding to reading the letter [m3 ≤ s] at the state {false}. The transition
rules can be combined by disjunction, yielding the following transition function:

δ({false}, [m3 ≤ s]) = ({s = 0} ∧ {m3 > 0}) ∨ ({s = 1} ∧ {m3 > 1}) .

The main appeal of iDFGs is that they are succinct proof objects for concur-
rent programs. Generalizing the Ticket example to N threads, the iDFG proof
has O(N2) vertices, while the product control flow graph has O(3N ). In [4], we
make the claim of succinctness more general and formal by defining a measure of
data complexity and showing that iDFG proofs are polynomial in this measure.
Intuitively, this succinctness is possible because iDFGs represent only the data
flow of the program, and abstract away control features that are irrelevant to
the proof. This approach shifts the burden of the exponential explosion incurred
by concurrency towards the check whether all program traces are represented,
which is an automata-theoretic problem.

6 Unbounded Parallelism: Predicate Automata

The preceding section discusses a method for attacking the problem that the
size of the automaton for a concurrent program is exponential in the number
of threads. For many programs (filesystems, device drivers, web servers, ...), the
number of threads is not statically known, or may increase without bound during
the course of the program’s execution. For such a program, the Cartesian product
is infinite (as is the alphabet of program instructions), and the set of program
traces is not a regular language. Thus, the problem of unbounded parallelism
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m1 := t++

m1 := t++

m1 := t++

{t = 0}

m2 := t++

m2 := t++

m2 := t++

{t = 0}

m3 := t++

m3 := t++

m3 := t++

{t = 0}

[m1 ≤ s]

{false}

[m1 ≤ s]

{false}

{m1 > 0}

{m1 > 1}

{m1 > 0}

{s = 0}

[m2 ≤ s]

{false}

[m2 ≤ s]

{false}

{m2 > 0}

{m2 > 1}

{m2 > 0}

{s = 0}

[m3 ≤ s]

{false}

[m3 ≤ s]

{false}

{m3 > 0}

{m3 > 1}

{m3 > 0}

{s = 0}

s++

{s = 0}
{s = 1} {s = 1} {s = 1}

Fig. 10. Complete iDFG proof for the 3-thread Ticket protocol

is not merely one of high complexity, and we must develop new technology to
address it.

In [6], we present proof spaces, a proof system which generalizes iDFGs to
allow unboundedly many threads. The proof checking problem for proof spaces
is carried out using predicate automata, which are an infinite-state (and infinite-
alphabet) generalization of alternating finite automata.

We will start by demonstrating proof spaces on a simple example. Consider a
program in which an arbitrary number of threads concurrently execute the code
below. The goal is to verify that, if g ≥ 1 holds initially, then it will always hold
(regardless of how many threads are executing).

global int g
local int x
1: x := g;
2: g := g+x;

Consider the set of the Hoare triples (a) - (d) given below.
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(a) {g ≥ 1} 〈x := g : 1〉 {x(1) ≥ 1}
(b) {g ≥ 1 ∧ x(1) ≥ 1} 〈g := g + x : 1〉 {g ≥ 1}
(c) {g ≥ 1} 〈x := g : 1〉 {g ≥ 1}
(d) {x(1) ≥ 1} 〈x := g : 2〉 {x(1) ≥ 1}

Here we use x(1) to refer to Thread 1’s copy of the local variable x, and 〈x := g : 1〉
to indicate the instruction x := g executed by Thread 1.

The question of how such Hoare triples can be generated automatically is
discussed in more detail in [6]; for our present purposes, we suppose that they
are received from an oracle. We pose the question: given a set of ordinary Hoare
triples (of the type one might expect to generate using sequential verification
techniques), what can we do with them? We consider a deductive system in
which these triples are taken as axioms, and the only rules of inference are
sequencing, symmetry, and conjunction. These rules are easily illustrated with
concrete examples:

− Sequencing composes two Hoare triples sequentially. For example, sequencing
(a) and (d) yields

(a ◦ d) {g ≥ 1} 〈x := g : 1〉〈x := g : 2〉 {x(1) ≥ 1}
− Symmetry permutes thread identifiers. For example, renaming (a) and (c)

(mapping 1 �→ 2) yields

(a’) {g ≥ 1} 〈x := g : 2〉 {x(2) ≥ 1}
(c’) {g ≥ 1} 〈x := g : 2〉 {g ≥ 1}

and, renaming (d) (mapping 1 �→ 2 and 2 �→ 1) yields

(d’) {x(2) ≥ 1} 〈x := g : 1〉 {x(2) ≥ 1}
− Conjunction composes two Hoare triples by conjoining pre- and postcondi-

tions. For example, conjoining (a’) and (c’) yields

(a’ ∧ c’) {g ≥ 1} 〈x := g : 2〉 {g ≥ 1 ∧ x(2) ≥ 1}
and conjoining (a) and (d’) yields (a ∧ d’)

{ g ≥ 1 ∧ x(2) ≥ 1 } 〈x := g : 1〉 { x(1) ≥ 1 ∧ x(2) ≥ 1 }
Naturally, the deductive system may apply inference rules to deduced Hoare

triples as well: for example, by sequencing (a’ ∧ c’) and (a ∧ d’), we get the
Hoare triple

{ g ≥ 1 } 〈x := g : 2〉〈x := g : 1〉 { x(1) ≥ 1 ∧ x(2) ≥ 1 }
A proof space is a set of valid Hoare triples which is closed under sequencing,
symmetry, and conjunction (that is, it is a theory of this deductive system). Any
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finite set of valid Hoare triples generates an infinite proof space by considering
those triples to be axioms and taking their closure under deduction; we call such
a finite set of Hoare triples a basis for the generated proof space. Fixing a pre-
condition ϕpre and a post-condition ϕpost (for instance, taking both to be g ≥ 1
for our example), a proof space can be said to recognize all of those traces τ
such that { ϕpre } τ { ϕpost } belongs to the space.

As with iDFGs, we can give a more operational view of the traces recognized
by a proof space using automata. For this purpose, we developed the notion
of predicate automata (PA), an infinite-state, infinite-alphabet generalization
of alternating finite automata (closely related to alternating register automata
[3,7,15,17]). If one conceives of alternating finite automata as the automata of
propositional logic, then predicate automata may be thought of as the automata
for first-order logic. A PA A is equipped with a finite vocabulary of predicates,
and its states are propositions over this vocabulary (i.e., if p is a binary predicate
symbol of A, then p(1, 2) is a state of A). The transition function of a PA
maps each predicate symbol and letter to a positive Boolean formula over its
vocabulary. For example, the transition

δ(p(i, j), a : k) = (p(i, j) ∧ i �= k) ∨ (q(i) ∧ q(j) ∧ i = k)

indicates that, if the PA is at state p(1, 2) and reads a : 2, then it transitions to
p(1, 2); if it then reads a : 1, then it transitions to both the state q(1) and q(2)..

From a finite basis B of Hoare triples, we may construct a predicate automa-
ton which recognizes the same traces as the proof space generated by B. Each
n-thread assertion which appears in the basis corresponds to an n-ary predicate,
and each Hoare triple in the basis corresponds to a transition. For example, the
Hoare triple (b) corresponds to the PA transition

δ({g ≥ 1}, g := g + x : k) = {g ≥ 1} ∧ {x(k) ≥ 1}

(where {g ≥ 1} is a nullary predicate and {x(k) ≥ 1} is a unary predicate).
The proof checking problem for proof spaces reduces to the inclusion prob-

lem for PA. Although this problem is undecidable in general, [6] gives a semi-
algorithm which is a decision procedure for the special case of PAs where each
predicate symbol in its vocabulary has arity at most one.

7 Proofs that Count: Petri Nets

Consider the program that consists of an arbitrary number of threads whose
control flow graph is pictured below. The (global) integer variables s and t are
initially 0. The task is to automatically construct a proof that the error location
�error is unreachable (i.e., the program satisfies the specification s = t = 0/false).
This deceptively simple property is surprisingly difficult to prove correct using
automated techniques.
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t++

assume(s >= t)

�0

�1

�error�2

s++

We illustrate the difficulty of proving this example by informally applying
the technique from Section 2. We begin by sampling an error trace from the
program, say (a trace that involves two threads)

τ = t++; t++; s++; assume(s >= t)

A correctness proof for τ is a sequence of intermediate assertions, shown below
in Figure 11(a). We may generalize the proof to apply to a language of traces,
as shown in the NFA in Figure 11(b).

t++ s++{0 = t− s} {1 = t− s} {2 = t− s} {false}t++ assume(s>=t){1 = t− s}

s++

t++
t++

assume(s>=t)

false

1 = t− s 2 = t− s0 = t− s

(a)

(b)

Fig. 11. Proof for the sample trace τ

This automaton does not yet accept every trace of the program. We could
continue by sampling a new trace, for instance

τ ′ = t++; t++; t++; s++; assume(s >= t),

but it is already clear that this strategy is doomed to fail. There is no regular
language which contains all the program traces and which does not contain
incorrect traces. Similarly, there is no finitely-generated proof space which proves
the correctness of every trace.

A counting argument (in the context of formal methods) is a program proof
that makes use of one or more counters, which are not part of the program itself,
but which are useful for abstracting program behavior. One informal argument
for correctness is as follows: a global, inductive invariant for this program is that
the number of threads at line �1 (i.e., after executing t++ but before executing
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s++), let us call this k, is equal to the difference t − s. Since the number of
threads at line �1 is non-negative, we must always have s ≤ t, and �error must
be unreachable. This counting argument is clear and simple to our human intu-
ition, but how can we take this intuition and formalize it into a mechanically
constructed proof ? This question was investigated and answered in [5].

t++/inc

s++/dec
assume(s>=t)/tst

{
false

}

{
k = t− s

} q0

q1 Σ/nop

Our solution to this problem is pictured to the
right. This counting proof consists of a count-
ing automaton A (a kind of restricted counter
machine) paired with an annotation ϕ mapping
the states of A to assertions. The counting
automaton A is a finite automaton equipped with
a N-valued counter denoted k (initially 0). Each
transition of the automaton is equipped with an
action for k, which may be inc (increment the
counter), dec (decrement, but block unless the
counter is ≥ 1), tst (block unless the counter is ≥ 1), or nop (do nothing). The
annotation ϕ associates with each state of this automaton a formula over the
program variables and the counter variable k. This annotation is inductive in the
sense that each transition is associated with a valid Hoare triple: for example,

{k = t − s} t++; k++ {k = t − s}
{k = t − s} s++; k-- {k = t − s}
{k = t − s} assume(s>=t); assume(k≥1) {false}

A trace is accepted by A if it labels a path from q0 (the initial state) to
q1 (the final state), and none of the counter actions block. Every trace which
is accepted by A is associated with a sequence of assertions (thus proving its
correctness). This sequence is obtained from the accepting run of A by taking,
for each position in the run, the assertion at the current state with k replaced
by its current value. For example, the proof for the trace τ above is as follows:

t++ s++

{0 = t− s} {1 = t− s} {2 = t− s} {false}

q0, k = 0 q0, k = 1 q0, k = 2
inc dec

t++ assume(s>=t)

inc
q0, k = 1

{1 = t− s}

tst
q1, k = 1

This counting proof works not only for the trace τ , but for every trace of the
program (that is, the proof is enough to show that �error is unreachable). The
key to this proof is the use of the counter variable k, which counts the number
of t++ statements in excess of s++ statements along a trace. Using this auxiliary
counter allows us to make a simple, succinct argument for the correctness of this
program.

The essential idea for constructing counting proofs is to encode the problem
as an SMT query. Our encoding requires us to specify the “size” of the candidate
proof to find (e.g., the number of states that may be used), and will always suc-
ceed if a proof of that size exists. The main insight behind our proof construction
procedure is that by looking for small proofs, we can force an SMT solver to
synthesize nontrivial counting arguments. For example, we can force an SMT
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t++ s++assume(s >= t)

q0

k
q1

Σ

t++

assume(s >= t)

p0

p1

p2p3

s++

(a) Control flow net of the program
(b) Petri net equivalent to
counting automaton proof

Fig. 12. The language of Petri net (a) is included in the language of the deterministic
Petri net (b)

solver to “discover” the need to count the number of t++ statements in excess of
s++ statements in the proof above completely automatically, simply by asking
for a proof with 2 states.

The idea behind proof checking is based on the observation that counting
automata can be converted into deterministic labeled Petri nets (Figure 12(b)).
Similarly, the language of program traces can be represented by a Petri net
(Figure 12(a)). The final step of the correctness argument is performed by show-
ing that the language of the Petri net for the program is included in the language
of the deterministic Petri net for the counting automaton, a problem which is
known to be decidable.

8 Conclusion

We have described several instances of a new approach to program verification
which constructs and checks automata. We have shown that, in order to instan-
tiate the approach for a specific verification problem, one has to come up with
the appropriate notion of automaton, one has to define the construction of an
automaton from the proof of a sequence of statements (i.e., a trace), one has to
define the program automaton which recognizes the set of error traces, and one
has to present an algorithm for solving the corresponding automata inclusion
problem.

There are several interesting verification problems (timed systems, hybrid
systems, game-theoretic properties, termination for unbounded parallelism, . . . )
where the question whether an appropriate notion of automaton exists, is still
open and we do not know whether the approach can be instantiated.

Conversely, given a notion of automaton, one may ask whether there exists a
verification problem for which this notion may be useful. For example, in some
restricted cases in Section 5 it may be useful to define the denotation of an iDFG
as a set of trees and replace alternating finite automata by tree automata.
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An obvious topic for future research is the scalability of the automata oper-
ations used in the approach: the check of automata inclusion, minimization for
the incremental construction of the difference automaton, etc.

Finally, the construction of an automaton from the proof of a sequence of
statements may be interesting in settings other than verification. For example,
given a failed test for a program with a bug, we can again construct an automaton
and use the automaton for the diagnosis of the bug [20].
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