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Abstract. We investigate how word prominence can be detected from
the acoustic signal and movements of the speaker’s head and mouth. Our
research is based on a corpus with 12 English speakers which contains in
addition to the speech signal also videos of the talker’s head. To extract
the word prominence information we use on one hand functionals calcu-
lated on the features and on the other hand Functional PCA (FPCA) to
extract information from the contours. Combining the functionals and
the contour information we obtain a discrimination accuracy between
prominent and non-prominent words of 81 %. We show in particular that
the visual channel is very informative for some speakers. Furthermore,
we also introduce a system which extracts the prominence information
online while a user is interacting with the system. The online system
only uses acoustic information.
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1 Introduction

Spoken language is much more than the words we say. It comprises also infor-
mation on the speaker’s traits and states as personality and emotional state
[9,36,37]. A truly natural interaction with an artificial agent, be it a virtual
agent or a robot, requires that the agent is able to recognize and synthesize all
of these aspects of human communication. Many efforts have been done to equip
agents with the abilities to infer and produce different affective states [8,35]. In
addition to its affective dimension the prosody of a sentence modulates its mean-
ing (e. g. from a statement to a question) or the relevance the different words
have for the speaker in the utterance (e. g. wide vs. narrow focus). The necessity
of incorporating these dimensions in the speech synthesis process has well been
accepted. Yet on the analysis side much less effort has been spent, in particular
when looking on the multimodal aspects of prosody. Words which are strongly
emphasized by the speaker and hence are perceived as very prominent by the
listener frequently indicate a correction after a misunderstanding [41]. Endowing
a machine with the capabilities to use this information is the target of our and
previous research [26,27]. These words are also visually prominent, i. e. when
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only observing and not acoutically listening to the speaker [2,5,16,29,40]. Pre-
viously algorithms have been developed to detect these prominent words from
the acoustic signal [26,27,33]. In [17] we presented an approach which also inte-
grates information on the speaker’s head and mouth movement to detect promi-
nent words. In this paper we extend our approach on one hand by including a
model for the representation of prosodic contours over time, namely Functional
Principal Component Analysis (FPCA). On the other hand we also present an
online system which is able to detect the prominent words in a real-time interac-
tion with the user. For the moment the online system only relies on the acoustic
channel.

In the next section we introduce the dataset we used for our experiments and
training of the online system. We describe the different features extracted from
the acoustic and visual channel and in particular the contour modeling in Sect. 3
Following this Sect. 4 will present the results of the classification experiments
and Sect. 5 will discuss them. After that we will introduce the online system in
Sect. 6. Then we will give a conclusion in Sect. 7.

2 Dataset

Our target scenario is the detection of corrected words via prosodic cues while a
human is interacting with an agent. To simulate this we recorded subjects inter-
acting via speech in a Wizard of Oz experiment with a computer in a small game
where they moved tiles to uncover a cartoon [17]. This game yielded utterances
of the form ‘place green in B one’. Occasionally, a misunderstanding of one word
of the sequence was triggered and the corresponding word highlighted, verbally
and visually. The subjects were told to repeat in these cases the phrase as they
would do with a human, i. e. emphasizing the previously misunderstood word.
However, they were not allowed to deviate from the sentence grammar by e. g.
beginning with ‘No’. This was expected to create a narrow focus condition (in
contrast to the broad focus condition of the original utterance) and thereby mak-
ing the corrected word highly prominent. The system interacted with the user
via verbal feedback using the FESTIVAL speech synthesis system [6], pictures of
a cartoon robot performing certain gestures, and visually highlighting different
parts of the game. In total 16 native English speaking subjects were recorded
[18]. The audio signal was originally sampled at 48 kHz and later downsampled
to 16 kHz. For the video images a CCD camera with a resolution of 1280 × 1024
pixel and a frame rate of 25 Hz was used.

We trained HTK [43] on the Grid Corpus [12] followed by a speaker adapta-
tion with a Maximum Likelihood Linear Regression (MLLR) step with a subse-
quent Maximum A-Posteriori (MAP) step to perform a forced alignment of the
data. This forced alignment provides a temporal annotation of the data and is
used in the following to determine the boundaries of the different words. Thereby
we used a combination of RASTA-PLP and spectro-temporal HIST features [19]
as this gave upon visual inspection better results than either of the feature sets
alone or MFCC features.
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Three human annotators annotated the recorded data with 4 levels of promi-
nence for each word. We calculated the inter-annotator agreement with Fleiss’
kappa κ. While doing so we binarized the annotations, i. e. only differentiating
between prominent and non-prominent. We tested different binarizations and
used the one where the agreement between all annotators was highest. Next, we
calculated κ for each speaker individually. We then discarded all speakers where
κ for the optimal binary annotation was below 0.5 (0.4 < κ ≤ 0.6 is usually
considered as moderate agreement). We have chosen such a rather low threshold
to retain as many speakers as possible. This yields 12 speakers, 6 females and
6 males. For further processing those turns where the original utterance and a
correction were available were selected. Overall we have 2023 turn pairs (origi-
nal utterance + correction), i. e. on average ≈160 turn pairs per speaker. From
these the word which was emphasized in the correction was determined. Then it
was extracted as well in the original utterance as in the correction. This yields
a dataset with each individual word taken from a broad and a narrow focus
condition.

3 Features

We extracted different features from the acoustic and visual channel to capture
the prosodic variations.

3.1 Acoustic Features

Since we expected the loudness l to better capture the perceptual correlates of
prominence than the energy, we extracted it by filtering the signal with an 11th
order IIR filter as described in [1], followed by the calculation of the instanta-
neous energy, smoothing with a low pass filter with a cut-off frequency of 10Hz,
and conversion into dB. Furthermore, we calculated D, the duration of the word
and the gaps before and after the word as determined from the forced alignment.
We also extracted the fundamental frequency f0 (following [21]), interpolated
values in the unvoiced regions via cubic splines and converted the results to
semitones. To detect voicing we used an extension of the algorithm described
in [24]. Finally, we also determined the spectral emphasis SE, i. e. the difference
between the overall signal energy and the energy in a dynamically low-pass-
filtered signal with a cut-off frequency of 1.5f0 [22].

3.2 Visual Features

To extract features from the visual channel we used the OpenCV library [7].
By its help we detected the nose in each image. Based on this we developed a
tracking algorithm which yields the nose position over time. The nose does not
move much during articulation relative to the head and is hence well suited to
measure the rigid head movements. Starting from the nose we can determine
the mouth region in the image via a fixed speaker independent offset from the
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nose. On each subsampled mouth image of size 100 × 100 pixels we calculated a
two-dimensional Discrete Cosine Transform (DCT). Out of the 10000 coefficients
per image we selected the 20 with the lowest spatial frequencies.

3.3 Functionals

Functionals are commonly extracted from the (acoustic) features to detect promi-
nent words [26,27,33] or perform prosodic analysis in general [15]. We extracted
the mean, max, min, spread (max-min) and variance along the word. Hereby
word boundaries were determined by the forced alignment. Prior to the calcual-
tion of the functionals and the contour modeling detailed in the next section we
normalized the prosodic features by their utterance mean and calculated their
first and second derivative (except for duration).

3.4 Contour Modeling via Functional Principal Component Analyis

To capture all the information in the feature and to be more tolerant against
noise a more holistic representation than functionals based on contours is promis-
ing. Different approaches have been proposed to exploit this contour information
as e. g. the extraction of plateaus [42], approximation with Legendre polynomi-
als [23], stylizations of pitch contours with line segments [38], the calculation of
the DCT from the contour [15] and in [18] we proposed to use a probabilistic
parabola fitting to the contour. Very recently the Functional Principal Compo-
nent Analysis (FPCA) has been proposed to discriminate emotional from neutral
speech [4]. As the results obtained by the FPCA looked promising we opted to
also apply it to the task of word prominence detection.

Functional data analysis is a branch of statistics which operates on curves
or functions instead to data points [3,28,32]. The first step in FPCA is the
smoothing of the data. This transforms discrete-time contour data defined only
for n = 1 . . . N to functions which are defined for all time instances t:

x∗(t) =
K∑

k=1

ckξk(t) , (1)

where the ξk are the new base functions and the coefficients ck determine their
weight. By choosing the number of bases K one can obtain a trade-off between
smoothing of undesired fluctuations and retaining fine details. The coefficients
ck are determined in a minimum error sense. The calculation is controlled by a
penalty parameter λ balancing fitting error and roughness of the curve. Similar to
standard PCA, in the next step we calculate a new orthonormal basis ϕ(t) using
PCA in the functions domain. Assuming zero mean for x∗(t) the projections of
the smoothed input segment x∗(t) onto this new basis, also termed Principal
Components, is:

yu =
∫

ϕu(t)x∗(t)dt. (2)
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Table 1. Unweighted accuracies in % averaged over all 12 speakers. See the text
for the meaning of the feature name and modeling abbreviations. A+V represents
audio and video features combined. The asterisk indicates values which are statistically
significantly better than using the functionals only for the given feature combination
(α = 5 %).

l f0 Nose DCT Audio Video A+V

Functionals 71.6 76.1 67.1 69.4 79.0 69.7 79.3

FPCA 71.6 76.6 67.0 68.4 79.7 71.2 78.9

Functionals+FPCA 72.8∗ 77.8∗ 67.7 70.2 80.7∗ 71.2∗ 80.4∗

The function x∗(t) is then reconstructed using the U basis functions:

x̂∗(t) =
U∑

u=1

yuϕu(t) . (3)

We retain the projections yu as coefficients describing the contour segment.
To calculate the FPCA we first linearly interpolated all segments on an equally
spaced grid using B-splines. Due to the different feature rates in the acoustic
(100Hz) and visual (25Hz) channel we used 30 and 10 points respectively. All
steps for the FPCA were performed with the Matlab toolbox retrieved from [31].
We retained 10 coefficients for each dimension for the acoustic features and 7 for
the visual ones along the time axis. The transformations were learned using all
the data of one speaker.

4 Results

To discriminate prominent from non-prominent words we used a Support Vector
Machine (SVM) with a Radial Basis Function Kernel implemented in LibSVM
[11]. For each feature combination a grid search for C, the penalty parameter
of the error term, and γ, the variance scaling factor of the basis function, was
performed using the whole dataset. Prior to the grid search the data was nor-
malized to the range [−1 . . . 1]. With the found optimal parameters we trained
an SVM on 75% of the data and tested on the remaining 25%. Hereby a 30 fold
cross validation in which the data set was always split such that an identical
number of elements is taken from both classes was run. To establish the 30 sets
a sampling with replacement strategy was applied. This process was performed
individually for each speaker.

As features we investigated loudness (l), f0, the 2D nose position, the DCT
calculated from the mouth region, the combination of all acoustic features, i. e. l,
f0, SE and duration, the combination of all visual features, i. e. nose and mouth
DCT, and the combination of the acoustic and visual features. Table 1 shows the
results averaged over all 12 speakers. For each of these feature sets we calculated
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Fig. 1. Unweighted accuracies for different feature combinations (A represents results
obtained from audio only, V from video only and A+V from the combination of audio
and video). Each colored line indicates results for an individual speaker. The thin
horizontal line on top visualizes the variance of the 30-fold cross-validation. An asterisk
indicates a statistically significantly better result of the combination of A+V compared
to A alone (α = 5 %). The thick grey bar in the background depicts the mean over all
speakers (Color figure online).

the unweighted accuracy when using only the functionals, the FPCA contour
models or a combination of both.

As can be seen from Table 1 f0 is clearly the strongest feature. The loudness
l also performs quite well. For all feature sets the combination of the FPCA
contour models with the funtionals yields equal or better results than either one
alone. Cases where the difference is statistically significant are highlighted with
an asterisk in Table 1.

In Fig. 1 results when using funtionals and FPCA are detailed for each
speaker. As can be seen the nose and mouth DCT features perform well above
chance level for all speakers. Figure 1 further shows that despite the decrease in
performance on average when combining visual and acoustic features there is a
strong gain from the visual features for some speakers.

5 Discussion

The results showed that the inclusion of prosodic contour models calculated via
FPCA is in general beneficial for the detection of word prominence. They show
in particular that not only the f0 and energy contours carry important informa-
tion but also the nose, resp. the head, movements and the evolution of the DCT
coefficients calculated from the mouth region over time. As best results when
looking on head movements (i. e. nose) only we obtain 67.7% correct. When con-
sidering only the mouth movements (i. e. mouth DCT) we obtain 70.2%. The
best score we see when combining all visual features is 71.2%. This is similar
to the individual acoustic features but clearly inferior to the combination of all
acoustic features. The overall best result we obtain with 80.7% uses a combina-
tion of functionals and FPCA contour models of the acoustic features. A more
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detailed analysis of the visual and audio-visual results revealed that there is a
large variation from speaker to speaker. These variations seem to be very indi-
vidual as we found in [18] that a grouping of the speakers based on the accuracies
obtained with the different acoustic features (e. g. fundamental frequency, energy
or duration) did not yield consistent groups. With the current data we see most
notably that for some speakers the visual channel improves results yet for others
it deteriorates them. The nose movement yields for all speakers accuracies well
above chance level (57.9% for the worst speaker and 67.7% on average). For two
speakers we see more than 80% correct when looking on the nose movements
only. It has previously been shown that the nose, resp. rigid head, movement
differs between prominent and non-prominent words, even though there was no
consensus if this is the case for all speakers [13,14,16]. In our previous work
on the same dataset we also only saw accuarcies above chance level for some
speakers [18]. Yet due to the improved visual feature extraction we now see it
for all speakers and in particular are able to quantify the information content
via our recognition experiments, at least to some extend. When we combine the
nose movements with the mouth features we obtain 91.5% correct for one indi-
vidual speaker. This is also the one speaker where we observe very significant
improvements from the combination of the acoustic and visual channel (87.4%
vs. 92.6%). In total we see similar improvements from the combination of visual
and acoustic features for 4 speakers. However, averaged over all speakers results
are inferior to using the acoustic features alone. We think that with further
improvements on the extraction of the visual features they will show beneficial
in general when combined with acoustic features.

6 Online System

It is well known that users change their speaking style when talking to a machine
as compared to when talking to a human [39]. Whereas they usually use a rich
intonation when they talk to humans, they talk with a rather flat and monoto-
nous voice to a machine. Currently we are integrating the different aspects we
presented above in an online system. Such an online integration will allow us to
investigate how users adapt to a system which is sensitive to prosodic variations.
They might adapt to a speaking style as they would apply when talking to a
human. Yet they might as well adapt to an exaggerated style which can better
be decoded by a machine able to extract prosodic variations but not with the
same aptness as a human.

So far our online system only extracts acoustic prosodic features. It comprises
speech recognition, prosodic feature extraction, prosodic functionals calculation,
word prominence labeling and visual feedback to the user. The speech recogni-
tion module decodes what the user has said and performs a word level tempo-
ral alignment which is required for the calculation of the prosodic functionals.
We decided to use the HARK system developed at Honda Research Institute
Japan together with Kyoto University to perform speech recognition [30]. The
HARK system enables multi-channel speech enhancement and features the com-
munication with the Julius speech recognition system via TCP/IP sockets [25].
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We extended Julius with the possibility to communicate the recognition results
and the temporal alignments also via TCP/IP to our RTBOS middelware
which allows the component-based development of real-time systems [10]. We
perform all remaining steps in our RTBOS framework which in particular allows
a flexible distribution of processing modules to threads. For the extraction of the
fundamental frequency we use the online implementation of our pitch tracking
algorithm detailed in [20]. The extraction of the remaining acoustic features and
the calculation of the functionals is straight forward. We have not yet integrated
the contour modeling in the online system. For the word prominence labeling we
also use in the online system the LibSVM [11].

7 Conclusion

In this paper we demonstrated on one hand how modeling the prosodic contours
via FPCA can improve the detection of prominent words. On the other hand
we also showed that for some speakers the visual channel can be efficiently used
to detect prominent words. In particular we obtained from the head movements
alone accuracies clearly above chance level for all speakers. Next we will extend
the level of context available to the system by integrating the contour modeling
with a decoding of the word sequence [34]. Furthermore, we will investigate how
users adapt to a system capable of processing word prominence.
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