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Abstract. This study quantifies the tradeoff associated with alternative
physical representations of a social graph for processing interactive social
networking actions. We conduct this evaluation using a graph data store
named Neo4j deployed in a client-server (REST) architecture using the
BG benchmark. In addition to the average response time of a design,
we quantify its SOAR defined as the highest observed throughput given
the following service level agreement: 95 % of actions to observe a response
time of 100ms or faster. For an action such as computing the shortest
distance between two members, we observe a tradeoff between speed and
accuracy of the computed result. With this action, a relational data design
provides a significantly faster response time than a graph design. The
graph designs provide a higher SoOAR than a relational one when the social
graph includes large member profile images stored in the data store.

1 Introduction

A graph database provides an intuitive representation of a social graph. It sup-
ports vertices that may represent members and edges that may represent a rela-
tionship such as friendship between two members. Queries may filter vertices of
interest and navigate edges to retrieve relevant data. Updates may insert and
delete a vertex, add and remove edges between vertices, and change the property
value of edges and vertices. Facebook’s TAO [1] is an example graph data store
that serves a social graph to hundreds of millions of users on a daily basis.

One may represent a social graph using different physical graph representa-
tions. To illustrate, consider the friendship relationship between two members A
and B. It may start with one member, say Member A, extending a friend invitation
to Member B. And, Member B accepting this invitation. Two physical represen-
tations, termed Labeled and Distinct, are as follows. With Labeled, the friendship
edge between Member A and B is assigned a value to identify it as a friendship invi-
tation. Once Member B accepts A’s invitation, the value of this edge changes to
denote a confirmed friendship. With Distinct, there are two types of edges, one for
a pending friend invitation and a second for a confirmed friendship. When Member
B accepts A’s invitation, the system deletes the edge corresponding to the friend
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invitation and creates a confirmed friendship edge between them. This design cre-
ates and deletes edges more frequently than the Labeled design.

A research topic is what are the tradeoff associated with these alternative
designs for different workloads? And, how do they compare with data stores
that implement a different data model such as relational database management
systems (RDBMSs)? To investigate these research topics, we had a choice of
benchmarks including BG [6,7,14], LinkBench [4], LDBC [2,11], or a micro-
benchmark such as [3,16]. After a careful analysis, we decided to use BG for
two reasons. First, BG is a stateful benchmark that quantifies both the average
response time of a data store and its throughput given a pre-specified service
level agreement (SLA). The latter is termed Social Action Rating, SoAR [7],
and is similar to the tps rating! defined by the TPC-C benchmark [12,15]. As
reported in Sect.4, an RDBMS may provide an average response time that is
faster than Neo4j for some actions while Neo4j outperforms the RDBMS when
considering SoAR with certain database settings. Second, BG quantifies the
amount of stale, inconsistent, or invalid data (collectively, termed unpredictable
data [7,8]) produced by a data store. This is useful because certain social net-
working actions such as computing the shortest distance between two members
may utilize heuristic search techniques that do not produce correct results, see
discussions of Fig.4 in Sect. 3.

The primary contribution of this study are two folds. First, it identifies
four physical graph data designs for processing interactive social networking
actions, see Fig.3. Second, it evaluates these designs using the Neo4j [22] data
store and the BG benchmark. This includes extensions of BG with the follow-
ing three graph oriented actions: Get Shortest Distance, List Common Friends,
and List Friends-of-Friends. The main findings of our evaluation are as follows.
The Distinct physical graph design provides a superior performance when com-
pared with the Labeled design. With the three new graph oriented actions, an
industrial strength relational database management system (SQL-X) provides
faster response times than Neo4j configured with a variant of the Distinct design
named StoredDistinct (see description of Fig. 3 for details). One reason for this
is the normalization guideline of the relational data model that represents a
many-to-many friendship relationship as a table. This enables the graph ori-
ented actions to fetch a smaller amount of data from a single table to provide
faster response times. With a workload consisting of a mix of actions, SQL-X
provides a higher SoAR than Neo4j when the social graph consists of no images.
When large profile images are stored in SQL-X, Neo4j provides a higher SoAR
than SQL-X.

The rest of this paper is organized as follows. We survey the related work in
Sect. 2. Section 3 describes an implementation of the BG benchmark using Neo4j,
detailing four physical graph data designs and their performance characteristics for
different mix of actions. Section 4 quantifies the tradeoffs associated with a graph
and arelational data design. Our future research directions are contained in Sect. 5.

! SoAR is different than tps in that the SLA can be changed depending on the require-
ments of an application while TPC-C’s specified SLA is fixed.
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2 Related Work

Evaluation of graph data stores has been a subject of active research during the
past few years. The average response time of different actions of a microbench-
mark is presented in [3] to compare two graph databases (Neo4j and Dex) with
a RDF store (RDF-3X) and two relational database management systems (Post-
greSQL and Virtuoso). Similarly, in [16], the response time of several social net-
working actions is used to compare the performance of alternative graph query
languages using Neodj with Java Persistent API (JPA) using the MySQL rela-
tional database management system. Both studies consider Neo4j deployed in
either embedded or a client-server (REST) mode.

This study is different than [3,16] along two dimensions. First, we focus on
Neodj Cypher REST to investigate the alternative physical designs of a social
graph, see the taxonomy of Fig. 2 and its discussion in Sect. 3.1. Second, we use
the BG benchmark to analyze both the average response time and SoAR of the
different designs. This analysis includes both read and write actions. (Both [3,16]
focus on read actions only.) A key findining is that a design that provides a
high performance with infrequent write actions may not perform well when the
frequency of write actions is higher, see Table4 and its discussion in Sect. 3.2.
A novel feature of BG is its ability to quantify the amount of erroneous data
produced by a data store. We use this capability of BG to show that one may
trade performance for accuracy of results with an action such as Get Shortest
Distance. To the best of our knowledge, these findings are novel and have not
been presented else where.

3 BG Benchmark and Its Implementation Using Neo4j

Figure 1 shows the conceptual design of BG’s social graph used for this evalua-
tion. (See [6,7,9] for a comprehensive description of BG.) The Members entity
set contains those users with a registered profile. It consists of a unique identi-
fier and a fixed number of string attributes?. One may configure BG to create
a social graph with or without images. In this paper, we consider both possi-
bilities. With images, all experimental results are obtained using a social graph
configured with a 2 KB thumbnail image and a 12 KB profile image. Thumbnail
images are displayed when listing friends of a member and the higher resolu-
tion profile image is displayed when a member visits a profile. A member may
extend a friend invitation to another member or be friends with a member, rep-
resented using “Invite” and “Friend” relationship sets, respectively. A resource
may pertain to an image, a posted question, a technical manuscript, etc. These
entities are captured in one set named “Resources”. In order for a resource to
exist, a member must “Own” that resource. A member may post a resource,
say an image, on the profile of another member, represented as a “Posted on”
relationship between two members and a resource. A member may comment on
a resource. This is implemented using the “Manipulation” relationship set.

2 The size of these attributes is configurable [6].
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Fig. 1. BG benchmark’s conceptual schema.

BG uses a closed emulation model to generate a workload of actions for a data
store. With this model, a thread emulates a Member A who performs an action
on another member or resource. This member who is performing the action is
termed a socialite. A thread does not emulate another socialite until the pending
action of the current socialite is processed. BG controls the load imposed on a
data store by varying the number of threads used to emulate concurrent socialites
performing actions, see [6,7] for details.

Figure 2 shows four different graph representations of this conceptual data
model. We describe these alternatives when presenting the different actions
that constitute the core of BG’s workload. This discussion presents the aver-
age response time (RT) and Social Action Rating (SoAR) of the alternative
graph models using a single node Neo4j deployment. RT is quantified with BG
emulating a single socialite issuing a mix of actions by issuing one action at a
time. It is the average amount of time elapsed from when a socialite issues a
request to the time Neo4j completes servicing the request. SOAR is the highest
throughput observed with a service level agreement (SLA) that requires 95 % of
actions to observe a response time of 100 ms or faster with no stale data.

The target hardware platform consists of two PCs connected using a Gigabit
switch. Each PC consists of an i7-4770 processor, 16 GB of memory, one TB of
disk storage, and a Gigabit networking card. The operating system of each PC
is a 64 bit Windows 2012 Server. The version of Neod4j server is 2.0.1 and we
used Neo4j’s Cypher? query language to implement the Client that performs the
interactive social networking actions (termed BGClient). All experiments assume
a social graph consisting of 100,000 members with 100 friends per member (¢)
and 100 resources per member (p).

We classify BG’s actions into read and write. Below, we present them in turn.

3 Cypher is a declarative language similar to SQL.
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Fig. 2. Four physical graph representations of BG’s database.

3.1 BG’s Read Actions

BG’s actions and their graph implementation are as follows. First, the View
Profile (VP) action emulates a Socialite with member id A visiting the profile
of a member with id U,.. BG generates A and U, as input to VP. A may equal
U,, emulating a socialite referencing her own profile. The output of VP is the
profile information of U,., including U,.’s attributes and the following two simple
analytics: U,’s number of friends and number of posted resources on her wall.
If the socialite is referencing her own profile (A equals U,.) then VP retrieves a
third simple analytic, U,’s number of pending friend invitations.

The observed system performance with the VP action depends on the phys-
ical representation of the graph database. Figure3 shows four different phys-
ical representations using a two dimensional quad, see also Fig.2. The two
dimensions correspond to the alternative representations of the simple analytics
and friendship. One may implement the simple analytics using a Cypher query
that computes the required value every time, see the first column of Table 2.



18 S. Ghandeharizadeh et al.

)
2 g| Compute Stored
o & B | Distinct Distinct
= O
(%]
e
c
g -
= < &| Compute Stored
2 0| Labeled Labeled
-
Compute Stored
Analytics

Fig. 3. Four physical graph designs.

Table 1. RT, in milliseconds, for the alternative physical graph representations using
Neo4j with a 100K social graph, ¢ = 100 friends per member, p = 100 resources per
member.

ComputeLabeled | ComputeDistinct | StoredLabeled | StoredDistinct
View Profile (VP) | 308 93 12 8
List Friend (LF) |435 293 520 313

Alternatively, one may store the value of these simple analytics and update
them in the presence of write actions, enabling the VP action to simply look
up the stored value, see the last column of Table2. These two alternatives are
termed? Compute and Stored, respectively.

With the friendship relationship, one may represent pending friend invita-
tions and the confirmed friendships as unique edges (relationships) independent
of one another. This design is termed Distinct friendship. Alternatively, one may
represent both as one edge and label the edge to identify either a pending invi-
tation or a confirmed friendship. This design is termed Labeled friendship. These
two alternatives constitute the rows of Fig. 3, resulting in four physical graph
designs shown in the quad.

The first row of Table 1 shows the average response time, RT, observed with
the alternative designs for the VP action. The StoredDistinct is clearly the fastest
of the alternatives. Its SOAR with VP is more than twice higher than Compute,
see the first row of Table4.

The List Friend (LF) action of BG emulates a socialite A viewing member
U,’s list of friends. Similar to the discussion of VP, A may equal to U, emulating

4 They are termed Basic and Manual in [10] with a relational and JSON representation
of BG social graph.
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Table 2. Cypher queries that implement the View Profile action with four different
data models.

Data Model Query

ComputeLabeled |a. MATCH (u: ‘Members’)-[f: ‘Friend’]-(uu: ‘Members’)
WHERE u.userid=profileOwnerID AND f.status=Confirmed
RETURN COUNT (uu) AS total

b. MATCH (u: ‘Members’)<-[f:‘Friend’]-(uu: ‘Members’)
WHERE u.userid=profileOwnerID AND f.status=Pending
RETURN COUNT (uu) AS total

c. MATCH (u: ‘Members’)<-[c: ‘Postedon’]- (r:‘Resources’)
WHERE u.userid=profileOwnerID RETURN COUNT(r) AS total

d. MATCH (u: ‘Members’) WHERE u.userid = profileOwnerID
RETURN u.userid, u.username, u.lname, u.fname,
u.gender, u.dob, u.jdate, u.ldate, u.address,

u.email, u.tel, u.pic

ComputeDistinct |a. MATCH (u: ‘Members’)-[f: ‘Friend’]-(uu: ‘Members’)
WHERE u.userid=profileOwnerID
RETURN COUNT (uu) AS total

b. MATCH (u: ‘Members’)<-[f:‘Invite’]-(uu: ‘Members’)
WHERE u.userid= profileOwnerID
RETURN COUNT (uu) AS total

c. MATCH (u: ‘Members’)<-[c: ‘Postedon’]-(r: ‘Resources’)
WHERE u.userid= profileOwnerID
RETURN COUNT(r) AS total

d. MATCH (u: ‘Members’) WHERE u.userid = profileOwnerID
RETURN u.userid, u.username, u.lname, u.address, u.gender,

u.dob, u.jdate, u.ldate, u.fname, u.email, u.tel, u.pic

StoredLabeled/ |MATCH (u:‘Members’) WHERE u.userid = profileOwnerID
StoredDistinct RETURN u.userid, u.username, u.lname, u.fname, u.gender,

u.dob, u.jdate, u.ldate, u.address, u.email, u.tel,

u.friendsCount, u.pendingfCount, u.resourcesCount, u.pic
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the socialite viewing her own list of friends. LF retrieves the profile information
of each friend including their thumbnail image and excluding their profile image.
We implement LF using the following Cypher query: MATCH (ul:Members)-
[f:Friend] - (u2:Members) WHERE ul.userid = U, AND f. status=Confirmed
RETURN u2.userid, u2.username, u2.fname, u2.lname, ..., u2.thumbnail.

Table 1 shows representation of a friendship as a distinct edge is faster than
using labeled edges. With the latter, the query must incur the additional over-
head of examining the value of each label (pending versus confirmed friendship)
to process the LF action. However, the alternative designs provide comparable
SoAR, see the second row of Table4.

The Get Shortest Distance (GSD) action of BG computes the distance bet-
ween two members in the social graph. If these two members are the same user
then their shortest path is zero. If they are friends then their shortest path is one.
If they belong to two disjoint social graphs then their shortest path is MAX-INT.
The Cypher query to implement GSD is: MATCH p=shortestPath((u:Members)-
[:Friend*.. depthToTraverse] -(u2:Members)) WHERE u.userid=U, and
u2.userid=U, RETURN length(p) as total. The parameter depthToTraverse
defines the number of levels (termed depth) of friendship relationship traversed
by the shortestPath function of Neo4j, striking a balance between the observed
response times and the accuracy of the computed value. Increasing depth may
enhance the accuracy of GSD and slow down its processing, resulting in a higher
response time.

Figure 4a show the average response time of GSD as a function of the depth tra-
versed with 10 and 100 friends per member. BG quantifies the percentage of GSD
actions that observe incorrect results, termed unpredictable data [7], 7. Figure 4b
shows the percentage of GSD requests that observe accurate results, termed Accu-
racy (100-7), as function of the depth with different number of friends per member.
As we increase the traversed depth on the x-axis, the computed distance becomes
more accurate (i.e., 7 decreases [7]) and the system becomes slower as the shortest-
Path function visits many more vertices. A sufficiently high depth value causes the
shortestPath to visit all vertices and terminate, producing 100 % accurate results.
The response time level off beyond this depth.

More formally, the response time levels off when the depth traversed multi-
plied by the number of friends equals the total number of members, resulting in
100 % accurate results. For example, in Fig. 4a, with the 100 K social graph and
100 friends per member, the response time levels off at a dept of 1,000. It levels
of at a depth of 10,000 with 10 friends per member. The first row of Table3
shows the observed response time with a depth of 20,000 with different number
of friends per member, ¢. With this depth, GSD provides 100 % accurate resuls
and its response time levels off with all three ¢ values.

With a fixed depth for the shortestPath function, the response time is faster
with fewer friends per member as this function visits fewer vertices. Hence, its
accuracy is also lower. To illustrate, consider a depth of 100 on the x-axis of
Fig. 4. The observed response time with 10 friends per member is six time faster,
100 versus 600ms. Moreover, the accuracy is significantly lower, 7% versus
25%, as its traversal of each depth visits fewer vertices (10 times lower) and
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Fig. 4. Average response time and accuracy of GSD as a function of the traversed
depth with a 100 K member social graph and two different settings for the number of
friends per member (¢ = 10 and 100).

its likelihood of visiting the vertex of interest is lower. The first row of Table 3
shows the response time increases as a function of ¢ as GSD must process many
more edges.

The View Friend Request (VFR) action of BG retrieves Socialite A’s
pending friend request, retrieving the profile information of each member who
has generated a friend request for member A. The behavior of VFR with Neo4;j
is similar to the discussion of LF.

A socialite uses the View Comments on Resource (VCR) action to display
the attributes of comments posted on a resource with a unique RID. Its Cypher
query is as follows: MATCH (u:Members)-[m:Manipulation]->(r:Resources)
WHERE r.rid=RID RETURN u.userid, r.rid, m.mid, m.type, m.content,
m.timestamp. The socialite may post and delete comments on a resource (PCR
and DCR) that creates and deletes edges between a member and a resource vertex,
respectively.

The View Top-K Resources (VITR) enables a socialite (Member A) to
retrieve and display her top k resources posted on her wall. Both the value
of k£ and the definition of “top” are configurable. Our Cypher implementation
uses the unique id assigned to a resource (rid) as the definition of top: MATCH
(u:Members) <-[cf:PostedOn]- (r:Resources) WHERE u.userid=A ORDER
BY r.rid LIMIT k.

The List Common Friends (LCF) action computes the common friends of
two members. If these two members are the same member then their common
friends is an empty set. If they are friends then LCF retrieves their common
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Table 3. RT, in milliseconds, of the StoredDistinct physical graph design as a function
of the number of friends (¢) with a 100K social graph and p = 100 resources per
member.

¢ =10|¢ =100 | ¢ = 1,000
Get Shortest Distance (GSD) | 402 | 2,733 |41,027
List Common Friends (LCF) |2,120 | 4,368 34,630
List Friends-of-Friends (LFF) 12 212 7,939

friends excluding themselves. Otherwise, if their distance is three or higher, then
the result is an empty set. The set is defined as the members who are a distance of
one from both members. Match (ul:Members), (u2:Members), (mf:Members)
WHERE ul.userid=U, AND u2.userid=U, AND (ul)-[:Friend]-(mf)-[:Fri-
end]-(u2) RETURN mf.userid. The response time of LCF increases as a func-
tion of the number of friends per member, ¢. (See the second row of Table 3.) At
times, the result of the LCF action might be the empty set as its input members
may have no common friends. The likelihood of this is lower with higher values
of ¢, explaining the higher average response time.

The List Friends-of-Friends (LFF) action computes those members who
are a distance of two from the specified member, including their common friends.
The Cypher query to implement this action is as follows: MATCH (ul:Members)-
[:Friend *2..2]-(u2:Members) WHERE ul.userid=U, and NOT (ul)-[:Fr-
iend]-(u2) RETURN distinct u2.userid. The third row of Table 3 shows the
response time of the LFF action increases superlinearly as a function of ¢. With
LFF, a ten fold increase in the value of ¢ results in a ten fold increase in the
number of retrieved userids. More precisely, given M members, BG constructs
the social graph by assigning members (i+j)%M as friends of Member ¢ where
the value of j varies from 1 to® % Hence, LFF retrieves 2¢ userids. For example,
with ¢ = 10 and 100, LFF retrieves 20 and 200 members, respectively. While
this explains the higher response time as a function of ¢, there appears to be
additional overhead that causes the response time of Neo4j to increase superlin-
early.

3.2 BG’s Write Actions

BG supports four write actions that impact the friendship relationship (edges)
between members (vertices). These are Invite Friend (IF), Accept Friend Request
(AFR), Reject Friend Request (RFR), and Thaw Friendship (TF). All involve
Socialite A invoking the action on Member U,. These actions modify either
the presence of edges or the attribute value of an edge between vertices. For
example, the Cypher create edge command for the IF action with the labeled
design is as follows: MATCH (ul:Members), (u2:Members) WHERE ul.userid=A
AND u2.userid=U, CREATE (ul)-(:Friend{status:pending})->(u2).

5 The torus characteristics of the mod function guarantees ¢ friends per member.
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Table 4. SoAR of the four physical graph models with workloads consisting of VP
only, LF only, and a mix of read and write actions.

Workload ComputeLabeled | ComputeDistinct | StoredLabeled | StoredDistinct
View Profile (VP) | 971 714 2,205 2,251
List Friend (LF) 93 119 112 118
0.1 % Write Actions | 117 459 819 835
1% Write Actions 46 369 435 499
10 % Write Actions | 32 162 0 100

With the Stored representations, these write actions must maintain the sim-
ple analytics attribute values of a vertex (member) up to date. For example, the
AFR action must increment the number of friends of the vertices corresponding
to Members A and U,. Moreover, it must decrement® the number of pending
friend invitations for Member A.

Table 4 shows the SoAR of the alternative physical graph designs for a mix
of read and write actions. The first column increases the frequency of the write
actions such as Invite Friend and Thaw Friendship, see Table5. This reduces
the SoAR of all designs shown in Fig.2. With a mix consisting of 10 % write
actions, computing the analytics of the View Profile action provides a higher
performance than the stored designs due to their overhead to maintain the value
of simple analytics up to date.

Representing pending and confirmed friendship relationships with unique
edges provides a higher performance when compared with labeled edges, com-
pare ComputeDistinct and ComputeLabeled columns in Table 4. Both slow down
as a function of an increasing mix of write actions. With ComputeDistinct,
when a member confirms a pending friendship invitation, the system deletes
an edge and inserts a new one. With ComputeLabeled, the same action changes
the value associated with a property of an edge. This consumes more of system
resources with our workloads, resulting in a lower SoAR.

4 Comparison of Neo4j with SQL-X Using BG

This section compares the performance of an industrial strength relational data-
base management system (RDBMS) named” SQL-X with Neo4j using BG. The
schema used for the RDBMS to represent the social graph is as follows:

— Users(userid, username, pw, fname, lname, gender, dob, jdate, ldate, address,
email, tel, profilelmage, thumbnaillmage, #Friends, #FriendInvitations,
#Resources)

— Friendship(inviter, invitee, status)

5 BG is a stateful benchmark that generates valid actions only. When it invokes the
AFR action involving Member A and U,, it does so based on its knowledge of U,
having a pending friend invitation from A. See [7] for details.

" Due to licensing agreement, we cannot disclose the identity of this system.
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Table 5. Three mixes of social networking actions.

BG Type | Very Low | Low | High
Social (01%) | (1%) | (10%)
Actions Write Write | Write
View Profile, VP Read |40 % 40% |35%
List Friends, LF Read | 5% 5% 5%
View Friend Requests, VFR Read | 5% 5% 5%
Invite Friend, IF Write | 0.04 % 04% 4%
Accept Friend Request, AFR Write | 0.02 % 02% 2%
Reject Friend Request, RFR Write | 0.02 % 02% 2%
Thaw Friendship, TF Write | 0.02 % 02% 2%
View Top-K Resources, VTR Read |40 % 40% |35%
View Comments on a Resource, VCR | Read |9.9% 9% |1%

Table 6. RT in milliseconds with maximum depth = 1,000.

SQL-X | Neo4j
Get Shortest Distance (GSD) | 718 2,588
List Common Friends (LCF) | 14 4,317
List Friends-of-Friends (LFF) | 26 163

— Resource(rid, creatorid, walluserid, type, body, doc)
— Manipulation(mid, rid, modifierid, creatorid, timestamp, type, content)

Underlined attributes are indexed and serve as the primary key of a table. An
italicized attribute represents a foreign key relationship. A confirmed friendship
between two members is represented as two rows.

Except for the LCF and the GSD actions, an implementation of BG’s actions
using the SQL query language is straightforward and described in [6,7,10]. We
implement LCF(A,B) using a single query: SELECT DISTINCT f1.inviteeid FROM
Friendship f1, £2 WHERE fl1.inviteeid=f2.inviteeid and fl.inviterid=
A and f2.inviterid=B and f1.status=Confirmed and f2.status=Confirmed.
Figure 5 shows an implementation of the Breadth First Search (BFS) algorithm
to implement GSD using the SQL query language. This algorithm issues a SQL
query for each level of BF'S starting with one member of the social graph, identi-
fied by UserID1. It terminates once it encounters the other member of the social
graph (UserID2), exhausts all the members of the social graph, or exceeds its max-
imum allowed depth.

Table 6 shows the average response time of GSD, LCF, and LFF with SQL-X
and Neodj for a social graph consisting of 100 K members, 100 fpm, and 100 rpm.
SQL-X is faster than Neodj for processing each of these commands. An SQL
implementation of these commands reference a single table, Friendship, that is a
vertical slice of the data. For example, The GSD algorithm of Fig. 5 queries the
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Algorithm GSD(USERIDI1, USERID2, MAXDEPTH):
If UserIDl equals UserID2 return O
If MaxDepth equals 0 return MAX-INT
Initialize Visited ¢« {}
Initialize SRC ¢ {UserID1}
Initialize CurrentDepth 4 0
While (true) :
(1) CurrentDepth 4 CurrentDepth+1l
(2) If (CurrentDepth > MaxDepth) return MAX-INT
(3) If (Visited contains all members) return MAX-INT
(4) Qry 4 "SELECT unique inviteeid FROM Friendship WHERE "
(5) For each userid in SRC:
Extend Qry with the clause "inviterid=userid"
using boolean or connective
(6) Visited ¢« Visited U SRC
(7) Execute Qry using RDBMS to obtain a result set R
(8) If (UserID2 € R) return CurrentDepth
(9) SRC = R - (R N Visited)
(10)XIf (SRC is empty) return MAX-INT

Fig. 5. Get Shortest Distance using SQL-X.

Friendship table repeatedly in Step 5. Neo4j, on the other hand, may retrieve
a vertex that contains several property values of a member including a 12 KB
profile image. It is possible to further enhance the reported GSD numbers with
SQL-X by implementing the algorithm of Fig.5 as a stored procedure.

Table 7 shows the observed SoAR with SQL-X and Neo4j (using the Stored-
Distinct design, see Fig. 3) for the three mix of write actions shown in Table 5.
We consider a BG database configured with either images or no images. The lat-
ter lacks the 12 KB profile image and the 2 KB thumbnail image. With both, the
schema of SQL-X stores the simple analytics of a member as an attribute value
of a row and requires a write action to maintain these values up-to-date [10].

SQL-X performs poorly when required to store images larger than 4 KB [10,
19] and Neo4j outperforms it by a wide margin. With a social graph that has
no images, SQL-X outperforms Neodj by a wide margin, see last two columns of
Table 7. SOAR of Neo4j is also enhanced when the social graph has no images.
In [10], we show that storing profile images in the file system, termed Boosted
SQL-X design, enhances the SOAR of SQL-X by more than ten folds. A future
research direction is to analyze Neo4j with images stores in the file system (sim-
ilar to the discussion of Boosted SQL-X). We speculate its performance to fall
between the two extremes shown in Table 7.
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Table 7. SoAR with 100 K members, ¢ = 100 fpm, and p = 100 rpm, with and without
images.

With images | No images

SQL-X | Neo4j | SQL-X | Neo4j
0.1 % Write Action | 360 835 120,550 | 1,460
1% Write Action | 290 499 16,135 688
10 % Write Action 0 100 2,095 150

5 Future Research Direction

We are extending this study by considering additional graph data stores, char-
acterizing their scalability and their role in processing more complex social net-
working actions. We describe these in turn.

We are using BG to complete an evaluation of Neo4j and other graph data-
bases such as G* [18] and OrientDB [23]. This includes an analysis of their
scalability characteristics and a comparison with data stores that support alter-
native data models, e.g., document stores, extensible stores, key-value stores and
relational DBMSs. We also intend to analyze the overhead of an Object Graph
Model (OGM) such as Blueprint when compared to using the native interface of
a graph data store [16].

Moreover, we intend to investigate alternative physical graph designs for
processing more complex social networking actions, namely, feed following actions
such as Share Resource (SR) and View New Feed (VNF) [9]. These model a mem-
ber producing events for consumption by others and displaying the events gen-
erated by other members and entities, typically their friends or those that they
follow. Both the highly variable fan-out of the follows graph along with its dynam-
ically changing structure (e.g., a member thaws friendship with another member)
makes an implementation of feed following challenging [9,20]. One may introduce
different designs and implementations to address these challenges [5,17,21]. One
is to materialize the feed of a member and maintain it up to date when new events
are produced by those she follows [21]. A graph database such as Neo4j may be
suitable for this Push paradigm because it supports extensions of a vertex with
new attributes. A design may split a vertex into multiple vertices once it increases
beyond a certain size [13]. Finally, edges may maintain the relationship between
older and newer feed as a member’s feed grows in size. An alternative to Push is
to Pull events and may include clever designs that synergizes those members with
mutual friends by maintaining one news feed for them. We plan to investigate these
alternative implementations with Neo4j and other graph data stores.
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